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We consider a nonstationary vector autoregressive process which is integrated of order 1, and 
generated by i.i.d. Gaussian errors. We then derive the maximum likelihood estimator of the space 
of cointegration vectors and the likelihood ratio test of the hypothesis that it has a given number 
of dimensions. Further we test linear hypotheses about the cointegration vectors. 

The asymptotic distribution of these test statistics are found and the first is described by a 
natural multivariate version of the usual test for unit root in an autoregressive process, and the 
other is a x2 test. 

1. Introduction 

The idea of using cointegration vectors in the study of nonstationary time 
series comes from the work of Granger (1981), Granger and Weiss (1983), 
Granger and Engle (1985), and Engle and Granger (1987). The connection 
with error correcting models has been investigated by a number of authors; see 
Davidson (1986), Stock (1987), and Johansen (1988) among others. 

Granger and Engle (1987) suggest estimating the cointegration relations 
using regression, and these estimators have been investigated by Stock (1987), 
Phillips (1985), Phillips and Durlauf (1986), Phillips and Park (1986a, b, 1987), 
Phillips and Ouliaris (1986,1987), Stock and Watson (1987), and Sims, Stock 
and Watson (1986). The purpose of this paper is to derive maximum likelihood 
estimators of the cointegration vectors for an autoregressive process with 
independent Gaussian errors, and to derive a likelihood ratio test for the 
hypothesis that there is a given number of these. A similar approach has been 
taken by Ahn and Reinsel (1987). 

This program will not only give good estimates and test statistics in the 
Gaussian case, but will also yield estimators and tests, the properties of which 
can be investigated under various other assumptions about the underlying data 
generating process. The reason for expecting the estimators to behave better 
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than the regression estimates is that they take into account the error structure 
of the underlying process, which the regression estimates do not. 

The processes we shall consider are defined from a sequence {E,} of i.i.d. 
p-dimensional Gaussian random variables with mean zero and variance matrix 

A. We shall define the process X, by 

x,=n,x,_,+ ... +t~X,_,+E,, t=1,2 >.‘., (1) 

for given values of X_ k + i, . . , X0. We shall work in the conditional distribu- 
tion given the starting values, since we shall allow the process X, to be 
nonstationary. We define the matrix polynomial 

A(z)=I-qz- ... -n,z”, 

and we shall be concerned with the situation where the determinant IA(z)/ has 
roots at z = 1. The general structure of such processes and the relation to error 
correction models was studied in the above references. 

We shall in this paper mainly consider a very simple case where X, is 
integrated of order 1, such that AX, is stationary, and where the impact matrix 

A(z)l,=,=II=I-II,- ... -nk 

has rank r <p. If we express this as 

Ill = (Yp, (2) 

for suitable p X r matrices (Y and fi, then we shall assume that, although AX, 
is stationary and X, is nonstationary as a vector process, the linear combina- 
tions given by P’X, are stationary. In the terminology of Granger this means 
that the vector process X, is cointegrated with cointegration vectors p_ The 
space spanned by /3 is the space spanned by the rows of the matrix II, which 
we shall call the cointegration space. 

In this paper we shall derive the likelihood ratio test for the hypothesis given 
by (2) and derive the maximum likelihood estimator of the cointegration 
space. Then we shall find the likelihood ratio test of the hypothesis that the 
cointegration space is restricted to lie in a certain subspace, representing the 
linear restrictions that one may want to impose on the cointegration vectors. 

The results we obtain can briefly be described as follows: the estimation of 
/I is performed by first regressing AX, and X,_, on the lagged differences. 
From the residuals of these 2p regressions we calculate a 2p X 2p matrix of 
product moments. We can now show that the estimate of p is the empirical 
canonical variates of X,-, with respect to AX, corrected for the lagged 
differences. 
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The likelihood ratio test is now a function of certain eigenvalues of the 
product moment matrix corresponding to the smallest squared canonical 
correlations. The test of the linear restrictions involve yet another set of 
eigenvalues of a reduced product moment matrix. The asymptotic distribution 
of the first test statistic involves an integral of a multivariate Brownian motion 
with respect to itself, and turns out to depend on just one parameter, namely 
the dimension of the process, and can hence be tabulated by simulation or 
approximated by a X2 distribution. The second test statistic is asymptotically 
distributed as x2 with the proper degrees of freedom. It is also shown that the 
maximum likelihood estimator of p suitably normalised is asymptotically 
distributed as a mixture of Gaussian variables. 

