
2006 IEEE 24th Convention of Electrical and Electronics Engineers in Israel

Parallel Processing for a DSP Application using

FPGA

Nonel Thirer, Member, IEEE, and Aviram Souhami

Abstract - In this paper we discuss a parallel architecture for
an FPGA system including several embedded simple micro-
processors (pP), for a digital signal processing application (DSP).
Each tP in the system has a different purpose and a separate code
unit, but all the jPs share the same data unit. The architecture of
the tP can vary in type - it may be designed in the traditional
form of a pP, or as a FIR filter, a video pattern generator and so
on. Such systems can constitute a good solution when the DSP's
main process can be divided into several processes. Every RP can
be reprogrammed to perform more than one function, and a
superscalar operation mode can be introduced and controlled by
the programmer. This type of platform was designed and
experimented for an audio synthesizer system.

Index Terms - Audio synthesizer, FPGA, multi-processor,
parallel processing.

I. INTRODUCTION

M ost DSP algorithms require complex tools and a massive
amount of instructions. Often it is necessary to perform

these algorithms in real time. The solution to that was to build
an embedded system on a chip, which includes special digital
hardware and a micro-controller or a micro-processor for
better performance. In recent years, the FPGAIASIC based
systems drew a lot of attention, particularly with the
introduction of the fast CMOS reprogrammable logic devices
[1]-[4]. These allowed to manufacture FPGA based DSP
devices with reprogrammable multi-processors.

II. SYSTEM ARCHITECTURE

An audio synthesizer system (fig. 1) includes a user
interface, an input block (including the data acquisition unit
with one or more A/D converters), a DSP processing block
and an output unit (including D/A converter and speaker).

During the synthesizing process, performed by the DSP block,
the signal passes usually over three processing units (fig.2):

VCO (Voltage Controlled Oscillator), VCF (Voltage
Controlled Filter) and VCA (Voltage Controlled Amplifier).

..

IDalta Processing

Fig. 1 Audio Synthesizer System Block Diagram

Fig.2 Processing System Blocks

In order to simplify the implementation of this system on an
FPGA platform and in order to permit a parallel execution of
some phases, it is necessary to identify the common resources
used in the process [5]. In the audio synthesizers, three basic
functional units (fig.3) are used: an FM oscillator, a Filter and
an Amplitude Modulator (AM-DSB-TC)

in_FM i. [16Bit] OSC_OUT_ou
Depth [8Dit [16Bit]

in-_ freq [161itl
in _ Wave [8Bilt

FM-Oscilator

Filter
Imn .jf[16 bit] . .filter_out[16 bit] out

.k[8 bit]

