
A Multiprogrammed Parallel
Architecture

for Digital Signal Processing

T a o Li, Brent Ne l son
Kelly Flanagan, Christopher Read

Department of Electrical Engineering
Brigham Young University

Provo, Utah 84602

ABSTRACT

A parallel architecture for DSP algorithms is presented
along with a corresponding computation method known as
address-directed computing. This approach overcomes the
large amount of addressing overhead in conventional DSP
programs, especially those coded in high level languages.
The approach used is to decompose a computation into ad-
dress and data streams. The address stream is computed
using a set of n concurrently operating address processors.
An architecture to implement this method is presented as
well as an example of programming it.

INTRODUCTION AND MOTIVATION

Parallel architectures for digital signal processing are re-
ceiving significant attention in the research community and
many general and special purpose architectures have been
proposed [1,2,3,4,5,6,7,8]. Of these, many are parallel in
nature including data flow machines and systolic proces-
sors. Most of the proposed parallel approaches decompose
an algorithm into subtasks according to its natural data
structure (subcomputations).

However, our examination of a number of DSP programs
[9] on conventional processor architectures reveals that less
than 20% of total instructions in a program were for data
processing purposes while more than 80% were used for
address processing. The following contains the results for
a collection of C and FORTRAN programs compiled on a
VAX.

I Program I Data I n s t r . I
_ - - _ - - - - -

I FFT I 21% I
I LPC Analysis I 19% I
I 2D Convolution I 11% I
I Matrix Multiply I 10% I
I Dyna. Time Warp i 17% I
I Gauss Eliminate I 13% I
_ - - - _ _ - - - -

This work, then, is based on the following observations:

Most parallel approaches to DSP computing only con-
sider the data concurrency (an FFT may be broken
into a number of butterflies which can be computed
independently). The success of these approaches is
very dependent on the algorithm chosen for imple-
mentation: many algorithms may have little or no
inherent data concurrency.

* Many programs (especially those using multi-dimension
data arrays) spend the vast majority of their time
computing array offsets when written in high level
languages. To achieve efficiency, software developers
are still writing much code in assembler or as mi-
crocode routines for special purpose machines.

A number of recently announced DSP chips do have
separate address and data computation units. These
are not programmed separately however but are con-
trolled by a wide instruction word. Thus, the compu-
tation is still data-directed.

The possibilities of address-directed computation have
not yet been addressed in the research community.
Specifically, we believe that the address generation
flow has more inherent concurrency available (due to

a lack of dependencies) than does the data computa-
tion flow.

This paper proposes a new approach for exploiting the
parallelism found in signal processing algorithms. In it we
propose a multiprocessor architecture (named PSP for Par-
allel Signal Processor) and a corresponding technique for
programming it (parallel address-directed programming).

T H E PSI? ARCHITECTURAL OVERVIEW

The key point of our approach is to decompose the com-
putation into address and data Computation flows. The
computation is then programmed around the address flow
rather than the conventional data processing flow, hence

the name address-directed computing. The architecture
shown in Fig 1 implements this using a set of concurrently
operating address processors and one or more data driven
data processors.

A typical data operation can be expressed as a tuple:
[opcode, srci , src2, destination]. The operation of the PSP
system can be described as:

one or more address processors compute the operand
addresses and place these values into the appropriate
queues.

along with operand addresses, the address processors
generate the opcode stream which is placed into the
OP queue like any other value.

0 when a complete tuple is present at the head of the
queues, the data processor section fires by retrieving
the operands, performing the indicated computation,
and storing out the result. The actual PSP imple-
mentation may overlap the memory accesses and data
computation to increase throughput.

The address processors and queues are linked by the in-
terconnection network. As a result, during any clock cycle,
any address processor can place an address into any one of
the queues. The OP queue is reserved for opcodes which
are generated by the address processors as well. These pro-
cessors are capable of fixed point arithmetic such as addi-
tion, subtraction, as well as bit operations (rotation, bit
reversal, and masking). They share a common memory
unit for global and temporary variables. Synchronization
between the address processors is realized through these
shared memory locations.

The address processor architecture is shown in Fig 2. It
contains a set of general purpose registers, a permutator,
an adder, and a multiplier. It also includes a program store.
The address processor is a RISC machine which executes
simple data movement instructions, integer arithmetic op-
erations, test and branch instructions, and data permuta-
tions. The destination for any of these instructions can be
either a register or a operand queue.

An important point is that since the data processor and
address processors operate on separate data, the data pro-
cessor chosen for a particular configuration can be either a
fixed or floating point unit. Also, since no data-dependent
branching is allowed in the data processor (it directly ex-
ecutes the tuple stream generated by the address proces-
sors), conditional opcodes are provided so that tuples can
be either ignored or executed based on a status flags regis-
ter.

PROGRAMMING THE PSP

The PSP is currently programmed by hand. The next step
in our research will be the development of a compiler to

take advantage of the architecture. To date our program-
ming of the PSP has entailed first coding the algorithm for
a version of the architecture with a single address proces-
sor and then parallelizing this program for more than one
zddress processor.

As an example of a program fragment for the PSP con-
sider Figure 3. In this example that addresses and opcodes
are placed into the appropriate queues (0-3) by specifying
them as destinations of MOV or arithmetic instructions. In
Figure 3 all the sub-operations for a single data instruction
have been listed on a line. For a single address proces-
sor system these would be executed consecutively to fill
the queues with the appropriate addresses and opcodes. If
a four address processors were desired, the code could be
compiled so that each processor would be dedicated to a
single column in the program. If this were the case, each
of the four processors would be required to have their own
copy of RO and perform the branching. This is because each
address processor indeed executes its own independent pro-
gram.