2. Maximum likelihood estimation of cointegration vectors and likelihood ratio 
tests of hypotheses about cointegration vectors 

We want to estimate the space spanned by /3 from observations X,, 
t= -k+l,..., T. For any r up we formulate the model as the hypothesis 

H,: rank(n) 5 r or II= a/?‘, (3) 

where (Y and /3 are p x r matrices. 
Note that there are no other constraints on II,, . . . , Ilk than (3). Hence a 

wide class containing stationary as well as nonstationary processes is consid- 
ered. 

The parameters (Y and p can not be estimated since they form an over- 
parametrisation of the model, but one can estimate the space spanned by fi. 

We can now formulate the main result about the estimation of sp(p) and 
the test of the hypothesis (3). 

Theorem I. The maximum likelihood estimator of the space spanned by p is the 
space spanned by the r canonical variates corresponding to the r largest squared 

canonical correlations between the residuals of X,_, and AX, corrected for the 

efSect of the lagged dtferences of the X process. 
The likelihood ratio test statistic for the hypothesis that there are at most r 

cointegration vectors is 

-2ln(Q) = -T i ln(l -A;), (4) 
i=r+l 

where i ,.+ 1, . . . , ip are the p - r smallest squared canonical correlations. 

Proof. Before studying the likelihood function it is convenient to reparame- 
trise the model (1) such that the parameter of interest II enters explicitly. We 
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write 

AX,=T,AX,_,+ .a. +rk-lAX+k+l+I’kXt_k+~,, (5) 

where 

r, = -I+&+ *** +ni, i=l ,a*., k. 

Then IT = -r,, and whereas (3) gives a nonlinear constraint on the coeffi- 
cients n,, . . . , IIk, the parameters (I’,, . . . , rk_l, a, B, A) have no constraints 
imposed. In this way the impact matrix II is found as the coefficient of the 
lagged levels in a nonlinear least squares regression of AX, on lagged dif- 
ferences and lagged levels. The maximisation over the parameters r,, . . . , I’,_ 1 
is easy since it just leads to an ordinary least squares regression of AX, + 
(Y/?‘X,_~ on the lagged differences. Let us do this by first regressing AX, on the 
lagged differences giving the residuals R,, and then regressing X,_, on the 
lagged differences giving the residuals R,,. After having performed these 
regressions the concentrated likelihood function becomes proportional to 

WrJ4.N 

0, + @R,,)‘A-‘(Ro, + d’R,,) 

For fixed p we can maximise over OL and A by a usual regression of R,, on 
-j3’Rk, which gives the well-known result 

and 

W) = -So,PWS,,P)-‘~ (6) 

A(P) = Soo- S0,PW&,P)%%0~ (7) 

where we have defined product moment matrices of the residuals as 

Sij = T-’ ; R,,R(,, i, j = 0, k. 
t-l 

(8) 

The likelihood profile now becomes proportional to 

and it remains to solve the minimisation problem 

mWS, - So,B(P’S,,P)-‘P’S,oI, 

where the minimisation is over all p x r matrices /3. The well-known matrix 
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relation [see Rao (1973)] 

= IP'skkplISoo-SokP(p'SkkP)-lp'SkOI 

shows that we shall minimise 

with respect to the matrix /I. 
We now let D denote the diagonal matrix of ordered eigenvalues fir > . - * 

> ip of SkOS&,?!$,, with respect to Skk, i.e., the solutions to the equation 

Ixs,, - S,,S&‘S,,,] = O, (9) 

and E the matrix of the corresponding eigenvectors, then 

S,,ED = S,,&&,,E, 

where E is normalised such that 

E’S,, E = I. 

Now choose p = Et where E is p X r, then we shall minimise 

IE’E - E’DEI/IE’EI. 

This can be accomplished by choosing E to be the first r unit vectors or by 
choosing B to be the first r eigenvectors of S,#!&‘SOk with reSpeCt to Skk, i.e., 
the first r columns of E. These are called the canonical variates and the 
eigenvalues are the squared canonical correlations of R, with respect to R,. 
For the details of these calculations the reader is referred to Anderson (1984, 
ch. 12). This type of analysis is also called reduced rank regression [see Ahn 
and Reinsel (1987) and Velu, Reinsel and Wichem (1986)]. Note that all 
possible choices of the optimal p can be found from B by j3 = /$I for p an 
r X r matrix of full rank. The eigenvectors are normalised by the condition 
B’SkkB = Z such that the estimates of the other parameters are given by 

