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a b s t r a c t

As one of the most popular data-representation methods, non-negative matrix factorization (NMF) has been
widely used in image processing and pattern recognition. Compared with other dimension reduction methods,
we can interpret the data with psychological intuition using NMF since NMF can decompose the whole into
visual parts by learning the non-negative basis. However, the original NMF lacks of extracting the discriminant
information of the data for the image classification task. For enhancing the discriminant and parts-based
interpretability, this work proposes a label and orthogonality regularized NMF (LONMF) algorithm based on
the squared Euclidean distance. LONMF takes into account the label consistence with the low-dimensional
projected data and orthogonal property of the non-negative basis. By integrating the non-negative constraint,
label consistence, and orthogonal property into the objective function, the efficient updating procedure can obtain
a discriminant basis matrix. Meanwhile, we design a linear classifier using the projected data to guide the label
for efficient image classification task. Experiment results of the competitive NMF variants on the challenging
digit and face databases demonstrate the effectiveness of the proposed LONMF algorithm.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many applications of image processing aim at searching for the
representation by using the prior knowledge. A suitable representation
plays a fundamental role in the further processing. There have been
many works on image representation for the classification task, such as
sparse coding [1,2], dictionary learning [3–5], and dimension reduc-
tion [6–8]. All of the mentioned methods learn the coefficient or the
basis (projection) matrix for minimizing the reconstruction error while
boosting the discriminative ability. However, the methods ignore the
non-negative property of the related variables. Both of the coefficient
and basis matrices derived from the mentioned methods have negative
elements. Intuitively, the image handled is non-negative and should be
represented by the combination of the non-negative sub images which
are expected to indicate the visual parts of the original image. For
instance, the face image can be recognized by observing the discriminant
parts, such as nose, eyes, and mouth. From this perspective, non-
negative property is more consistent with the psychological intuition.

Linear discriminant analysis (LDA) and principal component analysis
(PCA) are the famous approaches to dimension reduction [9]. Later, ma-
trix factorization has become popular for data representation. In the real
applications of pattern recognition, computer vision, and information
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retrieval, the original input data is of high dimension which increases
the pressure of data processing. Accordingly, the matrix factorization
technique aims to decompose the high-dimensional input data matrix
into some low-dimensional matrices. Singular value decomposition
(SVD) [10], vector quantization (VQ) [11], and non-negative matrix
factorization (NMF) [12] are some of representative matrix factorization
techniques. SVD decomposes the input data matrix into the left singular
vector, the right singular vector, and a diagonal matrix whose diagonal
entries indicate the singular values of the input matrix. Representing
the input matrix in a low-rank approximation, SVD has been applied
to face recognition successfully. VQ maps the input data matrix into
binary vectors and always is used for information retrieval task, while
NMF aims to search for two matrices whose entries are non-negative
and product is approximate to constructing the input data matrix.

There have been many works indicating that the non-negativity
constraint leads to a parts-based representation of the data. Some studies
have shown that there are psychological and physiological evidences for
parts-based representation in the human brain [13,14]. Diverse from
the PCA, LDA, VQ, and SVD, NMF only allows additive, not subtractive
combination of the input data, and thus it is naturally favor to sparse,
parts-based representation which is more robust than non-sparse, global
representations.
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Normally, the NMF variants can be categorized into four classes [15],
including sparse NMF, orthogonal NMF, manifold NMF and discriminant
NMF. Sparse NMF focuses the sparseness property of the matrices. The
standard NMF enforces the matrices to be non-negative. Meanwhile,
NMF may extract the sparse information. However, NMF is different
from sparse coding. Sparse coding learns a full rank representation ba-
sically, whilst NMF pursues for a low-rank representation. Furthermore,
NMF is not dictionary learning. Dictionary learning aims to optimize an
over-complete basis matrix, however, basis matrix generated by NMF is
under-complete. Orthogonal NMF can obtain the parts-based representa-
tion to boost the psychological and physiological representation ability.
Manifold NMF expects to extend the NMF on the manifold structure.
This work focuses on the discriminant NMF to enhance the discriminant
ability of NMF for image classification tasks.

In the past decade, a number of works related to NMF have been
proposed. Li et al. imposed extra constraints to solve the localized
and part-based decomposition by extending the standard NMF and
this work is called LNMF [16]. To obtain sparse encoding vectors,
Hoyer incorporated the sparseness constraint with standard NMF and
proposed the non-negative sparse coding (NSC) [17]. In addition, the
non-negative property of the sparse constraint has been used in the
image classification task [18]. The Fisher-NMF (FNMF) was proposed
to encode discriminant information into NMF [19]. The work proposed
in [20] extended FNMF by adding an extra term of scatter difference
to the objective function of NMF to obtain the discriminant subspace.
Employing the data geometric structure, Cai et al. proposed a graph-
regularized NMF (GNMF). The geometric structure encoded by 𝑘-
nearest-neighbor (KNN) measurement is usually used in dimension
reduction methods [21]. Li et al. proposed an approach named discrimi-
native orthogonal non-negative matrix factorization (DON) [22], which
preserves both the local manifold structure and the global discriminant
information simultaneously through manifold discriminant learning.
The work first learned a weight matrix in the same manner with GNMF
to measure the relationship among the input data, and then computed
the central matrix which indicated the discriminant information. With
the successful development of deep learning technique, the combination
of non-negative constraint and deep learning are proposed recently.
Zhang et al. [23] propose a nonlinear NMF learning method which for-
mulates the original data with deep learning technique and then conduct
the procedure of NMF. Trigeorgis et al. [24] present a semi-supervised
deep matrix factorization with non-negative constraint which can learn
a low-dimensional representation of a dataset which is suited for
clustering as well as classification. Moreover, Zurada et al. [25] adopts
non-negative constraint to regularize the sparse autoencoders in the
framework of deep learning. In [25], the recognition result on the
famous MNIST digit dataset can achieve 97%+.

The latent discriminant information plays a vital role for the image
classification task. However, the unsupervised NMF methods lack of
extracting enough discriminant information. The supervised NMF vari-
ants only take into account the inner-class and intra-class constraints for
the coefficient while ignoring the discriminant constraint for the basis
matrix. To this end, this paper proposes a label and orthogonal regular-
ized NMF (LONMF) based on the squared Euclidean distance. LONMF
integrates the orthogonal constraint and supervised label information
for the basis matrix into the objective function. By doing so, the parts-
based representation can extract the discriminant information which is
consistent with the label. According to the designed classifier, LONMF
fulfills a novel discriminant NMF method in the image classification
task.

