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a b s t r a c t

Non-negative matrix factorization (NMF) is a popular technique for pattern recognition, data analysis,
and dimensionality reduction, the goal of which is to decompose non-negative data matrix X into a prod-
uct of basis matrix A and encoding variable matrix S with both A and S allowed to have only non-negative
elements. In this paper, we consider Amari’s a-divergence as a discrepancy measure and rigorously derive
a multiplicative updating algorithm (proposed in our recent work) which iteratively minimizes the
a-divergence between X and AS. We analyze and prove the monotonic convergence of the algorithm
using auxiliary functions. In addition, we show that the same algorithm can be also derived using Kar-
ush–Kuhn–Tucker (KKT) conditions as well as the projected gradient. We provide two empirical study
for image denoising and EEG classification, showing the interesting and useful behavior of the algorithm
in cases where different values of a (a ¼ 0:5;1;2) are used.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction ror measures that were considered in (Lee and Seung, 2001) are
Non-negative matrix factorization (NMF) is one of widely used
multivariate data analysis methods (Paatero and Tapper, 1997; Lee
and Seung, 1999, 2001), which has many potential applications in
pattern recognition and machine learning. These applications in-
clude face recognition (Li et al., 2001), document clustering (Xu
et al., 2003; Shahnaz et al., 2006), sound classification (Cho and
Choi, 2005), medical imaging (Lee et al., 2001; Ahn et al., 2004),
audio processing (Smaragdis and Brown, 2003; Kim and Choi,
2006), bioinformatics (Brunet et al., 2004), and so on.

Suppose that N observed data points, fxtg; t ¼ 1; . . . ;N are avail-
able. Denote the data matrix by X ¼ ½x1; . . . ; xN� 2 Rm�N . NMF seeks
a decomposition of the non-negative data matrix X that is of the
form:

X � AS; ð1Þ
where A 2 Rm�n contains basis vectors in its columns and S 2 Rn�N is
the associated encoding variable matrix. Both matrices A and S are
restricted to have only non-negative elements in the decomposition.

Various error measures for the factorization (1) with non-nega-
tivity constraints, were considered, including sparseness con-
straints (Hoyer, 2004), Csiszár’s divergence (Cichocki et al.,
2006b,c), Bregman divergence (Dhillon and Sra, 2006), and a
generalized divergence measure (Kompass, 2007). and the conver-
gence issue was recently studied (Lin, 2007). Two widely used er-
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summarized:

(1) (LS): Least squares (LS) criterion which employs the Euclid-
ean distance between the data matrix X and the model AS
is given by

E1 ¼ kX � ASk2 ¼
X

i;j

½Xij � ½AS�ij�
2
: ð2Þ

(2) (I-divergence, KL-divergence): I-divergence between X and AS
is given by

E2 ¼
X

i;j

Xij log
Xij

½AS�ij
� Xij þ ½AS�ij

" #
: ð3Þ
The minimization of the objective functions described above,
should be done with non-negativity constraints for both A and S.
Multiplicative updating is an efficient way in such a case, since it
can easily preserve non-negativity constraints at each iteration.
Multiplicative updating algorithms for NMF associated with these
two objective functions are given as follows:

(1) (LS): A local minimum of the objective function (2) is com-
puted by the LS multiplicative algorithm that has the form

Sij  Sij
½ATX�ij
½ATAS�ij

;

Aij  Aij
½XST�
½ASST�ij

:

ð4Þ
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(2) (I-divergence): In the case of I-divergence-based objective
function (3), its minimum is found by the multiplicative
updating algorithm that is of the form

Sij  Sij

P
k½AkiXkj=½AS�kl�P

lAli
;

Aij  Aij

P
k½SjkXik=½AS�ik�P

lSjl
:

ð5Þ
Recently, different error measures such as Csiszár’s f-diver-
gences, Amari’s a-divergences, and Bregman divergences, were
considered in the context of NMF (Cichocki et al., 2006b,c; Dhillon
and Sra, 2006). Multiplicative NMF algorithms were proposed in
(Cichocki et al., 2006a,b,c; Dhillon and Sra, 2006), considering
Amari’s a-divergence (Amari, 1985; Zhu and Rohwer, 1995) which
is a special instance of Csiszár’s f-divergence (Ali and Silvey, 1966;
Csiszár, 1974). In this paper, we derive an a-divergence-based NMF
multiplicative algorithm in a different way as well as in a rigorous
manner, with proving the monotonic local convergence of the algo-
rithm using auxiliary functions. We also show that the same algo-
rithm can be derived using Karush–Kuhn–Tucker (KKT) conditions
as well as the projected gradient. Our contribution is primarily in
the derivation of a generic multiplicative algorithm, its monotonic
convergence, and alternative views when a-divergence is used as a
discrepancy measure in the context of NMF.

We provide two numerical experiments. In the first experi-
ment, we apply our algorithm to the task of image denoising
when three different noises (pepper, salt, and pepper–salt) were
involved. We show how our algorithm with different values of a
(a ¼ 0:5;1;2) behaves for different noise types. In the second
experiment, we apply our algorithm to EEG data, demonstrating
the useful behavior as a feature extractor for EEG classification
and also investigating the classification performance for several
different values of a.

2. Amari’s a-divergence

Let us consider two un-normalized distributions pðxÞ and qðxÞ
associated with a random variable x. Kullback–Leibler (KL) diver-
gence is defined by

KL½pjjq� ¼
Z

p log
p
q

dl�
Z
ðp� qÞdl; ð6Þ

where l is the Lebesque measure which is a shorthand notation for
lðdxÞ. Note that the second term

R
ðp� qÞdl disappears when p and

q are normalized distributions, i.e.,
R

pdl ¼
R

qdl ¼ 1. KL-diver-
gence in (6) is often referred to as I-divergence.

The a-divergence Amari, 1985 is a parametric family of diver-
gence functional, including several well-known divergence mea-
sures as its special cases.

Definition 1. (a-divergence). The a-divergence is defined by

Da½pjjq� ¼
1

að1� aÞ

Z
apþ ð1� aÞq� paq1�a dl; ð7Þ

where a 2 ð�1;1Þ.

As in KL divergence, a-divergence is zero if p ¼ q and posi-
tive otherwise. This property follows from the fact that a-diver-
gence (7) is convex with respect to p and q. The a-divergence
includes KL-divergence, Hellinger divergence, and v2-divergence
(Pearson’s distance), as its special cases, which is summarized
below.

� The a-divergence in (7) is often represented by

Db½pjjq� ¼
4

1� b2

Z
1� b

2
pþ 1þ b

2
q� p

1�b
2 q

1þb
2 dl; ð8Þ

which is obtained by setting a ¼ 1�b
2 and 1� a ¼ 1þb

2 in (7).
� As a approaches 0, a-divergence specializes to KL-divergence
from q to p:

lim
a!0

Da½pjjq� ¼ KL½qjjp�: ð9Þ
� For a ¼ 1
2, a-divergence specializes to Hellinger divergence:

Da¼1
2
½pjjq� ¼ 2

Z ffiffiffi
p
p
�

ffiffiffi
q
p

ð Þ2 dl: ð10Þ
� As a approaches 1, a-divergence specializes to KL divergence
from p to q:
lim
a!1

Da½pjjq� ¼ KL½pjjq�: ð11Þ
� For a ¼ 2, a-divergence is identical to v2-divergence:

Da¼2½pjjq� ¼
1
2

Z ðp� qÞ2

q
dl: ð12Þ
The a-divergence belongs to a family of convex divergence mea-
sures which is known as Csiszár’s f-divergence, called sometimes
also Ali–Silvey divergence (Ali and Silvey, 1966; Csiszár, 1974).

Definition 2 (f-divergence). The Csiszár’s f-divergence is defined by

If ½pjjq� ¼
Z

pf
q
p

� �
dl; ð13Þ

where f ðzÞ is a convex function, f : ½0;1Þ7!ð�1;1�, which is con-
tinuous at 0, satisfying f ð1Þ ¼ 0 and f 0ð1Þ ¼ 0.