& = - S,,,& ,&S,&& -’ = -S,,,& 

which clearly depends on the choice of the optimising p, whereas 

(10) 

‘= -s,,fi(,@k&-lfj,= -SOk,j/ftr (11) 
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(12) 

L,Z’= IS,l fJ (1 -A,>, 03) 
r=l 

do not depend on the choice of optimising p. 
With these results it is easy to find the estimates of II and A without the 

constraint (3). These follow from (6) and (7) for r =p and /I = I and give in 
particular the maximised likelihood function without the constraint (3): 

L-2’T= ,S,, JJ (1 -A,>. max 04) 

If we now want a test that there are at most r cointegrating vectors, then the 
likelihood ratio test statistic is the rftio of (13) and (14) which can be 
expressed as (4) where ir+l > . . . > A,, are the p - r smallest eigenvalues. 
This completes the proof of Theorem 1. 

Notice how this analysis allows one to calculate all p eigenvalues and 
eigenvectors at once, and then make inference about the number of important 
cointegration relations, by testing how many of the h’s are zero. 

Next we shall investigate the test of a linear hypothesis about j3. In the case 
we have Y = 1, i.e., only one cointegration vector, it seems natural to test that 
certain variables do not enter into the cointegration vector, or that certain 
linear constraints are satisfied, for instance that the variables Xi, and X,, only 
enter through their difference Xi, - X,,. If r 2 2, then a hypothesis of interest 
could be that the variables Xi, and X,, enter through their difference only in 
all the cointegration vectors, since if two different linear combinations would 
occur then any coefficients to Xi, and X,, would be possible. Thus it seems 
that some natural hypotheses on p can be formulated as 

Hi: P=%, (15) 

where H( p x s) is a known matrix of full rank s and q(s x r) is a matrix of 
unknown parameters. We assume that r I s up. If s =p, then no restrictions 
are placed upon the choice of cointegration vectors, and if s = r, then the 
cointegration space is fully specified. 

Theorem 2. The maximum likelihood estimator of the cointegration space, 
under the assumption that it is restricted to sp( H), is given as the space spanned 
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by the canonical variates corresponding to the r largest squared canonical 
correlations between the residuals of H’X,_, and AX, corrected for the lagged 
diflerences of X,. 

The likelihood ratio test now becomes 

-2ln(Q)=Tiln((l-X:)/(1-i;)), 
i=l 

(16) 

where Xl;, . . . , A: are the r largest squared canonical correlations. 

Proof. It is apparent from the derivation of p^ that if p = Hq is fixed, then 
regression of R,, on -‘p’H’R,, is still a simple linear regression and the 
analysis is as before with R,, replaced by H’R,,. Thus the matrix ‘p can be 
estimated as the eigenvectors corresponding to the r largest eigenvalues of 

H’S,,S&,‘S,,, H with respect to H’S,,H, i.e., the solution to 

IXH’S,,H - H’S,,&&HI = 0. 

Let the s eigenvalues be denoted by hy, i = 1,. . . , s. Then the likelihood 
ratio test of Hi in H, can be found from two expressions like (13) and is given 
by (16), which completes the proof of Theorem 2. 

In the next section we shall find the asymptotic distribution of the test 
statistics (4) and (16) and show that the cointegration space, the impact matrix 
II and the variance matrix A are estimated consistently. 

3. Asymptotic properties of the estimators and the test statistics 

In order to derive properties of the estimators we need to impose more 
precise conditions on the parameters of the model, such that they correspond 
to the situation we have in mind, namely of a process that is integrated of 
order 1, but still has r cointegration vectors fi. 

First of all we want all roots of \A( z)l = 0 to satisfy lz I > 1 or possibly 
z = 1. This implies that the nonstationarity of the process can be removed by 
differencing. Next we shall assume that X, is integrated of order 1, i.e., that 
AX, is stationary and that the hypothesis (3) is satisfied by some (Y and p of 
full rank r. Correspondingly we can express AX, in terms of the e’s by its 
moving average representation, 

AX,= f- C-p-/~ 
J=o 

for some exponentially decreasing coefficients C,. Under suitable conditions on 
these coefficients it is known that this equation determines an error correction 
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model of the form (5), where r,X,_, = -IIX,_, represents the error correc- 
tion term containing the stationary components of X,_k, i.e., B’Xt_k. More- 
over the null space for C’ = c,“=&.’ given by {[I C’[ = 0} is exactly the range 
space of r,l, i.e., the space spanned by the columns in B and vice versa. We 
thus have the following representations: 

II=@’ and C=yr8’, (17) 

where 7 is ( p - r) X (p - r), y and 6 are p X ( p - r), and all three are of full 
rank, and y’B = B’(Y = 0. We shall later choose 6 in a convenient way [see the 
references to Granger (1981) Granger and Engle (1985), Engle and Granger 
(1987) or Johansen (1988) for the details of these results]. 