Most of the contributions of this paper are as follows:
(i) Orthogonal constraint involved into the proposed LONMF guar-

antees the parts-based representation and indicates the discriminant
localization;

(ii) LONMF enforces the label to be consistent with the projected
representation which is robust to the discriminant feature extraction and
guides the latent discriminant information of data to the right label;

(iii) The designed linear classifier increases the effectiveness of the
image classification task. Comparison experiments on the challenging
databases well validate the performance of LONMF.

The remainder of this paper is organized as follows: Section 2 briefly
introduces the NMF variants; Section 3 describes the proposed algorithm
in detail; Section 4 presents the experimental results and Section 5
concludes this paper.

2. Brief review of non-negative matrix factorization variants

For ease of presentation, we introduce the notations used in the
whole work. The bold uppercase letter denotes the matrix and the
lowercase letter denotes the vector. Given a real 𝑚 × 𝑛 matrix 𝑨 =
(𝑨𝑖𝑗 )𝑚×𝑛, 𝑎𝑖 ∈ R𝑛(𝑖 = 1, 2,… , 𝑚) and 𝑎𝑗 ∈ R𝑚(𝑗 = 1, 2,… , 𝑛) are
respectively the 𝑖th row and 𝑗th column vectors of 𝑨. The Frobenius
norm of the matrix is denoted as ‖ ⋅ ‖𝐹 , and ‖ ⋅ ‖𝑞 denotes the 𝓁𝑞 norm
of a vector.

2.1. Standard NMF

Given an input data matrix 𝑿 = (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ R𝑚×𝑛, NMF aims
to search for two non-negative matrices 𝑩 = (𝑏1, 𝑏2,… , 𝑏𝑟) ∈ R𝑚×𝑟 and
𝑪 = (𝑐1, 𝑐2,… , 𝑐𝑛) ∈ R𝑟×𝑛 whose product can approach to 𝑿.

Commonly, there are two common-used criteria measuring the cost
function. The first one is the square of Euclidean distance,

𝑓1 = ‖𝑿 − 𝑩𝑪‖

2
𝐹 =

∑

𝑖,𝑗
(𝑥𝑖𝑗 −

𝑟
∑

𝑘=1
𝑏𝑖𝑘𝑐𝑘𝑗 )2, (1)

and another one is the Kullback–Leibler (KL) divergence [26] between
𝑿 and 𝑩𝑪 ,

𝑓2 = 𝐷(𝑿 ∥ 𝑩𝑪) =
∑

𝑖,𝑗
(𝑥𝑖𝑗 log

𝑥𝑖𝑗
(𝑩𝑪)𝑖𝑗

− 𝑥𝑖𝑗 + (𝑩𝑪)𝑖𝑗 ). (2)

This paper focuses on NMF based on the square of Euclidean
distance. It can be found that NMF searches for a linear combination
of 𝑟(𝑟 < 𝑛) non-negative components and the representation coefficients
are non-negative too. Lee et al. [12,26] have given the iterative update
rules:

𝑏(𝑡+1)𝑗𝑘 = 𝑏(𝑡)𝑗𝑘
(𝑿𝑪𝑇 )𝑗𝑘
(𝑩𝑪𝑪𝑇 )𝑗𝑘

, 𝑐(𝑡+1)𝑗𝑘 = 𝑐(𝑡)𝑗𝑘
(𝑩𝑇𝑿)𝑘𝑗
(𝑩𝑇𝑩𝑪)𝑘𝑗

. (3)

2.2. Local NMF

To learn the spatially localized and parts-based representation of the
data, a local NMF (LNMF) algorithm was proposed in [16]. The objective
function of LNMF based on KL divergence is defined as follows:

𝑓𝐿𝑁𝑀𝐹 = 𝑓2 + 𝜆1
∑

𝑖,𝑗
(𝑩𝑇𝑩)𝑖𝑗 − 𝜆2

∑

𝑖
(𝑪𝑪𝑇 )𝑖, (4)

where 𝜆1 and 𝜆2 are the positive parameters. LNMF minimizes the num-
ber of components of decomposition while retaining the components
giving most important information.

2.3. Discriminant NMF

Different from LNMF, DNMF [20] introduced discrimination crite-
rion into the objective function,

𝑓𝐷𝑁𝑀𝐹 = 𝑓2 + 𝜆1𝑡𝑟(𝑆𝑤) − 𝜆2𝑡𝑟(𝑆𝑏), (5)

where 𝑡𝑟(⋅) indicates the trace of the matrix, and 𝑆𝑤 and 𝑆𝑏 are within-
class scatter matrix and between-class scatter matrix of 𝑪 , respectively.

𝑆𝑤 =
𝑐
∑

𝑟=1

𝑛𝑟
∑

𝑗=1
(𝑥𝑟,𝑗 − 𝜇𝑟)(𝑥𝑟,𝑗 − 𝜇𝑟)𝑇 ,

𝑆𝑏 =
𝑐
∑

𝑟=1
𝑛𝑟(𝜇𝑟 − 𝜇)(𝜇𝑟 − 𝜇)𝑇 ,

(6)
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where 𝑐 is the number of classes, 𝑛𝑟 is the number of samples belonging
to the 𝑟th class, 𝑥𝑟,𝑗 is the 𝑗th sample belonging to the 𝑟th class, and
𝜇𝑟 and 𝜇 denote the mean vector of the 𝑟th class and the whole class,
respectively. By involving the maximum margin criterion (MMC) acting
on the coefficient, the basis matrix of DNMF is same with that of the
standard NMF.

3. Label and orthogonality regularized non-negative matrix factor-
ization

In this section, we introduce the proposed label and orthogonality
regularized non-negative matrix factorization (LONMF). Based on the
analysis of the related works to NMF, we first state the basic idea of
LONMF. Then, we give the update rules derived from the standard
NMF framework with two optimization methods. At last, we analyze
the convergence of the proposed algorithm.

3.1. Basic idea of LONMF

In the general processing of NMF for data representation, the basis
matrix 𝑩 is used to map the original data 𝑦 ∈ R𝑚 into a low-dimensional
representation 𝑦∗ = 𝑩𝑇 𝑦. It is vital to learn a discriminant basis matrix
while employing NMF technique to accomplish the image classification
task. The related NMF variants ignore the discriminant regularized
to the basis matrix. LNMF only requires the basis matrix to generate
the localized and parts-based representation. DNMF takes into account
the discriminant criterion of the coefficient matrix. Similarly, DONMF
designs a complex regularization of the coefficient matrix in local and
global manner. The basis matrix takes a construction role in the related
NMFs.