The program example is the inner loop for a four-tap
FIR filter. Register RO is the loop counter and it is initial-
ized to 3. The input data is stored in memory locations
0-3 while the filter taps are stored in locations 4-7. The
program uses memory locations 777 and 999 as temporary
storage to perform the sum-of-products computation. The
exact computation performed is:

3
memory999 = m e m o r y ; X m e m ~ r y i + ~

but notice that it is computed in backwards order since RO
is decremented from 3 to 0. Although the example was
written to facilitate the use of one or four address pro-
cessors, any number could conceivably be used in a PSP
implementation.

Most of the algorithms programmed to date have used
between one and eight processors. These include: FIR fil-
ter, DFT, FFT, adaptive filter, image neighborhood trans-
form (edge detection, 2d image filtering, etc), dynamic time
warp, and matrix multiplication. Processor utilization of
the single floating point data processor ranged from 89%
to 65% using four address processors. If the address pro-
cessors, due to their simplicity, executed faster than the
data processor then it would not be unreasonable to expect
100% data processor utilization for many sections of code.

CODE OPTIMIZATION

i=O

A number of code optimization techniques have been used
in our programming practice. These include:

1. Variable distribution: variables such as loop counters,
loop limits, and program constants are distributed to
each address processor. This makes it unnecessary
for them to communicate and synchronize using the
shared address memory.

1391

2. Instruction relocation: instructions in the original code
which are not data dependent may be reordered and
distributed between the address processors.

3. Serial loop unwrapping: a loop body is replicated n
times. Instances of the loop variable in the loop body
are replaced by constants. Each processor then exe-
cutes a portion of each instruction in the replicated
loop.

4. Parallel loop unwrapping: a loop body is replicated n
times but each address processor executes one com-
plete copy of the loop body.

The loop unwrapping techniques range from partial to com-
plete unwrapping. That is, a loop of length L = 16 can be
unwrapped to give 16 serial copies, removing any need for
loop variables and branch instructions. On the other hand,
it could be unwrapped into 4 copies (executed 4 times each),
increasing the throughput.

SUMMARY, STATUS, AND FUTURE
RESEARCH

An architecture was presented for parallel digital signal pro-
cessing. Our work on programming this architecture has
shown that it gives much higher data processor utilization
than conventional architectures. The parallelism which this
architecture exploits is in the address computation stream
rather than the data computation stream.

An assembler and RTL simulator for the PSP archi-
tecture are currently being used for research on address-
directed programming methods. In addition, we have begun
the chip-level design of the PSP system.

We are now also investigating algorithms and transfor-
mations for parallelizing and optimizing PSP code. In ad-
dition, we are looking at methods for determining the op-
timal number of address processors for a particular task.
Our next step is to develop an optimizing compiler for PSP
which will take advantage of the multiple address proces-
sors.

REFERENCES

1. L. Hartima, K. Kronlof, 0. Simula, and J. Skytha,
"DFSP: A Data Flow Signal Processor", IEEE Trans-
actions on Computers, Jan. 1986.

2 . K. Hwang and P.S. Tseng, "An Efficient VLSI Multi-
processor for Signal/Image Processing", Proceedings
of IEEE ICCD '85, Oct. 1985, p 172.

3. F. J. van Wijk, et al, "On the IC Architecture and
Design of 2um CMOS 8 MIPS Digital Signal Pro-
cessor with Parallel Processing Capability: The PCB
5010/5011", ICASSP 86 Proceedings, Apr. 1986, p
385.

4. T. Nishitani, et al, "Advanced Single-Chip Signal Pro-
cessor", ICASSP 86 Proceedings, Apr. 1986, p 409.

5. J. R. Boddie, W. P. Hays, and J. Tow, "The Archi-
tecture, Instruction Set and Development Support for
the WE DSP32 DIgital Signal Processor", ICASSP 86
Proceedings, Apr. 1986, p 421.

6. H. T. Kung, "Systolic Algorithms for the CMU Warp
Processor", Proceedings of the Seventh International
Conference on Pattern Recognition, International As-
sociation for Pattern Recognition, 1984, pp. 570-577.

7. S. Y. Kung, H. J. Whitehouse, and T. Kailath (edi-
tors), VLSI and Modern Signal Processing, Prentice-
Hall, 1985.

8. D. Mundie and D. Fisher, "Parallel Processing in
Ada", Computer, Aug. 1986, p 20.

9. "Programs for Digital Signal Processing", edited by
the Digital Signal Processing Committee, IEEE Acous-
tics, Speech, and Signal Processing Society, IEEE
Press, 1979.

10. D. Kuck, The Structure of Computers and Computa-
tion, John Wiley & Sons, New York, 1979.

1392

BUS A I

Shared
Memory

/
/ f f -

Address &
Op Queues

Figure 1: PSP Architecture

...

I PERMUTATOR 1 I MULTIPLIER I I ADDER 1 1
Program To interconnect

*
CONTROLLER ’

network Memory

Figure 2: Address Processor Architecture

MOV 3 RO #Initialize l oop counter

MOV FMUL QO MOV RO Q l ADD 4 RO 42 MOV 777 43
MOV FADD QO MOV 777 Ql MOV 999 42 MOV 999 43

DLN LOOP RO #Decr RO, loop until negative

LABEL LOOP

Figure 3: PSP Code Example

1393