We shall now formulate the main results of this section in the form of two 
theorems which deal with the test statistics derived in the previous section. 
First we have a result about the test statistic (4) and the estimators derived in 
(11) and (12). 

Theorem 3. Under the hypothesis that there are r cointegrating vectors the 
estimate of the cointegration space as well as IT and A are consistent, and the 
likelihood ratio test statistic of this hypothesis is asymptotically distributed as 

tr( /o’dBB’[ L’BB’du] -‘l’B dB’), (18) 

where B is a( p - r)-dimensional Brownian motion with covariance matrix I. 

In order to understand the structure of this limit distribution one should 
notice that if B is a Brownian motion with I as the covariance matrix, then 
the stochastic integral /ofB d B’ is a matrix-valued martingale, with quadratic 
variation process 

/‘var(BdB’)=/‘BB’duQI, 
0 0 

where the integral _/,,‘BB’du is an ordinary integral of the continuous matrix- 
valued process BB’. With this notation the limit distribution in Theorem 3 can 
be considered a multivariate version of the square of a martingale /ofB d B’ 
divided by its variance process /,,‘BB’du. Notice that for r =p - 1, i.e., for 
testing p - 1 cointegration relations one obtains the limit distribution with a 
one-dimensional Brownian motion, i.e., 

(~1BdB)~~1B2du=((B(1)2-1),Z)Y11B2dU, 
0 
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Table 1 

The quantiles in the distribution of the test statistic, 

where B is an m-dimensional Brownian motion with covariance matrix I. 

m 2.5% 5% 10% 50% 90% 95% 97.5% 

1 0.0 0.0 0.0 0.6 2.9 4.2 5.3 
2 1.6 1.9 2.5 5.4 10.3 12.0 13.9 
3 7.0 7.8 8.8 14.0 21.2 23.8 26.1 
4 16.0 17.4 19.2 26.3 35.6 38.6 41.2 
5 28.3 30.4 32.8 42.1 53.6 57.2 60.3 

which is the square of the usual ‘unit root’ distribution [see Dickey and Fuller 
(1979)]. A similar reduction is found by Phillips and Ouliaris (1987) in their 
work on tests for cointegration based on residuals. The distribution of the test 
statistic (18) is found by simulation and given in table 1. 

A surprisingly accurate description of the results in table 1 is obtained by 
approximating the distributions by cx2(f) for suitable values of c and f. By 
equating the mean of the distributions based on 10,000 observations to those 
of cx2 with f = 2m2 degrees of freedom, we obtain values of c, and it turns 
out that we can use the empirical relation 

c = 0.85 - 0.58/f. 

Notice that the hypothesis of r cointegrating relations reduces the number of 
parameters in the II matrix from p2 to rp + r( p - r), thus one could expect 
( p - r)2 degrees of freedom if the usual asymptotics would hold. In the case of 
nonstationary processes it is known that this does not hold but a very good 
approximation is given by the above choice of 2( p - r)2 degrees of freedom. 

Next we shall consider the test of the restriction (15) where linear con- 
straints are imposed on j3. 

Theorem 4. The likelihood ratio test of the hypothesis 

Hi: P=& 

of restricting the r-dimensional cointegration space to an s-dimensional subspace 
of RP is asymptotically distributed as x2 with r( p - s) degrees of freedom. 

We shall now give the proof of these theorems, through a series of inter- 
mediate results. We shall first give some expressions for variances and their 
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limits, then show how the algorithm for deriving the maximum likelihood 
estimator can be followed by a probabilistic analysis ending up with the 
asymptotic properties of the estimator and the test statistics. 