Considering the problem mentioned, this paper aims to adopt the
label and orthogonal regularization acting on the basis matrix directly
to define the objective function:

𝑓𝐿𝑂𝑁𝑀𝐹 = 𝑓1 + 𝛼𝑓𝐿 + 𝛽𝑓𝑂 , (7)

where 𝛼 and 𝛽 are the positive constants. We introduce the label
information into the second term of the objective function. As analyzed
before, the basis matrix is directly responsible for acting on the original
data. Hence, we have 𝑓𝐿 = ‖𝑩𝑇𝑿 − 𝑯‖

2
𝐹 to enforce the projected

low-dimensional representation to be consistent with the corresponding
label involved in 𝑯 . At last, we add the orthogonal regularized term
𝑓𝑂 = ‖𝑩𝑇𝑩 − 𝑰‖2𝐹 (𝑰 is the identity matrix with proper size).

Combined with the constraints of NMF, the proposed LONMF aims
to optimize the following objective function,

min
𝑩,𝑪

‖𝑿 − 𝑩𝑪‖

2
𝐹 + 𝛼‖𝑩𝑇𝑿 −𝑯‖

2
𝐹 + 𝛽‖𝑩𝑇𝑩 − 𝑰‖2𝐹

𝑠.𝑡.𝑩 ⩾ 𝟎,𝑪 ⩾ 𝟎.
(8)

In (8), the constraint condition indicates all the elements of 𝑩 and 𝑪
are non-negative, and𝑯 is the label matrix. 𝑯 = (ℎ1, ℎ2,… , ℎ𝑛) ∈ R𝑟×𝑛 is
a sufficiently sparse matrix. The sparse vector ℎ𝑘(𝑘 = 1, 2,… , 𝑛) indicates
the desired form of the low-dimensional representation. Normally, the
element of ℎ𝑘 is 1 that indicates the category of the data, otherwise 0.
However, it has a latent condition that the dimension of the basis matrix
should equal the number of classes, 𝑟 = 𝑐, where 𝑐 denotes the number
of classes. To make the choice of 𝑟 flexible for the real scenario, we set
𝑟 = 𝐾𝑐, where 𝐾 is a positive integer. Hence, 𝑯 is the block-label matrix
in this work since it has a block distribution and also indicates the label
information. By doing so, the vector ℎ𝑘 is divided into 𝑐 parts. For each
part, the 𝐾 elements are set to 1 to indicate the class label of the data.
The label matrix can be generated by employing the Kronecker product
of the original label matrix when 𝑟 = 𝑐 and an all ones vector with the
size of 𝐾. The label consistency term fully exploits the discrimination
embedded in data and enforces the input samples belong to the same
class to have similar low-dimensional representations.

3.2. Iterative updating algorithm

The objective function of LONMF is not convex with regard to the
variables 𝑩 and 𝑪 . The common approach to the problem consists of
two categories: multiplicative approach and the gradient descend (GD)
method [27]. The two approaches are specified in Appendix A.

From the two methods, we can find that multiplicative approach
is a special case of the additive one by setting the update step size.
According to [26], gradient descent is perhaps the simplest technique to
implement, but convergence can be slow. The convergence of gradient
based methods also has the disadvantage of being very sensitive to
the choice of step size, which can be very inconvenient for large
applications. In this paper, we adopt the multiplicative update rules for
optimizing LONMF.

3.3. LONMF for image classification

Given a testing sample 𝑦 ∈ R𝑚, the basis matrix derived from
LONMF maps it into a low-dimensional representation 𝑦∗ = 𝑩𝑇 𝑦. Before
using the training low-dimensional samples to categorize 𝑦∗, we design
a simple linear classifier using the training low-dimensional samples
𝑿∗ = 𝑩𝑇𝑿. The linear classifier 𝑾 is obtained via minimizing the cost
function as follows,

min
𝑾

‖𝑾𝑿∗ −𝑸‖

2
𝐹 + 𝛾‖𝑾 ‖

2
𝐹 , (9)

where 𝛾 is a small positive number, and the second term is added into
the cost function to prevent from arbitrary solution. 𝑸 ∈ R𝑐×𝑛 is the label
matrix which is also used in LDA as the spectral matrix. The problem (9)
is convex optimization w.r.t. the variable, and has a analyzed solution,

𝑾 = 𝑸𝑿∗𝑇 (𝑿∗𝑿∗𝑇 + 𝛾𝑰)−1

= 𝑸𝑿𝑇𝑩(𝑩𝑇𝑿𝑿𝑇𝑩 + 𝛾𝑰)−1.
(10)

The class label of the testing sample 𝑦 is determined by searching for
the index of the maximum value:

𝑙(𝑦) = max
𝑘

(𝑾𝑩𝑇 𝑦)𝑘. (11)

The procedure of the proposed LONMF for image classification is
outlined in Algorithm 1. Furthermore, the convergence analysis of
LONMF algorithm is conducted in Appendix B.

4. Experimental results and analysis

In this section, we will evaluate the proposed LONMF algorithm for
image classification on the challenging MNIST digit database [28] and
face databases: ORL [29], YALE [30], FERET [31], and CMU PIE [32].

4.1. Baseline and setting

The compared methods used in this experiment including famous
subspace learning algorithm LDA, and the five representative NMF vari-
ants: NMF, LNMF, DNMF_KL, PGDNMF_KL, and MD-NMF_KL. Moreover,
we also compare the NMF variants with the discriminative dictionary
learning method named LC-KSVD which involves sparse coding and
K-SVD learning. It is worth noting that the discriminative algorithms
are formulated with KL divergence. Both LC-KSVD1 and LC-KSVD2
proposed in [4] are adopted. We set the size of dictionary with different
numbers according to the character of data set and report the best
results. The number of feature dimension of LDA is set as the same
one reported in [29]. As for the parameters of DNMF, we choose the
them in the range of [0.1, 0.5] as reported in [20]. The selection of the
parameters of PGDNMF [33] is all the same with DNMF. Since there
are three parameters involved in MD-NMF [34], we set them as the
selection reported in that 𝛼 = 10−2, 𝛽 = 10−1, and 𝛾 = 102. The parameter
𝛾 used in LNOMF is 10−2. The other parameters 𝛼, 𝛽,𝐾 are tuned by
cross validation from

{

10−2, 5 × 10−2,… , 1
}

,
{

10−2, 5 × 10−2,… , 1
}

, and
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Table 1
Parameters of LONMF used in different databases for image classification.

