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a b s t r a c t

The mechanism of the displacement washing of the bed of pulp fibers is mathematically modeled by the
basic material balance equation. Non-linear Langmuir type adsorption isotherm is used to describe the
relationship between the concentration of the solute in the liquor and concentration of the solute on the
fibers. In the present study, the numerical solutions are obtained of the displacement washing model for
multistage in counter current manner. For the numerical solution “pdepe” solver in MATLAB is applied
eywords:
ATLAB, “pdepe” solver

ulp washing model
eclet number

on the axial domain of the system of governing partial differential equations. Numerical solutions thus
obtained are in good agreement with the results of earlier workers. The technique used in the present
investigation is simple, elegant and convenient for solving two point boundary value problems with
varying range of parameters.
dsorption isotherm
ultistage

ounter current

. Introduction

Modeling of pulp washing is done mainly using three
pproaches namely: (a) process modeling, (b) physical modeling
nd (c) statistical modeling. In process modeling approach, each
tage in pulp washing operation is treated as black box. Using
aterial balances, process models express the efficiency of an indi-

idual washing stage in terms of some performance parameters
uch as displacement ratio, Norden efficiency factor, and equivalent
isplacement ratio. Although these models are useful for routine
rocess design calculations, but provide little information as to
ow the design or operation of a washer improves its efficiency. A
omplete review of the various process models used so far describ-
ng the pulp washing process has been presented by Pekkanen &
orden (1985).

Physical models describe the washing operation in terms of
undamental fluid flow and mass transfer principles, occurring
t microscopic level during displacement washing of a fibrous
ed. These models involve parameters such as longitudinal dis-
ersion coefficient and mass transfer coefficients. Physical models
roposed by various investigators such as Lapidus & Amundson

1952), Brenner (1962), Sherman (1964), Pellett (1966), Kuo &
arret (1970), Grah (1975) and Perron & Lebeau (1977) has been
lassified based on mass transfer principles of two types (1) dif-
erential contact models (macroscopic) and (2) dispersion models

∗ Corresponding author. Tel.: +91 9927090165; fax: +91 1322714011.
E-mail address: dkr2009@gmail.com (D. Kumar).

098-1354/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2009.08.005
© 2009 Elsevier Ltd. All rights reserved.

(macroscopic). Lapidus & Amundson (1952) have studied the effect
of longitudinal diffusion in ion-exchange and chromatographic
columns and obtained differential equation for the wash liquor.
Brenner (1962) studied the washing of filter cake by neglecting the
accumulation capacity of fibers and assumed that the phenomena
of longitudinal mixing and obtained model in terms of the differen-
tial equation. Sherman (1964) has described the overall movement
of solute in the bed of non-porous granular material with the dif-
fusion like differential equation by replacing molecular diffusion
coefficient with longitudinal dispersion coefficient as molecular
diffusion coefficient was found very small as compared to longitu-
dinal dispersion coefficient. An additional term was used to account
for the accumulation (or depletion) capacity of material sorbed by
the solids. Pellett (1966) has studied the longitudinal dispersion of
solute, intraparticle diffusion of solute and liquid-phase mass trans-
fer for the particles of cylindrical and spherical geometry by using
a modified step function input. Kuo & Barret (1970) neglected the
longitudinal dispersion coefficient to study sodium chloride wash-
ing and obtained differential equation for the wash liquor. Grah
(1975) has divided the packed bed of cellulose fibers into three dif-
ferent zones namely zone of flowing liquor, stagnant liquor and
fibers. Longitudinal dispersion and mass transfer in the flowing
liquor zone is characterized by the differential equation. Perron &
Lebeau (1977) had taken the model equation without considering

the effect of longitudinal dispersion coefficient.

Most of the researcher described the washing model by cou-
pling the transport equation with various adsorption isotherms
to describe the relationship between the concentration of the
solute in the liquor and concentration of the solute on the fibers.