We can represent X, as X, = c:=, A Xi, where X0 is a constant which we 
shall take to be zero to simplify the notatton. We shall describe the stationary 
process AX, by its covariance function 

q(i) = var(AX,, AX,+,), 

and we define the matrices 

p,, =$(i -j) = E(AX,_,AX,‘,), i, j=O ,...,k-1, 

i=O ,..., k- 1, 

and 

P kk= - 

/=-CC 

Finally define 

Note the following relations: 

J=o J=o 

r-k 

var(x,-k)= C (t-k- ljl)G(j), 

J=-t+k 

*--I 

COV( x,-k, Ax,-i) = c ‘b(j), 
j=k-1 
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which show that 

var(X,/T1/2) -+ f 4(j) =+, 
I=--m 

and 

cov( xTpk, AX,_,) --) f q(j) = P/cry 
j=k-r 

whereas the relation 

T-k T-k 

var(p’xT-k) = tTek) c b’+(j)/?- c i_db’+(j)P 

/= -T+k j= -T+k 

shows that 

since P’C = 0 implies that P’J, = 0, such that the first term vanishes in the 
limit. Note that the nonstationary part of X, makes the variance matrix tend 
to infinity, except for the directions given by the vectors in fi, since P’X, is 

stationary. 
The calculations involved in the maximum likelihood estimation all center 

around the product moment matrices 

M,, = ~-1 i Ax,_,Ax;-,, i, j=O ,...,k-1, 
r=l 

Mki = T-’ i X,_,AX,‘i, i=O,...,k-1, 
t=l 

Mkk = T-’ ; X,-,x;-, 
t=1 

We shall first give the asymptotic behaviour of these matrices, then find the 
asymptotic properties of S,, and finally apply these results to the estimators 
and the test statistic. The methods are inspired by Phillips (1985) even though 
I shall stick to the Gaussian case, which make the arguments somewhat 
simpler. 

The following lemma can be derived by the results in Phillips and Durlauf 
(1986). We let W be a Brownian motion in p dimensions with covariance 
matrix A. 
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Lemma 1. As T + 00, we have 

T-1’2XuTtl : CW( t), 09) 

a.s. 

Mij + Pij, i, j=O ,..., k- 1, (20) 

Mki 4 C/lWdw’C’ + pki, i=O,..., k- 1, (21) 
0 

T-lMkk: Cjo’W(u)W’(u)du C’. (23) 

Note that for any E E RP, E’M,& is of the order in probability of T unless 6 
is in the space spanned by /3, in which case it is convergent. Note also that the 
stochastic integrals enter as limits of the nonstationary part of the process X,, 
and that they disappear when multiplied by /?, since P’C = 0. 

We shall apply the results to find the asymptotic properties of Sij, i, j = 0, k, 
see (8). These can be expressed in terms of the Mij’s as follows: 

Sij = Mij - M,,M,-:M,,, i, j = 0, k, 

where 

M**= {Mij, i, j=l,..., k-l}, 

Mk*= {Mki, i=l,..., k-l}, 

MO*= {Moi, i=l,..., k-l}. 

A similar notation is introduced for the pij’s. It is convenient to have the 
notation 

Bij= Pij- Pi*PGb*j% i, j=O,k. 

We now get: 

Lemma 2. The following relations hold 

z,=r,z,,+n, 

&/J~ = r/J/&G, 

(24) 

(25) 
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and hence, since r, = -a/?‘. 

Z00=~(jl’2kk~)~‘+A and 1y= -B,,/?(~‘B,,~)-l. (26) 

Proof. From the defining eq. (5) for the process X, we find the equations 

i& = r,iV,, + - * * +I’k_1Mk._l,i + &Mki + T-’ t e,AX:-iy (27) 
r-1 

i=O,l ,..., k- 1, and 

MOk = rIMI, + - * * +r,_,M,_,,, + r,M,, + T-’ i E,X:_~. (28) 
t-1 

Now let T --) co, then we get the equations 

poo = OiO + a a* +LP~-~,~+~~P~~+~ (29) 

PLoi = rlpli + . . . +rk-dh-1.i + rkPki, i=l ,...,k-1, (30) 

pLOkP = I;pikp + s a* +uh, d + r,d. (31) 

If we solve the eq. (30) for the matrices r, and insert into (29) and (31), we get 
(24), (25), and (26). 

We shall now find the asymptotic properties of Sij. 

Lemma 3. For T + 00, it holds that, if S is chosen such that S’a = 0, then 

B.S. 
%_I + &, (32) 

S’S,, 4 6’/1 dW W’C’, (33) 
0 

p’s,, 2 #%‘C,,) (34) 

T-‘S,, 3 C$W(u)W’(u)duC’. 

p’s,,/3 2 p’z,,p. 