Parameters 𝛼 𝛽 𝐾

MNIST 0.5 1.0 5
YALE 0.5 1.0 3
ORL 0.5 1.0 2
FERET 0.01 0.05 1
CMU PIE 0.5 0.5 5

{1, 2,… , 10}. The best parameters used for the corresponding database
are shown in Table 1.

The max iteration of all the compared methods except LDA is 200.
For the NMF variants, the standard NMF and LNMF is unsupervised
and others employ the label information to conduct the supervised
NMF for the image classification task. For DNMF, PGDNMF, and MD-
NMF, the with-in/between class scatter matrix are computed employing
the label information. While LONMF generates the (block-)label matrix
employing the label information. The algorithms are implemented in
Matlab R2014a and run on desktop PC with 3.5 GHz Intel CPU and 8
GB memory.

We first conduct the experiment on the MNIST digit database and
analyze the convergence, parameter selection, and basis matrix at same
time. Then, we evaluate the algorithms on the four face databases and
discuss the results of the competitive algorithms. Meanwhile, the basis
matrix and ROC analysis are also operated by taking the ORL face
dataset as an example.

4.2. MNIST digit database

In this subsection, we conduct experiments on the MNIST database
to verify the performance of the proposed LONMF algorithm for hand-
written digit recognition task. Employing this database, we analyze the
convergence, parameters selection and basis matrix.

The MNIST database contains 60,000 training images and 10,000
test images, both drawn from the same distribution. Some example
images are shown in Fig. 1. From Fig. 1, we can see that images of
ten classes with the number (0–9) written by different persons are
variable. Diverse from the face images, the digit images used are sparse.
Most of the entries of the digit images are zero. Hence, the competitive
algorithms attempt to learn the patterns using the limited information
actually. All these images are size normalized to 28 × 28 pixels. We
randomly select 3000 and 4000 images from 60,000 training samples

Fig. 1. Example images collected from MNIST digit database.

to construct the training set (𝑛𝑡𝑟 = 3000, 4000, where 𝑛𝑡𝑟 denotes the
number of the training samples for each class)and randomly select 5000
test samples to construct the test set, respectively.

As proved in the previous sections, the proposed LONMF con-
vergences using the update rules. Here, we experimentally show the
convergent speed of LONMF on the MNIST database. Fig. 2 shows the
decrease cost function versus the number of iterations. In Fig. 2, the
number of iterations is shown on the 𝑥-axis and the value of cost function
is shown on the 𝑦-axis. We can see that the value of the cost function of
LONMF algorithm drops very fast in the early iterations and begins to
get stable at the 40th iteration.

Table 2 illustrates the classification accuracy of the MNIST database.
From Table 2, we can see that the proposed methods has the best
recognition rate among all the compared dimension reduction methods,
and LC-KSVD1 obtains the best classification result which is marked in
red. The result marked in blue denotes the second best one. However,
LC-KSVD takes a longer time than the proposed LONMF in training.

Considering the visual character of the digit pattern, we employ this
database to present the basis matrix derived from NMF, LNMF, and the
proposed LONMF. Before this, we first show the classification accuracy
versus the parameters. The parameters are selected with others fixed as
setting in Table 1. Fig. 3 shows the digit recognition accuracy versus the
parameters 𝛼, 𝛽, and 𝐾. From Fig. 3, we can see that the classification
accuracy varies between 72.5% and less than 73.5%, 72% and less than
73.2% versus 𝛼 and 𝛽, respectively. Besides, the classification accuracy
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Fig. 2. The value of the cost function versus the number of iterations on the MNIST digit
database.

improves little when 𝐾 ⩾ 5. Hence, it is apt to select the applicable
parameters.

The visual basis matrices derived from NMF, LNMF, and the pro-
posed LONMF are presented in Fig. 4. We select the first 50 vectors
of the basis matrix and transform them into matrix with the same
size of the digit image. From the basis matrices shown in Fig. 4, we
can find that NMF keeps the most information of the input image
while LNMF generates a sparse basis matrix. We can hardly recognize
any information consistent with physiology. The basis obtained by the
proposed LONMF is sparser than that of NMF while denser than that of
LNMF. Obviously, LONMF keeps some parts-based representations and
enhances the discriminant information of the input image.

Table 2
MNIST digit recognition results (average recognition rate standard deviation)% of the
competitive algorithms.

Methods 𝑛𝑡𝑟 = 3000 𝑛𝑡𝑟 = 4000

LDA 74.22±2.05 77.34±1.69
NMF 70.28±3.11 72.06±4.51
LNMF 71.24±4.15 74.24±3.52
DNMF_KL 73.90±1.62 76.18±3.68
PGDNMF_KL 72.10±4.56 74.20±2.24
MD-NMF_KL 75.32±5.12 78.06±4.16
LONMF
LC-KSVD1
LC-KSVD2 81.51±1.15 82.59±0.60

4.3. ORL face database

There are 400 frontal (with tolerance for some side movement) face
images of 40 individuals for the ORL face database. For each individual,
a total number of 10 face images are taken in the same dark background.
The original face images are normalized to 40 × 40 pixels and some of
the example images used in the experiment are shown in Fig. 5.

We randomly select 𝑛𝑡𝑟(4, 5) images for each individual as training
samples. The rest of the images are used for testing. Table 3 shows the
average recognition accuracy and the standard deviations of the com-
peting algorithms. It can be seen that both LONMF and LC-KSVD1 (LC-
KSVD2) achieves much better results than other competitive methods.
Both LC-KSVD1 and LC-KSVD2 obtains top 2 best result when 𝑛𝑟 = 4,
and the proposed LONMF gets the second best result when 𝑛𝑟 = 5.
Generally speaking, LONMF takes less training time than LC-KSVDs with
similar results. The visualized basis matrices learned by NMF, LNMF,
and the proposed LONMF are expressed in Fig. 6. Similar observation

(a) 𝛼 and 𝛽. (b) 𝐾.

Fig. 3. Parameters (a) 𝛼 and 𝛽 and (b) 𝐾 selected and the corresponding classification accuracy on the MNIST database with 𝑛𝑡𝑟 = 4000.

(a) (b) (c)

Fig. 4. Visual basis matrices derived from (a) NMF, (b) LNMF, and (c) LONMF on the MNIST database with 𝑛𝑡𝑟 = 4000.
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Fig. 5. Example images from the ORL face database.

(a) (b) (c)

Fig. 6. Visual basis matrices derived from (a) NMF, (b) LNMF, and (c) LONMF on the ORL database with 𝑛𝑡𝑟 = 5.