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:dkr2009@gmail.com
dx.doi.org/10.1016/j.compchemeng.2009.08.005
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Nomenclature

A′ surface area of bed (m2)
c concentration of the solute in the liquor (kg/m3)
C0 concentration of solute inside the vat (kg/m3)
N0 amount of solute accumulated on the fiber surface

at the inlet (kg/m3)

Cs concentration of solute in the wash liquor (kg/m3)
DL longitudinal dispersion coefficient (m2/s)
DV molecular diffusion coefficient (m2/s)
A, B Langmuir constants (m3/kg)
L cake thickness (m)
n concentration of solute on fibers (kg/m3)
t time (s)
C dimensionless concentration of solute in the liquor
N dimensionless concentration of solute in the fiber
Z dimensionless distance
T dimensionless time
� mean time
u liquor speed in cake pores (m/s)
z variable cake thickness (m)
�z small increment in cake thickness (m)
Cyi inlet vat consistency of the pulp (kg of fiber/kg of

liquor)
Cyd discharged consistency of the pulp (kg of fiber/kg of

liquor)
xi dissolves solids inside the vat (%)
xs dissolved solids in washing water (%)
xf dissolved solids in the filtrate (%)
xd dissolved solids in discharged pulp (%)
xr dissolved solids in recycle liquor (%)
Li amount of liquor inside the vat (kg of liquor/kg of

pulp)
Ls amount of wash water (kg of water/kg of pulp)
Ld amount of liquor in discharge pulp (kg of liquor/kg

of pulp)
Lf amount of filtrate (kg of liquor/kg of pulp)

S
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w
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Lr amount of liquor recycled to previous washer (kg of
liquor/kg of pulp)

herman (1964), Pellett (1966), Neretnieks (1974), Grah (1975)
nd Viljakainen (1985) have considered the linear or non-linear
dsorption isotherm equations along with the dispersion diffusion
ased transport equations. Towers & Scallan (1996) used Donnan
quilibrium theory to characterize the distribution; a mathematical
odel has been developed to describe the partitioning of cations

etween fiber walls and surrounding liquor. Tervola & Rasanen
2006) described the cake washing of freely mobile ions by an
dvection-dispersion equation combined with Donnan equilibrium
nd an overall ion transfer model between the external liquid-
hase and the fiber phase of the kraft pulp.

A typical washing system in industry consists of three or four
ashers in counter flow arrangement. Counter flow is an engineer-

ng technique where in two process streams interact as they move
n opposite directions. As applied to pulp washing this means a
eries of washers is set up with the final wash being performed with
lean water. The wastewater from the last washer is then used to
ash the stock in the second from the last washer. Water from the

econd to last washer is used to wash stock in a third to last washer

nd so on for the total number of washers used. Tervola (2006)
eveloped a Fourier series solution method for solving a multi-
tage counter current cake washing problem, so that the solute
oncentration gradient inside a cake between washing stages was
reserved.
Fig. 1. A simple shell balance.

In the present study dispersion diffusion based transport equa-
tions of pulp washing are developed based on the assumptions of
Sherman (1964) and Pellett (1966) coupled with the equation of
mass transfer, i.e. Fick’s second law of diffusion. The equations are
coupled with many other fluid mechanical parameters and finally
two models are obtained, differing in boundary conditions. Non-
linear Langmuir type adsorption isotherm given by Fogelberg &
Fugleberg (1963) is used for equilibrium between the concentra-
tion of the solute in the liquor and concentration of the solute
on the fibers. The above mentioned mathematical models of two
simultaneous partial differential equations with various bound-
ary conditions are extremely intricate in nature and practically
appear to be unsolvable for multistage washing system even by
using sophisticated numerical techniques. It is important to men-
tion that the problem for single washer with its simplified version
has been solved analytically by Brenner (1962) and Kukreja (1996)
using Laplace transform and numerically using orthogonal colloca-
tion by Grah (1975) and Arora, Dhaliwal, and Kukreja (2006a) and
Arora, Dhaliwal, and Kukreja (2006b). Kumar (2002) attempted to
solve the washing model using Finite difference method. All these
methods are very complex and time consuming. Similar problem
for a single stage advection-dispersion washing has been solved by
Singh, Kumar, and Kumar (2008) by pdepe solver easily by using
much less time and give the similar results as analytical solution
given by Brenner (1962). The present work focuses on the four
stages counter current washing system described by the math-
ematical model for washing zone of a rotary drum washer and
washing theory based on Langmuir adsorption isotherm. Pdepe
solver in MATLAB source code is used to solve the model of washing
zone for multistage counter current cake washing.

