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Abstract 
The present paper investigates informational efficiency and changes in conditional volatility of 
the TSX before and after the implementation of an automated trading system on April 23, 1997. 
Using a battery of unit root, stationarity, as well as linear tests, we find that the introduction of 
electronic trading led to an increase in linearity dependence in TSX daily returns. In addition, 
when we examined the nonlinearity dependences using powerful econometric tests, we find that 
electronic trading has increased nonlinear dependencies in return series, which is the main cause 
of rejecting the Random Walk Hypothesis (RWH). Our results suggest that the automated trading 
system has negatively affected informational efficiency of the TSX. We also find evidence of 
long memory following automation which suggests that the introduction of electronic trading has 
increased the level of persistence of information and trading shocks. 
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1. Introduction 
Operating in increasingly competitive global environments, stock markets have undergone 
several major changes in their market-microstructures aimed at enhancing trade transparency and 
efficiency. This race for higher market quality was fuelled by the spectacular advances in 
information technology over the last few decades. One of the major features of this worldwide 
stock-market restructuring is the replacement of floor trading systems by electronic trading 
systems. The implementation of electronic trading by major stock market exchanges has 
generated great debate among both practitioners and academicians on the advantages and 
disadvantages of adopting such systems. Opponents of electronic trading argue that it leads to 
lower market liquidity and increases transaction cost (see, for instance, Grossman and Miller, 
1986; Miller, 1991). Advocates of electronic trading systems argue that it leads to lower bid-ask 
spread and higher volume transactions than floor trading systems (Blennerhasset and Brown, 
1998; Frino, McInish and Toner, 1998, among others). 
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The present paper aims to investigate informational efficiency and changes in conditional 
volatility of the Toronto Stock Exchange (TSX) before and after the implementation of an 
automated trading system. Created on October 25, 1861, the TSX has gradually shifted its 
trading system from floor to automated trading system. In 1977 the TSX introduced the world’s 
first computer-assisted trading system (CATS) to quote less liquid equities, but continued to use 
a floor trading system until April 23, 1997 when it became the second-largest fully automated 
stock exchange in North America, after the NYSE. 
 
Several factors argue for such study. First, to the best of our knowledge, this study is the first to 
examine simultaneously the information efficiency and conditional volatility of the TSX before 
and after April 23, 1997. Previous studies focuses on the information efficiency of the TSX 
without taking into consideration the effect of the implementation of an automated trading 
system. For example, Alexeev and Tapon (2011) test the weak form efficiency using all security 
traded on Toronto Stock Exchange from 1980 to 2010. Although, they do not focus on the 
sample period prior and post implementation of the electronic trading system, they fail to reject 
the null hypothesis of weak form efficiency on the TSX. Second, most of the analyses are based 
on U.S. data, and Canadian studies are almost nonexistent (Domowitz, 1990, 1993; Beelders and 
Massey, 2002; Fung et al., 2005; Alexeev and Tapon, 2011). Finally, we examine trends in the 
daily returns series based on serial correlation and nonlinear dynamics before and after 
automation. 
 
The importance of examining nonlinear dynamics in financial time series is better appreciated 
through its implications for the field of finance at the theoretical and empirical levels. Indeed, 
Evidence of nonlinear dependence has very important implications for academicians and for 
practitioners. For academicians, the existence of nonlinearity in financial series casts serious 
doubt on the adequacy of statistical models of asset pricing that implicitly take a linear form, as 
well as empirical tests of the weak-form market efficiency, tests of causality, tests of stationarity 
and tests of co-integration. For practitioners, evidence of nonlinear dependency directly affects 
the widely debated issue of predictability of financial time series, which has been examined 
mainly through a linear approach. Moreover, nonlinear models have important implications for 
portfolio management techniques, hedging and pricing of derivatives (such as volatility index), 
and allow for superior out-of-sample forecasts of financial series. 
 
The remainder of the paper is organized as follows: Section 2 outlines our research methodology; 
Section 3 describes our data set; Section 4 discusses the empirical findings and section 5 
concludes the paper. 
 