Table 3
ORL face recognition results (average recognition rate standard deviation)% of the com-
peting algorithms.

Methods 𝑛𝑡𝑟 = 4 𝑛𝑡𝑟 = 5

LDA 87.08±3.74 88.15±3.22
NMF 83.75±2.38 84.90±1.87
LNMF 84.16±4.16 85.80±2.66
DNMF_KL 85.66±2.63 86.77±5.11
PGDNMF_KL 84.64±3.36 87.64±4.61
MD-NMF_KL 87.18±3.12 90.41±2.88
LONMF 90.00±1.34
LC-KSVD1 91.52±1.36
LC-KSVD2

with MNIST, the proposed LONMF achieves more sparse and localized
bases.

4.4. YALE face database

There are 165 frontal view face images of 15 individuals for the YALE
face database. For each individual, a total number of 11 face images with
different facial expression or configuration: center-light, with/without
glasses, happy, left-light, normal, right-light, sad, sleepy, surprised, and
wink. The original face images are cropped and normalized to 40 × 40
pixels. Some of the example images used in the experiment are shown
in Fig. 7.

In the same way, 𝑛𝑡𝑟(4, 5) images are selected for each individual
as training samples. The rest of the images are used for testing. Table 4
shows the average recognition accuracy and the standard deviations of
the competing algorithms. LDA, a discriminant analysis tool, performs
better than most of the NMF algorithms. However, the manifold-based
NMF and the proposed LONMF perform better than other discriminative
NMF algorithms. Similar with the results on the ORL database, LC-
KSVD2 gets the best result when 𝑛𝑟 = 4 and 𝑛𝑟 = 5.

4.5. FERET face database

The facial recognition technology (FERET) database consists of 1400
images from 200 individuals. For each subject, there are 7 images and

Table 4
YALE face recognition results (average recognition rate standard deviation)% of the com-
peting algorithms.

Methods 𝑛𝑡𝑟 = 4 𝑛𝑡𝑟 = 5

LDA 76.22±6.68 80.22±3.18
NMF 71.33±3.72 77.33±4.12
LNMF 74.25±3.13 78.25±2.13
DNMF_KL 76.21±2.15 80.21±3.25
PGDNMF_KL 75.66±4.23 79.66±1.63
MD-NMF_KL 80.18±2.65 82.18±5.25
LONMF 82.86±2.92
LC-KSVD1 86.00±4.61
LC-KSVD2

Table 5
FERET face recognition results (average recognition rate standard deviation)% of the com-
peting algorithms.

Methods 𝑛𝑡𝑟 = 4 𝑛𝑡𝑟 = 5

LDA 64.17±2.05 61.75±3.33
NMF 65.10±3.43 60.45±2.44
LNMF 66.47±3.99 63.15±2.65
DNMF_KL 67.89±3.62 66.20±3.89
PGDNMF_KL 67.01±4.57 67.10±4.36
MD-NMF_KL
LONMF
LC-KSVD1 60.75±6.89 68.25±8.19
LC-KSVD2 60.56±6.95 67.00±7.23

𝑛𝑡𝑟(4, 5) of them are selected randomly for training and the rest for
testing. All images are normalized to 40 × 40 pixels. Fig. 8 shows the
examples of images from FERET database.

Table 5 shows the average recognition accuracy and the standard
deviations of the competing algorithms. It can be seen obviously that the
proposed LONMF outperforms the other algorithms. It is worth noting
that LC-KSVDs performs worse than others on FERET face database. It
is possible that there is much more classes (200) than other database,
while much less images (only 7) per class. Thus, it is difficult to capture
the discriminative information among the sub dictionaries.
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Fig. 7. Example images from the YALE face database.

Fig. 8. Example images from the FERET face database.

Fig. 9. Example images from the CMU PIE face database.

4.6. CMU PIE face database

The CMU PIE database contains 41,368 face images collected
from 68 subjects. Each subject has 13 images of different poses, 43
different illumination conditions, and with 4different expressions. In
this experiment, we select a subset of 5 near frontal poses (C05, C07,
C09, C27, and C29) and illuminations indexed as 08 and 11. Therefore,
each subject has ten images. All images were normalized to 32 × 32
pixel array and reshaped to a vector. Fig. 9 shows the face examples of
the CMU PIE face database.

Table 6 lists the performance of different methods on the CMU PIE
database. In the experiments, 4 and 5 images of each individual were
randomly selected and used as training set, and the rest of images were
used as test set. As can be seen from Table 6, LONMF obtains the best
recognition rates in all the cases when there are variations in pose and
illumination among the dimension reduction methods. In addition, the
discriminative dictionary learning algorithm LC-KSVD2 performs better
than LONMF. However, the training time of LC-KSVDs is much more
than the dimension reduction methods.

From the experiment results on the face databases, we can see
that LDA, as the discriminant analysis technique, performs better than
NMF and LNMF. In the family of NMF, DNMF and PGDNMF perform
better than NMF and LNMF due to that DNMF and PGDNMF combine
discriminant information in nonnegative factorization. Although taking
into account the discriminant constraint, LDA underperforms DNMF,
PGNMF, and MD-NMF. DNMF, PGDNMF and MD-NMF all encode
discriminant information for classification. However, MD-NMF performs
better than DNMF and PGDNMF in our experiments, due to the reason
that MD-NMF not only introduces marginal information to NMF, but also
introduces manifold structure of the data in the learning steps. LONMF
regularizes the basis matrix directly and involves the label information

Table 6
CMU PIE face recognition results (average recognition rate standard deviation)% of the
competing algorithms.

Methods 𝑛𝑡𝑟 = 4 𝑛𝑡𝑟 = 5

LDA 84.51±2.87 91.33±2.33
NMF 78.18±3.41 82.16±3.31
LNMF 80.11±6.25 84.81±2.80
DNMF_KL 85.90±5.89 91.38±4.67
PGDNMF_KL 86.00±5.21 92.61±5.52
MD-NMF_KL 86.33±6.67 94.26±5.81
LONMF
LC-KSVD1 87.62±3.09 95.41±3.77
LC-KSVD2

into the optimization. The label regularized term enforces the basis
matrix to extract the latent discriminant information for image classi-
fication. Furthermore, the discriminative dictionary learning methods
obtains a relatively similar results with the proposed LONMF. However,
dictionary learning has a complexity computation time on training.

It is difficult to reconstruct the model and tune the parameters
of deep learning works [23–25] on the same data set with same
settings, however, it should be pointed that deep learning with non-
negative constraint methods on data representation for clustering and
classification have achieved the state-of-the-art performance.