2. Description of mathematical models for cake washing
zone

The mat of pulp fibers can be assumed to be stationary packed
bed of homogeneous symmetrical cylindrical fibers. Instantaneous
behavior of any system of this type can only be expressed by an
equation involving the variables and their partial derivatives. Using
simple material balance for setting up a differential equation, con-
sider a thin slice of a filter cake (pulp mat) as shown in Fig. 1, through
which filtrate or wash water flows.

Material balance across the simple shell given in Fig. 1, in the z
direction can be written as

rate of mass of solute in

+rate of mass production by chemical reaction = rate of mass out

+ rate of mass accumulation in the liquid phase

+rate of mass accumulation in the solid phase due to

adsorption-desorption.

If A′ is the area of the bed, εt the total average porosity (sum of
porosities in the displaceable liquid εd and in the immobile phase

εs), u the velocity of the liquor in the mat, c the concentration in
the liquid-phase, the equation in one dimension can be written as

(ucεtA
′)z,t−(ucεtA

′)z+�z,t=
[

∂

∂t
{(cεtA

′�z + n(1 − εt)A′�z}
]

z̄,t

(1)
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Table 1
Existing mathematical models for washing zone used in present investigation (dimensionless form).
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S. no. Transport equation Adsorption

1. (∂2C/∂Z2) = Pe(∂C/∂Z + ∂C/∂T + �′∂N/∂T) N = ABC0C/
2. (∂2C/∂Z2) = Pe(∂C/∂Z + ∂C/∂T + �′∂N/∂T) N = ABC0C/

here z < z− < z + �z. Taking εt and A′ as constant and taking the
imit as �z → 0, one can obtain the following expression:

εtc

(
∂u

∂z

)
= εtu

(
∂c

∂z

)
+ εt

(
∂c

∂t

)
+ (1 − εt)

(
∂n

∂t

)
(2)

he above equation contains principally two accumulation terms,
ne related to dispersion–diffusion and another related to
dsorption–desorption. Other terms are velocity gradient and con-
ective flow terms. Using Fick’s second law of diffusion, i.e.:

c

(
∂u

∂z

)
= (DL + DV )

(
∂2c

∂z2

)
(3)

he following equation is obtained:

DL + DV )

(
∂2c

∂z2

)
= u

(
∂c

∂z

)
+

(
∂c

∂t

)
+ 1 − εt

εt

(
∂n

∂t

)
(4)

ccording to Sherman (1964) the longitudinal dispersion coeffi-
ient DL is a function of flow pattern within the bed (unless very low
ow rates are used). The molecular diffusion coefficient DV is very
mall compared to DL and so may be neglected. Writing (1 − εt)/εt

s � for convenience, Eq. (4) may be written as

L

(
∂2c

∂z2

)
= u

(
∂c

∂z

)
+

(
∂c

∂t

)
+ �

(
∂n

∂t

)
(5)

his is a non-homogeneous, non-linear, first degree, second order,
arabolic, partial differential equation. Here u, εt and DL are func-
ions of z while c and n are functions of both z and t. As the lumen
f the fiber is porous and the same is true with the wall of the fiber,
he porosity values for these cases are different from the porosity
f the interfiber mass. Therefore three porosity values are required
o represent the pulp mat system. It is extremely difficult to dis-
inguish precisely between the values of porosity at the lumen and
t the wall. Therefore, for practical calculations these are assumed
o be the same. Hence, to describe the system two porosity values
re assumed, one for the interfibers εd and another for intrafibers
s, so that εd + εs = εt, the total porosity for the entire system. The
odel Eq. (5) is same as dispersion model for pulp washing given

y Sherman (1964) and Pellett (1966).

.1. Adsorption isotherms

The details of the adsorption isotherms which are used by some
arlier workers are as follows.