Examples of Ciszár’s f-divergences are (Cichocki et al., 2006b):
� When f ðzÞ ¼ z� log z� 1, f-divergence specializes to KL diver-
gence: If ½pkq� ¼ KL½pkq�.
� When f ðzÞ ¼ 1
að1�aÞ faþ ð1� aÞz� z1�ag, f-divergence specializes

to a-divergence: If ½pkq� ¼ Da½pkq�.

Note that the Csiszár’s f-divergences are a large class, but they
do not include L2 distance,

R
ðp� qÞ2 dl (Cichocki et al., 2006b).

Note also that f-divergences are always non-negative and zero if
p ¼ q.
3. Algorithm derivation

We consider the objective function for a-NMF, that is based on
the a-divergence between X and AS, which is given by

Da½XkAS� ¼ 1
að1� aÞ

Xm

i¼1

XN

j¼1

aXij þ ð1� aÞ½AS�ij � Xa
ij½AS�1�a

ij : ð14Þ

As in (Lee and Seung, 2001), we introduce an auxiliary function
that is used in convergence analysis as well as in algorithm
derivation.

Definition 3 (Auxiliary function). A function GðS; eSÞ is said to be an
auxiliary function for FðSÞ if the following two conditions are
satisfied:

GðS; SÞ ¼ FðSÞ and GðS; eSÞP FðSÞ for all eS :
Lemma 1. The function

GðS; eSÞ ¼ 1
að1� aÞ

X
i;j;k

Xijfijk aþ ð1� aÞ AikSkj

Xijfijk
� AikSkj

Xijfijk

� �ð1�aÞ
( )

;

ð15Þ

with fijk ¼
Aik
eSkjP

l
Ail
eSlj

, is an auxiliary function for

FðSÞ ¼ 1
að1� aÞ

X
i;j

aXij þ ð1� aÞ½AS�ij � Xa
ij½AS�1�a

ij : ð16Þ
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Proof. We need to show that the function GðS; eSÞ in (15) satisfies
two conditions: (i) GðS; SÞ ¼ FðSÞ; (ii) GðS; eSÞP FðSÞ. One can easily
see that GðS; SÞ ¼ FðSÞ. Note that

P
kfijk ¼ 1 from the definition and

fijk P 0 for i ¼ 1; . . . ;m, j ¼ 1; . . . ;N, and k ¼ 1; . . . ;n. In order to
prove that the condition (ii) is satisfied, we write FðSÞ as

FðSÞ ¼ 1
að1� aÞ

X
i;j

aXij þ ð1� aÞ½AS�ij � Xa
ij½AS�1�a

ij

¼
X

i;j

Xijf
P

kAikSkj

Xij

� �
; ð17Þ

where a-divergence is written using the convex function f ð�Þ for po-
sitive a,

f ðzÞ ¼ 1
að1� aÞ faþ ð1� aÞz� z1�ag:

Jensen’s inequality (due to the convexity of f) leads to

f
X

k

AikSkj

 !
6

X
k

fijkf
AikSkj

fijk

� �
: ð18Þ

Then, it follows from (18) that we have

FðSÞ ¼
X

i;j

Xijf
P

kAikSkj

Xij

� �
6

X
i;j;k

Xijfijkf
AikSkj

Xijfijk

� �
¼ GðS; eSÞ; ð19Þ

which proves the condition (ii). h

Lemma 2. Reversing the roles of S and A in Lemma 1, the function

GðA; eAÞ ¼ 1
að1� aÞ

X
i;j;k

Xijnijk aþ ð1� aÞ AikSkj

Xijnijk
� AikSkj

Xijnijk

� �ð1�aÞ
( )

;

ð20Þ

with nijk ¼
eAikSkjP

l
eAilSlj

, is an auxiliary function for

FðAÞ ¼ 1
að1� aÞ

X
i;j
aXij þ ð1� aÞ½AS�ij � Xa

ij½AS�1�a
ij : ð21Þ

Proof. This can be easily proved in the same way as Lemma 1. h

Theorem 1. Da½XkAS� is non-increasing under the following multipli-
cative update rules:

Sij  Sij

P
kAki Xkj=½AS�kj

� �a

P
lAli

24 35
1
a

; ð22Þ

Aij  Aij

P
kSjk Xik=½AS�ik
� �aP

lSjl

" #1
a

: ð23Þ

Proof. The minimum of (15) is determined by setting the gradient
to zero:

oGðS; eSÞ
oSij

¼ 1
a

X
k

Aki 1� AkiSij

Xkjfkji

� ��a	 

¼ 0; ð24Þ

which leads to

SijeSij

 !a

¼

P
kAki

XkjP
l
Akl
eSlj

 !a

P
kAki

266664
377775; ð25Þ

which suggest the updating rule for Sij:
Sij  Sij

P
kAki Xkj=½AS�kj

� �a

P
lAli

24 35
1
a

;

that is identical to (22).
In a similar manner, the updating rule (23) is determined by

solving oGðA;eAÞ
oA ¼ 0, where GðA; eAÞ is given in (20). &

Multiplicative updates for our a-NMF are given in (22) and (23).
These updates find a local minimum of Da½XkAS�. When a ¼ 1, (22)
and (23) become equivalent to Lee–Seung NMF algorithm (Lee and
Seung, 2001).

4. Alternative derivations and link with existing work

4.1. Projected gradient

The similar NMF algorithm in slightly different forms with over-
relaxation and regularization terms has been proposed in Cichocki
et al., 2006a,b,c; Zdunek and Cichocki, 2006. However, our rigorous
mathematical derivation and convergence analysis gives some new
insight for this class of NMF algorithms. In this section, we show
that updating rules (22) and (23) are also derived using the pro-
jected gradient (Cichocki et al., 2006a).

Partial derivatives of (14) with respect to S and A, are given by

oDa½XjjAS�
oSij

¼ 1
a

X
k

Aki �
X

k

Aki
Xkj

½AS�kj

 !a" #
; ð26Þ

oDa½XjjAS�
oAij

¼ 1
a

X
k

Sjk �
X

k

Sjk
Xik

½AS�ik

� �a
" #

: ð27Þ

The projected gradient method updates transformed parame-
ters using the gradient information, which is of the form

/ðSijÞ  /ðSijÞ � gij
oDa½XjjAS�

oSij
; ð28Þ

/ðAijÞ  /ðAijÞ � gij
oDa½XjjAS�

oAij
; ð29Þ

where /ð�Þ is a suitably chosen function. Note that the exponentiat-
ed gradient emerges for /ðhÞ ¼ log h.

Thus, we have

Sij  /�1 /ðSijÞ � gij
oDa½XjjAS�

oSij

� �
; ð30Þ

Aij  /�1 /ðAijÞ � gij
oDa½XjjAS�

oAij

� �
: ð31Þ

Choosing /ðhÞ ¼ ha and incorporating with (26) and (27), leads to
(22) and (23).

4.2. KKT conditions

We show that the algorithms (22) and (23) can be also derived
using the KKT conditions. The minimization of Da½XjjAS� in (14)
with non-negativity constraints, Aij P 0, Sij P 0, can be formulated
as a constrained minimization problem with inequality con-
straints. Denote by Kij P 0 and Xij P 0 Lagrangian multipliers
associated with constraints, Aij P 0, Sij P 0, respectively.

The KKT conditions require:

oDa½XjjAS�
oSij

¼ Xij; ð32Þ

oDa½XjjAS�
oAij

¼ Kij; ð33Þ

as optimality conditions and

XijSij ¼ 0; ð34Þ
KijAij ¼ 0; ð35Þ
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as complementary slackness conditions, implying that