5. Conclusion

We propose a discriminant NMF algorithm with label and orthogo-
nality regularization for image classification in this paper. We directly
formulate the objective function by regularizing the basis matrix with
the label consistent and orthogonal constraints. By using the update
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rules, our LONMF convergences. The objective function of LONMF
enforces the basis matrix to extract the latent information which has
similar representation with the data from same class. Furthermore, we
design a linear classifier using the LONMF-generated low-dimensional
representation for the image classification task. Experimental results
on the digit database and the challenging face databases demonstrate
that the proposed LONMF algorithm is overall superior to the famous
competing algorithms. In the next work, we will study for the deep
learning involved NMF for image representation.
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Appendix A. Update rules using multiplicative approach and GD
method

This section describes the update rules using multiplicative approach
and GD method.

(i) Multiplicative approaches to LONMF
The objective function in (8) can be rewritten as follows,

𝑓𝐿𝑂𝑁𝑀𝐹 = 𝑡𝑟((𝑿 − 𝑩𝑪)(𝑿 − 𝑩𝑪)𝑇 )

+ 𝛼𝑡𝑟((𝑩𝑇𝑿 −𝑯)(𝑩𝑇𝑿 −𝑯)𝑇 )

+ 𝛽𝑡𝑟(𝑩𝑇𝑩 − 𝑰)2.

(12)

Then, we transform the constrained optimization into unconstrained
one by introducing the Lagrangian multipliers (𝜱𝐵)𝑖𝑗 and (𝜱𝐶 )𝑖𝑗 for
𝑏𝑖𝑗 ⩾ 0 and 𝑐𝑖𝑗 ⩾ 0, respectively. The Lagrange function is expressed
as follows

𝐿(𝑩,𝑪 ,𝜱𝐵 ,𝜱𝐶 ) =

𝑡𝑟((𝑿 − 𝑩𝑪)(𝑿 − 𝑩𝑪)𝑇 ) + 𝛼𝑡𝑟((𝑩𝑇𝑿 −𝑯)(𝑩𝑇𝑿 −𝑯)𝑇 )

+ 𝛼𝑡𝑟((𝑩𝑇𝑿 −𝑯)(𝑩𝑇𝑿 −𝑯)𝑇 ) + 𝛽𝑡𝑟(𝑩𝑇𝑩 − 𝑰)2

+ 𝑡𝑟(𝜱𝐵𝑩𝑇 ) + 𝑡𝑟(𝜱𝐶𝑪𝑇 ).

(13)

The partial derivatives of the Lagrange function w.r.t. 𝑩 and 𝑪 are,
𝜕𝐿
𝜕𝑩

= 2𝑩𝑪𝑪𝑇 − 2𝑿𝑪𝑇 + 2𝛼𝑿𝑿𝑇𝑩 − 2𝛼𝑿𝑯𝑇

+ 4𝛽𝑩𝑩𝑇𝑩 − 4𝛽𝑩 +𝜱𝐵 ,

𝜕𝐿
𝜕𝑪

= 2𝑩𝑇𝑩𝑪 − 2𝑩𝑇𝑿 +𝜱𝐶 .

(14)

Enforcing the partial derivatives to be zero and employing the
Karush–Kuhn–Tucker condition 𝜱𝐵 ⊙ 𝑩 = 𝟎 and 𝜱𝐶 ⊙ 𝑪 = 𝟎. We have

(𝑩𝑪𝑪𝑇 )𝑖𝑗𝑏𝑖𝑗 + 𝛼(𝑿𝑿𝑇𝑩)𝑖𝑗𝑏𝑖𝑗 + 2𝛽(𝑩𝑩𝑇𝑩)𝑖𝑗𝑏𝑖𝑗

= (𝑿𝑪𝑇 )𝑖𝑗𝑏𝑖𝑗 + 𝛼(𝑿𝑯𝑇 )𝑖𝑗𝑏𝑖𝑗 + 2𝛽𝑩𝑖𝑗𝑏𝑖𝑗
(15)

and

(𝑩𝑇𝑩𝑪)𝑖𝑗𝑐𝑖𝑗 − (𝑩𝑇𝑿)𝑖𝑗𝑐𝑖𝑗 = 0. (16)

Combined (15) and (16), we obtain the following update rules:

𝑏𝑖𝑗 ← 𝑏𝑖𝑗
(𝑿𝑪𝑇 + 𝛼𝑿𝑯𝑇 + 2𝛽𝑩)𝑖𝑗

(𝑩𝑪𝑪𝑇 + 𝛼𝑿𝑿𝑇𝑩 + 2𝛽𝑩𝑩𝑇𝑩)𝑖𝑗
, (17)

𝑐𝑖𝑗 ← 𝑐𝑖𝑗
(𝑩𝑇𝑿)𝑖𝑗
(𝑩𝑇𝑩𝑪)𝑖𝑗

. (18)

(ii) GD method approaches to LONMF

In the related work to DNMF, the GD algorithm was used to optimize
the problem (8). According to GD method, the additive rules are

𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + 𝜇𝑖𝑗
𝜕𝐿
𝜕𝑏𝑖𝑗

,

𝑐𝑖𝑗 ← 𝑐𝑖𝑗 + 𝜂𝑖𝑗
𝜕𝐿
𝜕𝑐𝑖𝑗

.
(19)

where 𝜇𝑖𝑗 and 𝜂𝑖𝑗 control the step size of GD. Now we set the parameters
as following,

𝜇𝑖𝑗 =
−𝑏𝑖𝑗

(2𝑩𝑪𝑪𝑇 + 2𝛼𝑿𝑿𝑇𝑩 + 4𝛽𝑩𝑩𝑇𝑩)𝑖𝑗
,

𝜂𝑖𝑗 =
−𝑐𝑖𝑗

(2𝑩𝑇𝑩𝑪)𝑖𝑗
.