Lapidus & Amundson (1952) used the adsorption isotherm given
y

∂n

∂t
= k1c − k2n (6)

nd assumed that the rate of adsorption is finite and plotted the
ffect of longitudinal diffusion for an infinite column in which equi-
ibrium is established locally. Initial adsorbate concentration was
ssumed to be zero. Singh et al. (2008) used this linear isotherm
uccessfully and give comparable results.
Sherman (1964) used the adsorption of diacetyl solution by
orous viscous fibers with simple isotherm equation, i.e.:

= kc or
∂n

∂t
= k

∂c

∂t
(7)
erm Boundary conditions

0C)N0 (∂C/∂Z) = Pe(C − Cs/C0) for (Z = 0, T > 0) and (∂C/∂Z) = 0 at (Z = 1)
0C)N0 (C = Cs/C0) for (Z = 0, T > 0) and (∂C/∂Z) = 0 at (Z = 1)

and assumed the liquid solid concentration inside the fibers and
surrounding the fibers to be identical at any time and at any
position within the bed, implying that diffusion, both within the
fiber and between the fiber and the surrounding fluid is suffi-
ciently rapid which does not affect the rate of the overall transport
process.

Perron & Lebeau (1977) used the isotherm equation, i.e.:

∂n

∂t
= k(c − n) (8)

the diffusion of the solute within the fibers towards the washing
liquor is described by a partial differential Eq. (8), which is solved
assuming that the mass transfer rate through the stagnant film is
finite.

Fogelberg & Fugleberg (1963) used non-linear Langmuir type
adsorption isotherm to describe the relationship between the con-
centration of the solute in the liquor and concentration of the solute
on the fibers as

n = ABc

1 + Bc
(9)

where A and B are Langmuir constants.
Arora et al. (2006b) successfully used non-linear Langmuir type

adsorption isotherm using one dimensional axial dispersion model
for single stage washing, by using orthogonal collocation on finite
elements. Thus in the present investigation for sodium species,
non-linear Langmuir type adsorption isotherm is used for the solu-
tion of four stage counter current washing problem.

2.2. Initial and boundary conditions

For the solution of washing models for multistage the initial
condition is c(z, t) = n(z, t) = C0 for 0 < t < L/u, where L/u corresponds
to displacement time. Boundary conditions for Langmuir type
isotherm are as follows:

uc − DL
∂c

∂z
= uCS at z = 0 and t > 0 and

(
∂c

∂z

)
= 0 at z = L and t > 0

Perron & Lebeau (1977) give the boundary condition at the inlet of
the bed c = Cs, at z = 0 and t > 0.

In the present investigation both the cases of inlet boundary
conditions are used. Thus two sets of model are obtained for dif-
ferent boundary conditions. The initial condition is same for both
the models, i.e. C(Z, 0) = 1 = N(Z, 0) in dimensionless form. Thus pos-
sible models which are differing in boundary conditions only are
summarized in Table 1 (dimensionless form).

2.3. Dimensionless models

The dimensionless form of the models is obtained by using cer-
tain dimensionless parameters like Peclet number (or Bodenstein

number), dimensionless time, dimensionless thickness and dimen-
sionless concentrations given below:

Pe = uL

DL
, T = ut

L
, Z = z

L
, C = c

C0
, N = n

N0
and �′ = �N0

C0
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Fig. 2. Flow diagram of a counter curre

hus the dimensionless form of the transport equation, adsorption
sotherm and boundary conditions are given in Table 1.

.4. Steady state modeling for multistage washing process

In the present investigation a typical four stages counter current
ashing system is considered. A series of four washers are set up

or pulp washing with the final wash being performed with clean
ater. The steady state material balance equations can be obtained

or each washer, with the help of Fig. 2.
Steady state mass balance equations for washer 1 are given

elow.
First washer mass balance:

iquor : Lb+Lr1+Ls1=Lf 1+Ld1, Lf 1=Lb1+Le, Lb1=Lb2+Lr1, Li1=Lr1+Lb

(10)