XijS
a
ij ¼ 0; ð36Þ

KijA
a
ij ¼ 0: ð37Þ

Multiplying both sides of (32) and (33) by Sa
ij and Aa

ij, respec-
tively, and incorporating with (36) and (37), leads to

1
a

X
k

Aki �
X

k

Aki
Xkj

½AS�kj

 !a" #
Sa

ij ¼ 0; ð38Þ

1
a

X
k

Sjk �
X

k

Sjk
Xik

½AS�ik

� �a
" #

Aa
ij ¼ 0; ð39Þ

which suggests iterative algorithms

Sij  Sij

P
kAkiðXkj=½AS�kjÞ

aP
lAli

" #1
a

; ð40Þ

Aij  Aij

P
kSjkðXik=½AS�ikÞ

aP
lSjl

� �1
a

: ð41Þ
5. Numerical experiments

5.1. Image denoising

We apply our NMF algorithm to the task of image denosing, in
which reconstructed images using learned basis images and encod-
ing variables are associated with denoised imaged. We consider
ORL face DB (Samaria and Harter, 1994) (40 people and 10 images
Fig. 1. From top to bottom: images contaminated by pepper (black), salt (white),
and pepper and salt (black and white) noise.

pepper pepper–and–salt salt
20

21

22

23

24

25

26

27

PS
N

R

α = 0.5  Hellinger divergence
α=1       KL divergence

α=2 χ2–divergence

Fig. 2. The relationship between types of noise and divergences. In the case of pepper (b
lower alpha values gives robust result.
for each person, i.e., 40� 10 ¼ 400 images in total). Three different
types of noise are considered, For each image, 5% of pixels are ran-
domly chosen and then are converted to black or white pixels, pro-
ducing pepper (black), salt (white), and pepper & salt (black and
white) images (see Fig. 1).

We apply our NMF algorithm with different values of a
(a ¼ 0:5;1;2). Experiments are carried out 30 times independently
for each type of noise and each value of a ¼ f0:5;1;2g. As a perfor-
mance measure, averaged peak-signal-to-noise ratio (PSNR) is
used. Higher PSNR values represent better results. Fig. 2 shows
some interesting behavior. The larger a results in the better perfor-
mance in the case of pepper noise and the smaller a works better in
the case of salt noise. In fact, these results are consistent with the
characteristics of a-divergence where Da½pkq� emphasizes the part
where p is small as a increases (Amari, 2007).

5.2. EEG classification

We apply our a-divergence-based NMF algorithm (multiplica-
tive updates are described in Eqs. (22) and (23)) to a problem of
EEG classification and evaluate the performance for several differ-
ent values of a (a ¼ 0:5;1;2). EEG classification plays a very impor-
tant role in brain computer interface (BCI) where a subject’s mental
state is required to be estimated from EEG signals. Our previous
work (Lee et al., 2006) demonstrated that NMF could extract spec-
tral features that are useful in EEG classification. Two EEG data sets
that were used in our empirical study are as follows:

� Graz dataset: Dataset III in BCI competition II, which was pro-
vided by the Laboratory of Brain–Computer Interfaces (BCI-
Lab), Graz University of Technology (Blankertz et al., 2004;
Lemm et al., 2004).
� IDIAP dataset: Dataset V in BCI competition III, which was pro-
vided by the IDIAP Research Institute (del R. Millán, 2004).

5.2.1. Graz dataset
Graz dataset involves left/right imagery hand movements and

consists of 140 labeled trials for training and 140 unlabeled trials
for test. Each trial has a duration of 9 s, where a visual cue (arrow)
is presented pointing to the left or the right after 3 s preparation
period and the imagination of left or right movement is carried
out for 6 s . It contains EEG acquired from three different channels
(with sampling frequency 128 Hz) C3, Cz and C4. In our experiment
we use only two channels, C3 and C4, because Cz channel contains
little information for discriminant analysis. Requirements for re-
sult comparison is to provide a continuous classification accuracy
for each time point of trial during imagination session.
0.5 1.0 2.0
20

21

22

23

24

25

26

27

α–divergence

PS
N

R

pepper noise

pepper–and–salt noise

salt noise

lack) noise, higher alpha value gives robust result. In the case of salt (white) noise,