(20)

Combined (19) and (20), we have

𝑏𝑖𝑗 + 𝜇𝑖𝑗
𝜕𝐿
𝜕𝑏𝑖𝑗

=

𝑏𝑖𝑗 −
𝑏𝑖𝑗

(2𝑩𝑪𝑪𝑇 + 2𝛼𝑿𝑿𝑇𝑩 + 4𝛽𝑩𝑩𝑇𝑩)𝑖𝑗
𝜕𝐿
𝜕𝑏𝑖𝑗

= 𝑏𝑖𝑗 −
𝑏𝑖𝑗 (𝑴)𝑖𝑗

(2𝑩𝑪𝑪𝑇 + 2𝛼𝑿𝑿𝑇𝑩 + 4𝛽𝑩𝑩𝑇𝑩)𝑖𝑗

= 𝑏𝑖𝑗
(𝑿𝑪𝑇 + 𝛼𝑿𝑯𝑇 + 2𝛽𝑩)𝑖𝑗

(𝑩𝑪𝑪𝑇 + 𝛼𝑿𝑿𝑇𝑩 + 2𝛽𝑩𝑩𝑇𝑩)𝑖𝑗
,

(21)

where 𝑴 = 2𝑩𝑪𝑪𝑇 −2𝑿𝑪𝑇 +2𝛼𝑿𝑿𝑇𝑩−2𝛼𝑿𝑯𝑇 +4𝛽𝑩𝑩𝑇𝑩−4𝛽𝑩+𝜱𝐵 ,
and

𝑐𝑖𝑗 + 𝜂𝑖𝑗
𝜕𝐿
𝜕𝑐𝑖𝑗

= 𝑐𝑖𝑗 −
𝑐𝑖𝑗

(2𝑩𝑇𝑩𝑪)𝑖𝑗
𝜕𝐿
𝜕𝐶𝑖𝑗

= 𝑐𝑖𝑗 −
𝑐𝑖𝑗 (2𝑩𝑇𝑩𝑪 − 2𝑩𝑇𝑿 +𝜱𝐶 )𝑖𝑗

(2𝑩𝑇𝑩𝑪)𝑖𝑗

= 𝑐𝑖𝑗
(𝑩𝑇𝑿)𝑖𝑗
(𝑩𝑇𝑩𝑪)𝑖𝑗

.

(22)

Appendix B. Convergence proof of LONMF algorithm

The update rules given by (17) and (18) make the iterative process
of LONMF converge under the condition that 𝑓𝐿𝑂𝑁𝑀𝐹 in (12) is
nonincreasing using the rules. Define the part of 𝑓𝐿𝑂𝑁𝑀𝐹 w.r.t. 𝑩 and
𝑪 . We have
𝑓𝐿𝑂𝑁𝑀𝐹 (𝑩) = 𝑡𝑟((𝑿 − 𝑩𝑪)(𝑿 − 𝑩𝑪)𝑇 )

+ 𝛼𝑡𝑟((𝑩𝑇𝑿 −𝑯)(𝑩𝑇𝑿 −𝑯)𝑇 ) + 𝛽𝑡𝑟(𝑩𝑇𝑩 − 𝑰)2

= 𝑡𝑟(𝑿𝑿𝑇 ) + 𝑡𝑟(𝑩𝑪𝑪𝑇𝑩𝑇 ) − 2𝑡𝑟(𝑿𝑪𝑇𝑩𝑇 ) + 𝛼𝑡𝑟(𝑯𝑯𝑇 )

+ 𝛼𝑡𝑟(𝑩𝑇𝑿𝑿𝑇𝑩) − 2𝛼𝑡𝑟(𝑩𝑇𝑿𝑯𝑇 ) + 𝛽𝑡𝑟(𝑩𝑇𝑩 − 𝑰)2

= 𝑡𝑟(𝑩𝑪𝑪𝑇𝑩𝑇 ) − 2𝑡𝑟(𝑿𝑪𝑇𝑩𝑇 ) + 𝛼(𝑩𝑇𝑿𝑿𝑇𝑩)

− 2𝛼𝑡𝑟(𝑩𝑇𝑿𝑯𝑇 ) + 𝛽𝑡𝑟((𝑩𝑇𝑩)2) − 2𝛽𝑩𝑇𝑩 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐵

(23)

and
𝑓𝐿𝑂𝑁𝑀𝐹 (𝑪) = 𝑡𝑟((𝑿 − 𝑩𝑪)(𝑿 − 𝑩𝑪)𝑇 )

= 𝑡𝑟(𝑿𝑿𝑇 ) + 𝑡𝑟(𝑩𝑪𝑪𝑇𝑩𝑇 ) − 2𝑡𝑟(𝑩𝑪𝑿𝑇 )

= 𝑡𝑟(𝑩𝑪𝑪𝑇𝑩𝑇 ) − 2𝑡𝑟(𝑩𝑪𝑿𝑇 ) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐶,

(24)

where 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐵 and 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐶 are the constant variables w.r.t. the part
function of 𝑩 and 𝑪 .

Then, we should prove that 𝑓𝐿𝑂𝑁𝑀𝐹 (𝑩) and 𝑓𝐿𝑂𝑁𝑀𝐹 (𝑪) are non-
increasing under the update rules. According to Lemma 1 [35,36], we
should generate the auxiliary function and prove that the update rules
are satisfied to (25).
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Lemma 1. If there is an auxiliary function 𝑧(𝑠, 𝑠(𝑡)) for 𝑓 (𝑠) under the
conditions 𝑓 (𝑠) ⩽ 𝑧(𝑠, 𝑠(𝑡)), 𝑓 (𝑠) = 𝑧(𝑠, 𝑠), then 𝑓 is nonincreasing using the
update

𝑠(𝑡+1) = 𝑎𝑟𝑔min
𝑠

𝑧(𝑠, 𝑠(𝑡)). (25)

Proof. We give priority to 𝑓 (𝑠) = 𝑧(𝑠, 𝑠), and the corresponding auxiliary
functions (we denote 𝑓 instead of 𝑓𝐿𝑂𝑁𝑀𝐹 for formulation) are as
follows:
𝑧(𝑏𝑖𝑗 , 𝑏

(𝑡)
𝑖𝑗 )

= 𝑓 (𝑏(𝑡)𝑖𝑗 ) + 𝑓 ′(𝑏(𝑡)𝑖𝑗 )(𝑏𝑖𝑗 − 𝑏(𝑡)𝑖𝑗 )

+ 1
2
𝑓 ′′(𝑏(𝑡)𝑖𝑗 )(𝑏𝑖𝑗 − 𝑏(𝑡)𝑖𝑗 )

2

+ 1
3!
𝑓 ′′′(𝑏(𝑡)𝑖𝑗 )(𝑏𝑖𝑗 − 𝑏(𝑡)𝑖𝑗 )

3 +
𝛽𝑏𝑖𝑗
𝑏(𝑡)𝑖𝑗

(𝑏𝑖𝑗 − 𝑏(𝑡)𝑖𝑗 )
4,

(26)

and
𝑧(𝑐𝑖𝑗 , 𝑐

(𝑡)
𝑖𝑗 ) = 𝑓 (𝑐(𝑡)𝑖𝑗 ) + 𝑓 ′(𝑐(𝑡)𝑖𝑗 )(𝑐𝑖𝑗 − 𝑐(𝑡)𝑖𝑗 )