Solids : Lbxb + Lr1xr1 + Ls1xs1 = Lf 1xf 1 + Ld1xd1, Lf 1xf 1 = Lb1xb1

+ Lexe, Lb1xb1 = Lb2xb2 + Lr1xr1, Li1xi1 = Lr1xr1 + Lbxb (11)

iber : LbCyb = Ld1Cyd1 (12)

Water : Lb(1 − Cyb)(1 − Xb) + Lr1(1 − Xr1) + Ls1(1 − Xs1)

= Lf 1(1 − Xf 1) + Ld1(1 − Cyd1)(1 − Xd1) (13)

In a similar manner mass balance equations are obtained for
ach washer and then solved, using actual data of a near by pulp
nd paper mill. The steady state operational data is given below:

a) Pulp yield = 47%.
b) Consistency of blown pulp = 13%.

(c) Solids in blown pulp = 22%.
d) Liquor in blown pulp = 6.69 kg of liquor/kg of pulp.
e) Standard consistency = 12%.

.5. Algorithm to calculate approximate Peclet number for the
isplacement zone for second and subsequent washers

As varying flow conditions can be assumed in different parts
f the pulp bed, an average value of the dispersion coefficient is
equired to be estimated. This is important as various authors simu-

ated with various ranges of Peclet number though the pulp quality
emains almost the same. As for example Potucek (1997) used very
ow Pe (1.0–11.3) for pulp fibers and high for glass fibers following
renner (1962), whereas Grah (1974), Poirier, Crotogino, Trinh, and
ouglas (1987) and Crotogino, Poirier, and Trinh (1987) used high
shing system with four drum washers.

ranges (generally 80–100). Poirier et al. (1987) categorically men-
tioned that displacement efficiency decreases below Pe number 20
and therefore one expects inconsistencies in the profiles. An order
of estimate values of Pe therefore should be predicted. As washing
efficiency has been expressed by Potucek (1997) as a function of
Pe, it becomes more relevant to evaluate for washer performance
study. The modified Peclet number, Pem and modified dispersion
coefficient DLm are then calculated as

Pem = uL

DLm

The algorithmic procedure given by Kumar (2002) is used for
estimation of Peclet number. According to Kumar (2002), first we
obtain the C vs. T data from this present investigation for both
the models by using the Peclet number 71.26 for washer no. 1 is
obtained from the data of Grah (1974), which is used for the sim-
ulation. Then the Peclet number for displacement zone of second
washer is estimated approximately avoiding iterative calculations
and considering open vessel as used by Han & Edwards (1988),
Edward, Peyron, and Minton (1986) and Potucek (1997).

First we use the data of Grah (1974) for the kappa no. 49.7 and
for this data we obtain the Peclet number for the first washer of the
series by using the formula, Pe = uL/DL. After that we use the fol-
lowing algorithm given by Kumar (2002) for calculating the Peclet
number for the subsequent washers.

• obtain C vs. T data for the first washer by solution of the model;
• find out the mean time �i = (˙TiCi�Ti)/(˙Ci�Ti);
• find the spread of the distribution, measured by the

variance representing the spread of the distribution
�2 = (

∑
T2

i
Ci�Ti)/(

∑
Ci�Ti) − �2

i
;

• fit the dispersion model for the large extent of the dispersion for
open vessel �2

�
= (�2/�2

i
) = 10(DL/uL) = (10/Pe).

3. Result and discussion

The mathematical model of pulp washing given by transport
equation (Eq. (5)), combined with the corresponding equation of
isotherm and various boundary conditions is given in Table 1.
The model is extremely intricate in nature and practically appears
to be unsolvable for multistage washing system, even by using
sophisticated numerical techniques. As mentioned earlier that the
problem for single washer with its simplified version has been

solved analytically by Brenner (1962) and Kukreja (1996) using
Laplace transform and numerically using orthogonal collocation
by Grah (1975) and Arora et al. (2006a). Arora et al. (2006b)
first discretized the partial differential equations into differential
algebraic equations, which are then solved using ODE15s solver
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Table 2
Process data of four stage brown stock washing system.