Fig. 3. Basis vectors determined by NMF are shown in the case of a ¼ 0:5;1;2 (from top to bottom) and n ¼ 2;4;5;6 (from left to right). In each plot, top 1/2 is associated with
C3 and bottom 1/2 is contributed by C4. In each of those, the vertical axis represents frequencies between 4 and 30 Hz, the horizon axis is related to the number of basis
vectors. For example, the upper-left one (a ¼ 0:5 and n ¼ 2) is associated with 54� 2, where the upper-half corresponds to 27 frequency bins over [4,30] Hz for C3 (the first
row corresponds to the power associated with 4 Hz) and the lower half is also associated with 27 frequency bins for C4. Basis vectors reveals some useful characteristics: (1) l
rhythm (8–12 Hz); (2) b rhythm (18–22 Hz); (3) sensori-motor rhythm (12–16 Hz). ERD has the contralateral dominance, hence each rhythm occurs in each channel
separately. Different values of a provide slightly different basis vectors, although the distinction is very small since all of those basis vectors well represent discriminative
spectral characteristics.

Table 1
Mutual information between the true class label and the estimated class label in cases
of different values of a and n

Number of basis vectors

n ¼ 2 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7

a ¼ 0:5 0.5545 0.5803 0.6549 0.6256 0.5875
a ¼ 1 0.5545 0.5803 0.6549 0.6256 0.5803
a ¼ 2 0.5408 0.5745 0.6404 0.6256 0.5803
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Time-domain EEG signals are converted into time-frequency
representations by complex Morlet wavelet transform. Then we
apply the NMF algorithm with a ¼ 0:5;1;2 and n ¼ 2;4;5;6 (the
number of basis vectors), in order to estimate basis vectors shown
in Fig. 3. As the number of basis vector increases, the spectral com-
ponents such as l rhythm (8–12 Hz), b rhythm (18–22 Hz), and
sensori-motor rhythm (12–16 Hz) appear in the order of their
importance. All rhythms have the property of contralateral domi-
nance, so they are present in basis vectors associated with C3 or
C4 channel, separately.

Feature vectors correspond to the column vectors of the encod-
ing variable matrix S. We use the same probabilistic model-based
classifier as used in (Lemm et al., 2004; Lee et al., 2006). The best
performance in this experiment was achieved when a ¼ 0:5 or 1
and n ¼ 5, as summarized in Table 1. The maximal classification
accuracy is 88.57% at 6.05 s the mutual information (MI) hits the
maximum, 0.6549 bit, which occurs at 6.05 s. The result is better
than the one achieved by the BCI competition 2003 winner
(0.61 bit). Table 1 shows the maximum mutual information in
the time courses per trial with a and n varying. The smaller the va-
lue of a, the better the mutual information, however, a is not a crit-
ical factor in this experiment, since NMF works pretty well across
different values of a.
5.2.2. IDIAP dataset
IDIAP dataset contains EEG data recorded from three normal

subjects during four non-feedback sessions, involving three tasks
which include the imagination of repetitive self-paced left/right
hand movements and the generation of words beginning with
the same random letter. All four sessions were acquired on the
same day, each lasting 4 min with 5–10 min breaks in between
them. The subject performed a given task for about 15 s and then
switched randomly to another task at the operator’s request. In
contrast to the Graz dataset, EEG data is not split into trials (i.e.,
no trial structure), since subjects are continuously performing
any of mental tasks.



Fig. 4. Basis vectors determined by NMF are shown in the case of a ¼ 0:5;1;2 (from left to right) and n = 4 (from top to down). In each plot, basis vectors are associated with
the power spectrum for 8 channels, C3, CZ , C4, CP1, CP2, P3, PZ , and P4, while the vertical axis in each basis vector corresponds to frequency bins 8;10;12; . . . ;28;30 Hz. Three
different tasks involve the imagination of left/right hand movements and word generation. The first and last basis vectors show activations in the frequency band 8–12 Hz (l
rhythm), either in left or right hemisphere channels, indicating that left or right movements are involved. In general, the EEG phenomenon related to word generation is not
well known, compared to motor imagery task. We guess that the word generation is related to the lower alpha band (8–10 Hz).
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Data are provided in two ways: (1) raw EEG signals (with sam-
pling rate = 512 Hz) recorded from 32 electrodes; (2) precomputed
features. We use the precomputed features in experiments. They
were obtained by the power spectral density (PSD) in the fre-
quency band 8–30 Hz every 62.5 ms, (i.e., 16 times per second)
over the last second of data with a frequency resolution of 2 Hz
for the eight centro-parietal channels C3, Cz, C4, CP1, CP2, P3, Pz,
and P4 after the raw EEG potentials were first spatially filtered by
means of a surface Laplacian. As a result, an EEG sample is a
96-dimensional vector (eight channels times 12 frequency
components). Requirements for comparative study are to provide
an output every 0.5 s using the last second of data.