2. Theory and Research Methodology 
2.1. Random Walk Hypothesis 
Fama (1970) argues that efficient stock market prices fully reflect all available and relevant 
information, meaning an absence of excess-profit opportunities. Share price changes are 
therefore independent and fluctuate only in response to the random flow of news. Trading 
strategies based on past and current information are useless in generating excess-profit 
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opportunities.1 This implies a random walk market, where a random walk model best describes 
stock prices. According to Campbell, Lo and MacKinlay (1990), there are three different 
versions of the random walk model: Random Walk I, Random Walk II, and Random Walk III. 
The Random Walk I or strict white noise process requires sequences of price changes to be 
independent and identically distributed. If we assume sequences of price changes to be 
independent and drop the identically distributed assumption, we get the version of Random Walk 
II. Finally, the Random Walk III or white noise process is obtained by relaxing the independent 
and the identically distributed assumption.2 
Harvey (1993) argues that non-linear models may have the white noise property although they 
are dependent and identically distributed. Given the growing theoretical and empirical studies 
showing that share price changes are inherently non-linear, evidence of uncorrelated share price 
changes are not sufficient conditions for a market to be efficient. Therefore, we examine the 
assumption of i.i.d share price changes, which is the most restrictive version of the random walk 
hypothesis, but most appropriate to test the efficient market hypothesis. Let Pt be the level of the 
TSX index at time t, and define ( )t tP Ln P≡  as a stochastic process given by the recursive 

relation:3 
 

1t t tp pµ ω−= + + (1) 

 
The continuously compounded return for the period t-1 to t is expressed as 
 

t t tr p µ ω≡ ∆ = + (2) 

 
where µ is the expected price change or drift and tω  are represents the residuals. 

Equation (1) describes the random walk model with a drift. Under the random walk hypothesis, 
the drift should be insignificantly different from zero, the distribution of returns should be 

stationary over time ( )( )~ 0tr I , and the residuals should be i.i.d random variables or, in other 

words, a strict white noise. We estimate Equation (2) with ordinary least squares and test the 
statistical significance of the drift µ. 

                                                 
1 Samuelson (1965) also shows that share prices, in an efficient stock market, fluctuate randomly and only 

in response to the arrival of new information.  

2A white noise process is a sequence of uncorrelated random variables with constant mean and variance:  

for any s ≠ 0 E(єt єt-s) = 0, and for s = 0, E(єt) =0, and E(єt єs) = σ2
t 

3 We use the natural logarithm of prices in order to make the process generating the times series to be 

independent of the actual price levels. Furthermore, pt has favorable econometric properties in comparison 

to Pt (see Campbell, Lo and MacKinlay, 1997).  
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To examine the stationarity assumption; we employ the unit root tests advocated by Carrioni-
Silvestre, Kim and Perron (2009). By allowing for multiple structural breaks, Carrioni-Silvestre 
et al’s procedure extends the unit tests of Elliott, Rothenberg, and Stock (1996) and Ng and 
Perron (2001) used in other studies such as by Al Janabi, Hatemi-J and Irandoust (2010). We 
employ Carrioni-Silvestre et al’s test with three structural breaks and provide three test statistics 
(MZα, MSB, MZt) to test the null of a unit root against the alternative of trend stationarity. 
We note however that testing for linear serial independence of price changes is neither a 
necessary nor a sufficient condition to accept or reject the random walk hypothesis. If the index 
returns (either before or after automation) turn out to be serially correlated, this should not 
necessarily imply that the Canadian stock market is inefficient. Spurious autocorrelation may 
exist due to institutional factors such as non-synchronous trading which may induce price-
adjustment delays into the trading process (Lo and Mackinlay, 1990).4 As a non-synchronous 
trading autocorrelation effect is relatively short-timed, we should expect autocorrelation to be 
persistent in daily index returns series. If price changes turn out to be statistically uncorrelated, it 
would not necessarily imply efficiency. Market-index returns can be linearly uncorrelated but at 
the same time non-linearly dependent. Hence, we will analyse the impact of automation on 
market efficiency by analysing stionarity, linearity and nonlinearity before and after the date of 
the implementation of electronic trading. 
 