(35) 

(36) 

Proof. All relations follow from Lemma 1 except the second. If we solve for 
I’, in the eq. (27), insert the solution into (28), and use the definition of Sij in 
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terms of the M’s, then we get 

S,, = T-’ i E,X;_~ + rkSkk 
k-l k-l 

- c c T-’ i E,AX;_,M~‘M/~. 
t=1 i=l j=l t=1 

(37) 

The last term goes as. to zero as T + co, since E, and AX,‘_, are stationary 
and uncorrelated. The second term vanishes when multiplied by a’, since 

8’rk = --6’@ = 0, and the first term converges to the integral as stated. 

Lemma 4. The ordered eigenvalues of the equation 

~XS,, - S,,S&)‘S,,~ = 0 (38) 

converge in probability to (A,, . . . , X ~, 0,. . . , 0), where A,, . . , A, are the ordered 
eigenvalues of the equation 

Ixp’z,,P - &&?$&/$I = O. (39) 

Proof. We want to express the problem in the coordinates given by the p 
vectors in p and y, where y is of full rank p - r and y’p = 0. This can be 
done by multiplying (9) by I(/?, y)‘l and I(j3, y)l from the left and right, then 
the eigenvalues solve the equation 

I[ 

x P’skkP btSkkY 

fskkP fskkY - )“sk,s$!&k,8 
I i 

~‘sk,s~ls,k~ ~‘SkOS&llsOk~ 

fskC&$OkY 
II 

= o. 

We define A,= (Y’S~~~))~/~ so that by (35) A,3 0. Then the eigenvalues 

have to satisfy the equation 

I 1 , P’s,,b b’&Yf$- 

I 1 
II = 0. 

The coefficient matrices converge in probability by the results in Lemma 3, 
and the limiting equation is 
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or 

where I is an identity matrix of dimension p - r, which means that the 
equation has p - r roots at X = 0. It is known that the ordered eigenvalues are 
continuous functions of the coefficient matrices [see Andersson, Brons and 

Jensen (1983)], and hence the statement of Lemma 4 is proved. 
We shall need one more technical lemma before we can prove the more 

useful results. We decompose the eigenvectors/ as follows: j?, = /3.?, + yji, 
where 2i_= (P’/Y?-‘~‘& and y, = (y’y))‘y/p,. Let R = (ii,. . . , 2,) = 
(p’/?-‘/?‘p. Note that although we have proved that the eigenvalues h, are 
convergent, the same cannot hold for the eigenvectors p1 or Z,, since if the 
limiting eq. (39) has multiple roots then the eigenvectors are not uniquely 
defined. This complicates the formulation below somewhat. Let 

S(X) = AS,, - s,,&)‘s,,,. 

Lemma 5. For i = 1,. . . , r, we have 

y’S( A,) y/T: h;y’+VW’du C’y, 
0 

(40) 

9, E o&-‘), 2 E O,(l), 2-l E O,(l), (41) 

ps( ii;)pa, E O,(P), (42) 

ulS( X,)pa, = -yf[ T-1 ~lx,_,.:]r,‘r,k/% + OPW (43) 

Proof. The relation (40) follows directly from (35) in Lemma 3, since by 
Lemma4, iizAi>O. 

The normalisation p^‘S,,p = I implies by an argument similar to that of 
Lemma 4 for the eigenvalues of S,, that p^ and hence 2 is bounded in 
probability. The eigenvectors Bi and eigenvalues fi, satisfy 

ps( ii,)& + ps( r;;)Y.?; = 0, w 

ys( i;)pa; + ys( &)Yj; = 0. (45) 
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Now (40) and (45) imply that jj E O,(T-‘), and hence from (44) we find that 
p’S(b,)pni E O,(T-‘), which shows (42), and also from the normalising 
condmon, that Z’p’S,,pa 3 I. Hence 12 I*Ij3’S,,fiI -% 1, which implies that 
also 2-l is bounded in probability, which proves (41). From (37) it follows 
that 

y’s,, + y’&JhY’ = y’T_’ i XI_& + op(l). 
r=1 

Now replace 01= -ZOkP(/3’EkkP)-1 [see (26)] by the consistent estimate 
- SOkP(PSkkP)-‘, then 

-Y’T_’ i x,_&&&J?LQi+ op(l). 
I-1 

The first term contains the factor /3’S(fi,)/E, which tends to zero in probabil- 
ity by (42). This completes the proof of Lemma 5. 

We shall now choose 6 of dimension p X (p - r) such that 8’01= 0 [see 
(17)] in the following way. We let P,(A) denote the projection of RP onto the 
column space spanned by (Y with respect to the matrix A-‘, i.e., 

&(A) = c&I-‘cu)-%‘A-‘. 