We use the precomputed features, then we do not need any pre-
processing procedure except for normalization of each data vector.
We apply the NMF algorithm with a ¼ 0:5;1;2 and n ¼ 3; . . . ;9 (the
number of basis vectors). For the on-line classification for IDIAP
data which consist of uncued EEG signals, we use the Viterbi algo-
rithm (Forney, 1973) that is a dynamic programming algorithm for
finding a most probable sequence of hidden states that explains a
sequence of observations.
Fig. 4 shows basis vectors computed by NMF for a ¼ 0:5;1;2.
Spectral characteristics of basis vectors is shown in Fig. 5, where
a ¼ 0:5 reveals the most discriminative characteristics (sharper
peaks in spectrum compared to cases of a ¼ 1 and a ¼ 2). Table 2
summarizes the classification result in the case of n ¼ 4, where
the result of BCI competition winner is also included. NMF with
a ¼ 0:5 gives the best performance in this experiment. Basis vec-
tors also show strong activations in l rhythm band as well as lower
alpha band, as shown in Figs. 4 and 5. In general, it is an open prob-
lem how to select the optimal value of a, since it varies depending
on datasets.

6. Conclusions

We have presented multiplicative updates for NMF which iter-
atively minimize the Amari’s a-divergence between the observed
data and the model. Our multiplicative updates include some exist-
ing NMF algorithm as their special cases, since a-divergence is a
parametric divergence measure which contains KL-divergence,
Hellinger divergence, v2-divergence, and so on. The hyperparame-



Fig. 5. Spectral characteristics of basis vectors computed by NMF for a ¼ 0:5;1;2. Each unit in Fig. 4 is a 12-dimensional vectors. In NMF computation we concatenate 8
channels into a single vector, leading to 96-dimensional basis vectors. The plot shows the power spectrum for each basis vector, with respect to ½8;10;12; . . . ;28;30� Hz in the
horizontal axis. In the case of a ¼ 0:5, the strongest peaks are observed, compared to other cases.

Table 2
Classification accuracy for IDIAP dataset

Sub1 Sub2 Sub3 Avg

a ¼ 0:5 84.93 77.19 58.49 73.54
a ¼ 1 83.56 70.97 57.11 70.55
a ¼ 2 81.51 74.19 52.29 69.33

BCI comp. winner 79.60 70.31 56.02 68.65
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ter a is associated with the characteristics of a learning machine, in
the sense that the model distribution is more inclusive (as a goes to
1) more exclusive (as a approaches �1). We have also presented
alternative derivation of the algorithm using the projected gradient
and KKT conditions. The paper has focused primarily on the deriva-
tion and monotonic convergence of a generic a-divergence-based
NMF algorithm. We have applied our method to the task of image
denoising and feature extraction for EEG classification. In the case
of image denoising, we have observed that the larger a produced
the better performance in the case of pepper noise and the smaller
a worked better in the case of salt noise. In fact, these results are
consistent with the characteristics of a-divergence where Da½pkq�
emphasizes the part where p is small as a increases (Amari,
2007). We have also investigated the EEG classification perfor-
mance for several different values of a. Different values of a did
not have much influence on determining basis vectors in the case
of a well-separated task such as motor imagery (Graz dataset in
Experiment 1). However, in the tasks such as motor imagery mixed
with word generation (IDIAP dataset in Experiment 2), it was ob-
served that a played a critical role in determining discriminative
basis vectors. In general, it is still an open problem how to select
an appropriate value of a, since it varies across datasets. The main
contribution of this paper is in the derivation of generic multiplica-
tive updates for NMF and its convergence study when a-divergence
is used as a discrepancy measure in the context of NMF.
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