Input parameters Washer no. 1 Washer no. 2 Washer no. 3 Washer no. 4

Cyi (%) 1.25 1.25 1.25 1.25
Cyd (%) 12.00 12.00 13.00 14.00
xi (%) 15.59 7.29 2.62 0.96
xs (%) 7.00 2.50 0.90 0.00
xf (%) 15.00 7.00 2.50 0.90
xd (%) 10.12 3.77 1.58 0.30
xr (%) 15.00 7.00 2.50 0.90
Li (kg/kg) 79.00 79.00 79.00 79.00

.33 9.69 9.14

.00 82.00 82.00

.33 6.69 6.14

.67 71.67 72.31
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been included as dimensionless parameters in the solution of the
models. For the washer no. 1 we used the Peclet number Pe = 71.26
based on the simulation data. Since the dimensionless time for the
first and second washers is 10.33/7.33 = 1.41, for the third washer
Ls (kg/kg) 10.33 10
Lf (kg/kg) 82.00 82
Ld (kg/kg) 7.33 7
Lr (kg/kg) 72.31 71

eparately. Kumar (2002) attempted to solve the washing model
sing finite difference method. While Tervola (2006) developed a
ourier series solution method for solving a multistage counter cur-
ent cake washing problem. All these methods are very complex
nd time consuming. Application of such solution techniques in
ontrol systems is not possible due to the more processing time
nd involvement of high mathematical skills at operator level.

For control purpose the transient behavior of the solute concen-
ration in the black liquor is of more interest, rather than solute
oncentration in fiber. In the present work value of ∂N/∂T in terms
f ∂C/∂T, C, C0, N and N0 is obtained by differentiating the isotherm
quation, and then substituted in the transport equation (given in
able 1).

For the solution of washing zone models for all four washers,
teady state data is observed from a paper mill (given in Table 2) and
alues of various process parameters for washing zone of a washer
s taken as given by Grah (1974) (given in Table 3) for sodium ion
pecies. The washing liquor for the washers’ 1, 2 and 3 contains the
issolved solid 7.00%, 2.50%, 0.9% and in the last washer, fresh water

s used which also contains 0.5% dissolved solids. The incoming pulp
rom the digester has the consistency 12%.

In this investigation dimensionless bed depth as well as dimen-
ionless time is divided into 21 equal parts and then the influence
f Z and T on C is estimated. The behavior of exit solute concen-
ration with respect to time as well as variable cake thickness is
hown by (input curve at Z = 0 to break through curves at Z = 1) 3D
raphs. The solution obtained for all washers’ are given in Table 4,
or both the models, respectively. The variations in the dimension-
ess solute concentration with respect to dimensionless time as well
s dimensionless cake thickness are shown in Figs. 3–6 for model
and Figs. 7–10 for model 2 for all four washers’, respectively.

In the present investigation Langmuir type non-linear isotherm
s used to describe the relationship between the concentration of
he solute in the liquor and concentration of the solute on the fibers.
imensionless initial solute concentrations on fiber for all four

ashers’ is obtained are 0.009, 0.002, 0.0002 and 0.00001 (kg/m3),

espectively. The solution of the washing zone models of a rotary
acuum washer is obtained for multistage in counter current man-
er by pdepe solver in MATLAB source code. Peclet number has

able 3
ata for simulation for sodium species.

Parameters Values Unit

L 0.105 m
DL 10.8 × 10−7 m2/s
εt 0.928 –
u 7.33 × 10−4 m/s
C0 0.570 kg/m3

Cs 0.005 kg/m3

A 0.01263 m3/kg
B 3.955 m3/kg
Fig. 3. Solution for washer 1 (Model 1).
Fig. 4. Solution for washer 2 (Model 1).
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Table 4
Dimensionless exit solute concentration in for washer for dimensionless time T = 0 to T = 1.49.