AM-DSB-TC

__Depthn [8Bit] AMbit _ ou
~~~~~~~~16Bt

r C ier [16Bit]
in_ LFO [l6Bitl

Fig.3 Basic Functional Units.

The idea is that every processing unit from fig.2 can be
implemented by using the basic functional units from fig. 3.
Thus the VCO stage is implemented using three FM oscillators
(fig.4), the VCF stage is implemented using two FM
oscillators, two AM Modulators and a Filter (fig.5), the VCA
stage is implemented using a FM oscillator and a AM
Modulator (fig.6).

N. Thirer is with the Holon Institute of Technology, 58102 Holon, Israel
(e-mail: Tirer_n@ hit.ac.il)

A.Souhami, is with Runcom Technologies, Rishon le Zion, Israel.
(e-mail: aviram2k@gmail. com).

1-4244-0230-1/06/$20.00 )2006 IEEE 389



FM-Oscilator FM-Oscilator FM-Oscilator
[16 OSC_OUT O[16 OscAOrcT

in-DepE [SBitl [16Bi iN Deti [8Bit [16Bit ll DepE [8Bitl [16BW| It VCF

i_ ,e [16BU &iie [16Bitl &, Eq [B~i]
i _ Wave [8Bit| Wave [8Bit l m ~~~~~~~Wave[8BiN |

Fig.5 VCO Architecture

The main controller is responsible to data acquisition (reading
samples from the A/D converter), data output to speaker (via
D/A converter) and the "coordination" of the microprocessors'
work. For this, the main controller unit loads one (or more)
gPs with the data it needs for proper operation and enables the
gPs to start their operation. The controller will wait until the
gP finishes its process. Then it will collect the results and will
configure again the same gP and/or others gPs.
Using only three types of gPs it is possible to perform all the
required functions of the DSP's processing. Using identical
gPs (by implementing all the functions in every gP) working in
parallel makes it possible to improve performance in the VCF
phase. Moreover, in our platform, a VCO phase of a new input
data can be processing in parallel with the VCA phase of the
last input data, increasing the throughput of the system, due to
the pipelining operation of the system [5].

Fig.5 VCF Architecture

AM-DSB-TC

Fig.6 VCA Architecture

III. AN FPGA IMPLEMENTATION OF THE DSP BLOCK

The platform, as shown in figure 7, contains three
software defined gPs with code segment on ROM device and a
controller unit witch contains a small RAM memory. Every gP
is programmed to perform one or every one of the DSP's base

Controller Unit
[1 bit]
et [1 bit]

ple_ln [16bit]
vert_start [1 bit]
,_busy [1 bit]

Pl_En [lbit]
P1_Data RDY [1 bit]

P1_collected_data [lbit]
P1_Data_Bus [16 bit]

Sample_Out [16bit]
Load_DAC [lbitJ
WR DAC [1 bitJ P2_En [1 bit]P2 Data ROY [lbit)

P2_collected data [lbit]
Data P2_Data_Bus [16 bit]

Segment

P1_Data in [16 bit]
Pl_busy [lbit]
P2_Data_in [16 bit] P3_En [lbit]
P2_busy [lbit] P3_Data_RDY [lbit]

P3 collected data 1 bit]
P3_Data_in [16 bit] P3 Data Bus [16 bit]
P3_busy [1 bit]

PP I

CLK [1bit] data_out[16bit]
Reset[l bit] busy [1 bit]
En [1 bit]
data_ready [lbit]
data_colected [1 bit] Code
data_in [16 bit] Segment

pP 2

CLK [1bit] data-out [16bit]
Reset[l bit] busy [1 bit]
En [1 bit]
data ready [1 bit]
data_colected [1 bit] Code
data_in [16 bitJ Segment_

pP 3

CLK [1bitJ data-out [16bit]
Reset]l bit] busy 1 bit]
En [1 bit]
data ready [1 bit]

4 data_colected [1 bit] Code
data_in [16 bitJ Segment_

I11'll
Fig.7 A FPGA Implementation of the DSP Processing Block

Ii-

IV. DSP MICROPROCESSOR UNITS

In order to perform the specific DSP functions (oscillator,
filter and amplitude modulator), the microprocessors were
programmed as RISC (reduced instruction set computer)
processors.

The algorithm of every gP is:
* Read data (including the function to be executed)

from the controller unit and store it in registers or in a
small memory.

* Wait for a synchronous event to start data processing.
* Start the process execution and generate a "Busy"

signal.
* Complete the process execution, deactivate the

"Busy" signal and write the result to the output
register.

To communicate with the controller, the gP uses "data-in"
and "data-out" ports and "data-ready" and "data-collected"
control signals (fig.9), in a two wires handshake protocol. In
this manner, the controller informs the microprocessor that
new data is available (data_ready='1'). The gP reads the data
from the bus and answers to the controller that the data was
collected (data_collected='1'). Then the controller finishes the
communication by sending data_ready='O' and the gP finishes
the communication by sending data_collected='O'.

PlData Bus data-in

P1 Data RDY idata ready

Pl collected data i data collected

data ready i
ai

end

communic ation

cknow1ege

n

pP read data

Fig.8 Communication Timing

390

nis.

CLK
Rese

Sam
conv
ADC_

functior

c_I

AID

DIA 4.-



V. THE CONTROLLER UNIT

The Controller Unit (CU) is the heart of the system. This
module is used to transfer data between the memory, the DSP