We then choose 6 of full rank p - r to satisfy 

EY=A-‘(I-P,(A)). 

Note that B’CX = 0, and that PAS = I of dimension (p - r) x (p - r). Note 
also that Pa(A) = P,(Xc,) since Zw is given by (26). This relation is well- 
known from the theory of random coefficient regression [see Rao (1965) or 
Johansen (1984)]. 

Lemma 6. For T + CQ, we have that Ti,+l,. . . , 
the ordered eigenvalues of the equation 

T fi, converge in distribution to 

I/ A OIBB’du - ilBdB’&‘dBB’i =O, (46) 

where B is a Brownian motion in p - r dimensions with covariance matrix I. 
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Proof. We shall consider the ordered eigenvalues of the equation 
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I[ P’S,,P/T P&Y/T 
Y’S,,P/T Y’S,,Y/T -’ I 1 P’s,o&ls,,P P’s,,s~‘s,,Y 

Y'&,&&d Y'&,&&Y II 

= . o 

For any value of T the ordered eigenvalues are 

& = (Tip)-‘,...,&= (T&-‘. 

Since the ordered eigenvalues are continuous functions of the coefficients, 
we find from Lemma 3 that &, . . . , p, converge in distribution to the ordered 
eigenvalues from the equation 

where F is the weak limit of S,,y. 
This determinant can also be written as 

which shows that in the limit there are t roots at zero. Now apply (24) and 
(25) of Lemma 2 and find that 

equals 

B&1(1-P,(&)))=A-‘(I-P,(A))=&Y, 

and hence that the second factor of (47) is 

’ WW’du C’y - @“S&F , 
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which by (33) equals 

lWWIduC’y-py’CjlWdW’GS’jldWW’C’y. 
0 0 

(48) 

Thus the limiting distribution of the p - r largest p’s is given as the distribu- 
tion of the ordered eigenvalues of (48). 

The representation (17): C = yra’ for some nonsingular matrix 7 now 
implies, since 1 y’y 1 # 0 and 171 # 0, that 

(G’jlWW’dus-~6’j1WdWf66’j1dWW’6/=0. 
0 0 0 

(49) 

Now B = 6’W is a Brownian motion with variance S’A6 = I, and the result of 
Lemma 6 is found by noting that the solutions of (46) are the reciprocal values 
of the solutions to the above equation. 

Corollary. The test statistic for H,: IT = a/3’ given by (4) will converge in 
distribution to the sum of the eigenvalues given by (46), i.e., the limiting 

distribution is given by (18): 

Proof. We just expand the test statistic (4) 

-2ln(Q)=-T i ln(l-s,)= i Ti,+o,(l), 
r=r+1 r=r+1 

and apply Lemma 6. 

We can now complete the proof of Theorem 3. 

The asymptotic distribution of the test statistic (4) follows from the above 
corollary, and the consistency of the cointegration space and the estimators of 
II and A is proved as follows. We decompose p^ = p,? + yj, and it then follows 
from (41) that /k’ -/?=y_,GP’ E O,(T-‘). Thus we have seen that the 

projection of p onto the orthogonal complement of sp(p) tends to zero in 
probability of the order of Tp’. In this sense the cointegration space is 
consistently estimated. From (11) we find 
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which converges in probability to 

-&J3( p9,,p)-‘pt = l$’ = II. 

From (12) we get by a similar trick that 

P 

+=oo - &dw%P)-‘P%, = &xl - 4P’-ww> 

which by (26) equals A. This completes the proof of Theorem 3. 

In order to prove the Theorem 4 we shall need an expansion of 
likelihood function around a point where the maximum is attained. 
formulate this as a lemma: 
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the 
We 

Lemma 7. Let A and B be p XP symmetric positive dejnite matrices, and 

deJine the function 

f(z) =ln{lz’Azl/lz’Bzl}, 

where z is a p x r matrix. If z is a point where the function attains its maximum 

or minimum, then for any p x r matrix h we have 

f(z+h)=f(z)+tr{(z’Az)-‘h’Ah-(z’Bz)-’h’Bh} +O(h3). 

Proof. This is easily seen by expanding the terms in f using that the first 
derivative vanishes at z. 

We shallAnow give the asymptotic distribution of the maximum likelihood 
estimator j3 suitably normalised. This is not a very useful result in practise, 
since the normalisation depends on p, but it is convenient for deriving other 
results of interest. 