T Model 1 Model 2

Washer no. 1 Washer no. 2 Washer no. 3 Washer no. 4 Washer no. 1 Washer no. 2 Washer no. 3 Washer no. 4

0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3 1.0000 0.9998 0.9997 0.9997 1.0000 0.9998 0.9997 0.9996
0.4 1.0000 0.9964 0.9949 0.9946 1.0000 0.9963 0.9947 0.9944
0.5 0.9991 0.9769 0.9704 0.9695 0.9991 0.9764 0.9696 0.9686
0.6 0.9919 0.9211 0.9067 0.9046 0.9919 0.9297 0.9049 0.9027
0.7 0.9596 0.8195 0.7985 0.7954 0.9594 0.8172 0.7957 0.7925
0.8 0.8708 0.6832 0.6604 0.6568 0.8704 0.6803 0.6569 0.6533
0.9 0.7085 0.5357 0.5153 0.5118 0.7080 0.5327 0.5118 0.5082
1.0 0.4997 0.3990 0.3827 0.3795 0.4993 0.3963 0.3796 0.3762
1.1 0.3039 0.2856 0.2732 0.2702 0.3037 0.2834 0.2706 0.2675
1.2 0.1682 0.1993 0.1892 0.1863 0.1681 0.1976 0.1872 0.1842
1.3 0.0991 0.1377 0.1284 0.1254 0.0990 0.1365 0.1269 0.1239
1.4 – – – 0.0831 – – – 0.0820
1.41 0.0733 0.0925 – – 0.0733 0.0918 – –
1.45 – – 0.0706 – – – 0.0697 –
1.49 – – – 0.0570 – – – 0.0563

Fig. 5. Solution for washer 3 (Model 1).

Fig. 6. Solution for washer 4 (Model 1).

Fig. 7. Solution for washer 1 (Model 2).

Fig. 8. Solution for washer 2 (Model 2).
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Fig. 9. Solution for washer 3 (Model 2).
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Fig. 10. Solution for washer 4 (Model 2).

s 9.69/6.69 = 1.45 and finally for the last washer is 9.14/6.14 = 1.49.
hus the exit dimensionless solute concentration for washer no. 1
nd 2 is taken at T = 1.41 and similarly for third and fourth washers
t T = 1.45 and 1.49, respectively. The exit dimensionless solute con-
entrations for all four washers with respect to dimensionless time
re shown in Table 4, for both the models, respectively. Exit dimen-
ionless solute concentrations for each washers’ are converted into
bsolute concentrations. The exit absolute concentration of previ-
us washer is use to calculate the various parameters like N0, �′, etc.
or the subsequent washer. Based on C vs. T data of previous washer
he Peclet number of subsequent washer is obtained by using algo-
ithm given by Kumar (2002). The Peclet number obtained by this
lgorithm for washers nos. 2, 3 and 4 are 21.94, 19.90 and 19.70 for
odel 1 and 21.93, 19.90 and 19.67 for model 2, respectively.
The washing results for both the models are slightly different at
hree or four decimal places, so it may conclude that the bound-
ry conditions do not influence much on the washing results. It
s clear from figures that the dimensionless concentration of the
olute in the liquor decreases with the increase of the dimensionless
ime, whereas increases with the increase in the dimensionless dis-
cal Engineering 34 (2010) 9–16 15

tance which is same as obtained by earlier workers such as Brenner
(1962), Grah (1975), Kumar (2002) and Arora et al. (2006a).

4. Conclusion

The present investigation is for multistage counter current
washing system based on mathematical models derived for wash-
ing zone of a rotary vacuum washer in paper industry. Langmuir
adsorption isotherm is used to describe the relationship between
the concentration of the solute in the liquor and concentration of
the solute on the fibers. The numerical solution are obtained for four
stages in counter current manner by using “pdepe” solver in MAT-
LAB source code and taking Pe = 71.26 for first washer based on the
simulation data. Peclet numbers for second and subsequent wash-
ers are obtained by using the algorithm given by Kumar (2002). The
following conclusions may be drawn from the present study:

1. Boundary conditions do not influence significantly on the wash-
ing results.

2. Pdepe solver can be used successfully for the solution of multi-
stage pulp washing model.

3. The pdepe solver used in the present investigation is simple,
elegant and convenient for solving two point boundary value
problems with varying range of parameters and show a compa-
rable performance with QUICK method in terms of CPU time and
average numerical errors.

4. The algorithms in this solver are easy to set up, and so the method
represents an advantage and good alternative to the available
techniques for such type problems.
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