gP and the I/O modules, as well as to control each of the
DSP's gPs module activity.
The CU module performs none of the DSP's operations, and

this module behaves like a microcontroller without an
arithmetical and logic unit (ALU). The DSP processors are the
ALU of this module, but a generic ALU can be planted if
needed.
The CU includes a "code ROM", which operates as a "code

memory", and a state machine, that decodes the data from this
memory (fig.9).
The module performs the following principal tasks:

* Moving data from memory to a specific DSP module
or I/O and enabling it.

* Moving data from a specific DSP module to memory.
* Waiting for an event in "interrupt" ports which

connects to the finish ports of the DSP modules.
* Enabling a specific DSP module or resetting it.
* Stopping and waiting for "new sample" events (start

reading ROM from the beginning).
A reduced instruction set was implemented in order to

simplify this module as much as possible. A better instruction
set, including, for example, "call" and "jump" operations, can
be added if the code that is used to control the system has
specific subroutines or complex instructions that are repeated.
In this manner we will need more logic elements, but a less
ROM capacity and a smaller memory interface will be
necessary.

The control unit includes two main processes (the
"DECODE" process and the "READ" process) and a ROM
which contains the instruction code. Every process is
implemented as a state machine.
The "Decode" process includes three states:

* Idle state: the process waits for an event in the port
"new sample", connected to the sample clock, which
sends a pulse when a new sample is produced.

* Decoding state: after an event of new-sample has
occurred, the machine starts decoding the data
coming from the ROM data bus. The machine knows
that the data in the port is ready when "data ready" =
'1'.

* Waiting state: the machine waits to a specific
hardware event to rise to '1'. This mode is useful
when we want to collect one of the modules output
data.

The "Read" process also includes three states:
* Reading state: in this mode the machine increases the

address counter every clock.
* Restart state: the machine enters to this state when

wait4enable='1' and resets the address counter. When
wait4enable='O' the machine goes to reading state.

* Rewind state: when wait4event=' 1' then address
counter is decreased by 2. The Decode process is now
waiting for a hardware event and didn't fetch the last
two addresses, so by decreasing the counter we can
be sure that the instruction will be made in the right
order.

These processes work in pipeline mode, increasing the
system's performance.

Fig.9 Controller Unit Architecture

VI. FPGA IMPLEMENTATION

The architecture of this system and the algorithms for the
controller, for the microprocessors and for the communication
between controller and microprocessors, were implemented
and successfully tested using an ALTERA NIOS STRATIX
development Kit and 10 bits parallel A/D and D/A converters
(fig. 0). To interface with the A/D and D/A converters, special
controllers were implemented (A/D Ctrl, D/A Ctrl). Also, a

dual port RAM was implemented to store the input data.

391

ROM addres

Data
ready

Wait4event

Wait4enabIe

Data
Control bus

-, Hem add. Bus
I/O add. Bus

NTewTsample TT T
Hardware events.

These ports connected to the "Finish" ports in the DSP modules.

I



Fig. 10 System Architecture

VII. CONCLUSION

Our DSP algorithm for the synthesizer system is composed
of three separate processes. In some cases, two or three
processes will work in parallel to improve performance.

The Controller and the DSP microprocessors are
programmed as RISC processors, to simplify the FPGA
platform.
The parallel processing of data is provided by the

architecture of our platform and the pipeline execution of
controller unit processes and of the DSP modules.

REFERENCES
[1] B. V. Herzen, "Signal Processing at 250MHz using High-Performance

FPGAs" ACM International Symposium on FPGAs, 1997, pp. 62-68.
[2] T.S. Hall, D.V. Anderson, "A Framework for Teaching Real-Time

Digital Signal Processing with Field-Programmable Gate Arrays", IEEE
Trans. On Education, vol.48, 3, 2005, pp 551-558,

[3] Z.A.Zamindar, "Signal Processing Capability with the NuHorizons
Spartan-3 Development Board" ,Xcell journal, 52,2005,pp.28-30

[4] M. Pradhan, "Simplified Micro-controller & FPGA Platform for DSP
Applications", Proceedings of the 2005 IEEE Int'l Conf. on
Microelectronic Systems Education (MSE'05), vol IV, pp 544-549.

[5] N. Thirer, I. David, I.Baal Zedaka, Uzi Efron, "Improvement of FPGA
Pipelines Implementation" SPIE Conf. "Optical Engineering and
Instrumentation" San Diego, CA, USA,13-17 aug.2006, paper 6294-37.

392