+
(𝑩𝑇𝑩𝑪)𝑖𝑗

𝑐(𝑡)𝑖𝑗
(𝑐𝑖𝑗 − 𝑐(𝑡)𝑖𝑗 )

2.
(27)

To prove that 𝑧(𝑏𝑖𝑗 , 𝑏
(𝑡)
𝑖𝑗 ) ⩾ 𝑓 (𝑏𝑖𝑗 ) and 𝑧(𝑐𝑖𝑗 , 𝑐

(𝑡)
𝑖𝑗 ) ⩾ 𝑓 (𝑐𝑖𝑗 ), we first show

the Taylor series expansion of 𝑓 (𝑏𝑖𝑗 ) and 𝑓 (𝑐𝑖𝑗 ):

𝑓 (𝑏𝑖𝑗 ) = 𝑓 (𝑏(𝑡)𝑖𝑗 ) + 𝑓 ′(𝑏(𝑡)𝑖𝑗 )(𝑏𝑖𝑗 − 𝑏(𝑡)𝑖𝑗 )

+ 1
2
𝑓 ′′(𝑏(𝑡)𝑖𝑗 )(𝑏𝑖𝑗 − 𝑏(𝑡)𝑖𝑗 )

2

+ 1
3!
𝑓 ′′′(𝑏(𝑡)𝑖𝑗 )(𝑏𝑖𝑗 − 𝑏(𝑡)𝑖𝑗 )

3 + 1
4!
(𝑏𝑖𝑗 − 𝑏(𝑡)𝑖𝑗 )

4

(28)

and
𝑓 (𝑐𝑖𝑗 ) = 𝑓 (𝑐(𝑡)𝑖𝑗 ) + 𝑓 ′(𝑐(𝑡)𝑖𝑗 )(𝑐𝑖𝑗 − 𝑐(𝑡)𝑖𝑗 )

+ 1
2
𝑓 ′′(𝑐(𝑡)𝑖𝑗 )(𝑐𝑖𝑗 − 𝑐(𝑡)𝑖𝑗 )

2.
(29)

Compare (26) and (28), (27) and (29), respectively, we should prove
the following inequalities:
(𝛽𝑩)𝑖𝑗
𝑏(𝑡)𝑖𝑗

⩾ 1
4!
𝑓 (4)(𝑏(𝑡)𝑖𝑗 ) =

1
4!

× 24𝛽 = 𝛽 (30)

and

(𝑩𝑇𝑩𝑪)𝑖𝑗
𝑐(𝑡)𝑖𝑗

⩾
𝑓 ′′(𝑐(𝑡)𝑖𝑗 )

2
= 1

2
× 2(𝑩𝑇𝑩)𝑖𝑗 = (𝑩𝑇𝑩)𝑖𝑗 . (31)

From (30) and (31), it is obvious that (𝛽𝑩)𝑖𝑗 ⩾ 𝛽𝑏(𝑡)𝑖𝑗 and (𝑩𝑇𝑩𝑪)𝑖𝑗 ⩾
(𝑩(𝑇 )𝑩)𝑖𝑗𝑐

(𝑡)
𝑖𝑗 . Hence, 𝑧(𝑏𝑖𝑗 , 𝑏

(𝑡)
𝑖𝑗 ) ⩾ 𝑓 (𝑏𝑖𝑗 ) and 𝑧(𝑐𝑖𝑗 , 𝑐

(𝑡)
𝑖𝑗 ) ⩾ 𝑓 (𝑐𝑖𝑗 ) hold. We

present the first, second, third and fourth order derivative w.r.t. 𝑩:

𝑓 ′(𝑏𝑖𝑗 ) = 2(𝑩𝑪𝑪𝑇 −𝑿𝑪𝑇 + 𝛼𝑿𝑿𝑇𝑩 − 𝛼𝑿𝑯𝑇

+ 2𝛽𝑩𝑩𝑇𝑩 − 2𝛽𝑩)𝑖𝑗 ,

𝑓 ′′(𝑏𝑖𝑗 ) = (2𝑪𝑪𝑇 + 2𝛼𝑿𝑿𝑇 + 12𝛽𝑩𝑇𝑩 − 4𝛽𝑰)𝑖𝑗 ,

𝑓 ′′′(𝑏𝑖𝑗 ) = (24𝛽𝑩)𝑖𝑗 ,

𝑓 (4)(𝑏𝑖𝑗 ) = 24𝛽.

(32)

The first, and second order derivative w.r.t. 𝑪 :
𝑓 ′(𝑐𝑖𝑗 ) = 2(𝑩𝑇𝑩𝑪 − 𝑩𝑇𝑿)𝑖𝑗 ,

𝑓 ′′(𝑏𝑖𝑗 ) = 2(𝑩𝑇𝑩)𝑖𝑗 .
(33)

Then, we put (32) and (33) into (25) and obtain:

𝑏(𝑡+1)𝑖𝑗 = 𝑎𝑟𝑔min
𝑏𝑖𝑗

𝑧(𝑏𝑖𝑗 , 𝑏
(𝑡)
𝑖𝑗 )

= 𝑏(𝑡)𝑖𝑗
(𝑿𝑪𝑇 + 𝛼𝑿𝑯𝑇 + 2𝛽𝑩)𝑖𝑗

(𝑩𝑪𝑪𝑇 + 𝛼𝑿𝑿𝑇𝑩 + 2𝛽𝑩𝑩𝑇𝑩)𝑖𝑗
,

(34)

and
𝑐(𝑡+1)𝑖𝑗 = 𝑎𝑟𝑔min

𝑐𝑖𝑗
𝑧(𝑐𝑖𝑗 , 𝑐

(𝑡)
𝑖𝑗 )

= 𝑐(𝑡)𝑖𝑗
(𝑩𝑇𝑿)𝑖𝑗
(𝑩𝑇𝑩𝑪)𝑖𝑗

.
(35)

From the solutions obtained, we can see that (34) and (35) are
consistent with the update rules (17) and (18). By employing the
auxiliary functions (26) and (27), 𝑓𝐿𝑂𝑁𝑀𝐹 (𝑩) and 𝑓𝐿𝑂𝑁𝑀𝐹 (𝑪) are
nonincreasing under the update rules. Hence, the update rules guarantee
the convergence of the proposed algorithm.
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