Lemma 8. The maximum likelihood estimator p^ has the representation 
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which converges in distribution to 

Y( puf du) -lpdvt, 

where U and V are independent Brownian motions given by 

u= y’CW, (51) 

The variance of V is given by 

Note that the limiting distribution for fixed U is Gaussian with mean zero and 
variance 

Thus the limiting distribution is a mixture of Gaussian distributions. This will be 
used in the derivation of the limiting distributions of the test statistics [see Lemma 

91. 

Proof. From the decomposition & = PRi + yjl we have from (45) 

It follows from (40) and (43) in Lemma 5 that this can be written as 

,. A *1 ,. 
Hence for 2 = (a,, . . . , ~2~) = (p’fi)-‘j3’/3 and D, = diag( A,, . . . , A,), 

= u(u.s,,v,T)-‘r’[T-’ +;]E,:EOk~~&-l + or(l). (54) 
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Now multiply by i - ’ from the right and note that it follows from (42) that 

pqJ3aij - /?‘s,,s~‘s,,&? E op(l), 

which shows that 

Now insert this into (54) and we obtain the representation (50), which 
converges as indicated with U and V defined as in (51) and (52). The variance 
matrix for V is calculated from (52) using the relation (26). Similarly the 
independence follows from (26). 

Lemma 9. The likelihood ratio test of the hypothesis of a complete& specijed /I 
has an asymptotic representation of the form 

-2ln(Q) = Ttr(var(V)~‘(~(/3’~)-1~‘/3-~)’ 

which converges weakly to 

(55) 

(56) 

where U and V are given by (51) and (52). 
The statistic (56) has a x2 distribution with r( p - r) degrees of freedom. 

Proof. The likelihood ratio test statistic of a simple hypothesis about p has 
the form 

Now replace p^ by &’ = j?, say, which is also a maximum point for the 
likelihood function. Then the statistic takes the form T{ f( j3) -f(p)} for 
A = S,, - S,,S&-,?!& and B = S,, [see Lemma 71. By the result in Lemma 7 it 
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follows that this can be expressed as 

Ttr((B’A~)~l(p-P)~(B-8) - (/?B/J)-1(j7-p)P(p-p)) 

= Ttr 
I[ 

(PA/?-l - (P’NV](B- P)‘&,(P- P,) 

Now use the result from Lemma 8 that j?-- p E O,(T-‘) to see that the last 
two terms tend to zero in probability. We also get 

[ P( Sk, - &$,%,)P] -l - [ #@s,,p”] -l 

Finally we note that T(@ - j?)‘S,,(p-- j3) converges in distribution to 

Now use the fact that for given value of U the (p - r) x r matrix /,‘UdV’ is 
Gaussian with mean zero and variance matrix 

/ 
‘UU’du@var(V), 

0 

hence the distribution of (56) for fixed U is x2 with (p - r)r degrees of 
freedom. Since this result holds independently of the given value of U it also 
holds marginally. This basic independence and the conditioning argument is 
also used in the work of Phillips and Park (1986b) in the discussion of the 
regression estimates for integrated processes. 

We can now finally give the proof of Theorem 4. 

We want to test the hypothesis H,: p = HT. 
We now choose IJ (s X (s - r)) to supplement ‘p (s X r) such that (4, cp) 

(s x s) has full rank. We can choose il, such that H$ = yn for some TJ 
(/J-r)X(s-r). 
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The test statistic (16) can be expressed as the difference of two test statistics 
we get by testing a simple hypothesis for j3. Thus we can use the representation 

(55) and (50) for both statistics and we find that it has a weak limit, which can 
be expressed as 

where 

U, = #‘H’C W = fy% W = q’u, 

and 

Thus 

-2ln(Q) 1 tr i’dVU’( ~lUU’du))l~lUdV 

For fixed value of U the (p - r) X r matrix 

Y= ( ~1UU’du)-1’2~1UdY’var(V))1’2 

is Gaussian with variance matrix Z ~3 I. Let ij = ( /,,lUU’du)P ‘/*n, then the 
decomposition into independent components, given by 

tr{YY} =tr(Y(Z-?j(l’?j)‘?j’)Y) +tr{Y?j(+j’+))‘;i’Y}, 

shows that each term is x2 distributed with degrees of freedom r( p - r), 
r( p - s) and r(s - r), respectively. Thus the limiting distribution of - 2 In(Q) 
is for fixed U a x2 distribution with (p - s)r degrees of freedom. Since this 
result does not depend on the value of U it holds marginally. Thus the proof 
of Theorem 4 is completed. 
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