2.2. Testing for Non-linearity and Uncovering its Source 
The theory and empirical evidence of non-linearity in share price changes suggest that the i.i.d 
assumption is a necessity for an appropriate examination of efficiency market hypothesis. Hence, 
statistical techniques capable of detecting linearity as well as non-linearity in share price changes 
need to be used. To test whether the share price changes are i.i.d we use a powerful test 
originally proposed by Brock, Dechert and Scheinkman (1987) (henceforth BDS) and designed 
by Brock et al (1996). The BDS test is a non-parametric test with the null hypothesis that the 
series in question are i.i.d against an unspecified alternative. The test is based on the concept of 
correlation integral, a measure of spatial correlation in n-dimensional space originally developed 
by Grassberger and Procaccia (1983). In general, a rejection of the null hypothesis is consistent 
with some type of dependence in the returns that could result from a linear stochastic process, 
non-stationarity, a non-linear stochastic process, or a non-linear deterministic system.5 
According to Hsieh (1991), linear dependence can be ruled out by prior fitting of Akaike 
Information Criterion (AIC)-minimizing autoregressive moving average (ARMA) model. In 
addition, since we are using daily data over a relatively short time period, is it safe to argue that 
for an economically and politically stable country such as Canada, non-stationarity is unlikely to 

                                                 
4 See Campbell, Grossman and Wang (1993) for a modeling of autocorrelations in index and stock 

returns. 

 
5 The Simulation studies of Brock, Hsieh and LeBaron (1991) show that the BDS test has power against a 

variety of linear and non-linear processes, including for example GARCH and EGARCH processes. 
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be the cause of non-linearity; a hypothesis that will be tested using unit root tests.6 Therefore, a 
rejection of the i.i.d assumption using filtered data can be the result of a non-linear stochastic 
process or a non-linear deterministic system. However, the BDS test is neither able to distinguish 
between stochastic and deterministic non-linearity nor can it discriminate between additive and 
multiplicative stochastic dependence. We are therefore concerned with a stochastic explanation 
of returns behaviour before and after automation, the latter issue mattering in this case. To 
determine the source of non-linearity in the returns series we use Hsieh's test. 
As stated earlier, in order to choose an appropriate non-linear model describing the returns series, 
it is crucial to know the source of non-linearity in the data. Non-linearity can enter through the 
mean of a return generating process (additive dependence) as in the case of a threshold 
autoregressive model, or through the variance (multiplicative dependence), as in the case ARCH 
model proposed by Engle (1982). Non-linearity can be both additive and multiplicative as in the 
case of GARCH-M model. 
2.3. Modeling Conditional Heteroscedasticity 
Although the Hsieh Test provides us with the type of non-linearity underlying the data series, it 
does not tell us what model to choose for the returns generating process. Still, the results of the 
third-moment test provide the first step towards finding the best non-linear model to fit the data. 
If the source of non-linearity turns out to be the variance (a multiplicative dependence) then we 
should look into ARCH models. Engle (1982) was first to introduce these models, which are now 
very widely used in financial time series modeling. For example the generalized ARCH 
(GARCH) models, designed by Bollerslev (1986), are very successful in describing certain 
properties of high frequency financial time series such as excess kurtosis and volatility 
clustering. Assuming that the returns process is expressed as an autoregressive process of order 
k: 
 

0
1

k

t i t i t
i

r rβ β ω−
=

= + + (3) 

 
Conditional on information set up to time t-1, tω is an i.i.d random variable with mean 0 and 

variance 2
tσ , a GARCH(p,q) model. It is noteworthy that the GARCH (p,q) model is a 

symmetric variance process, in that the sign of the disturbance is ignored. Several empirical 
studies show that a GARCH(1,1) model expressed as: 
 

2 2 2
1 1 1t t tσ η λ ω θ σ −= + + (4) 

 
provides a parsimonious fit for share price changes series (see, for instance, Baillie and 
Bollerslev ,1989). Similar to the GARCH process, the FIGARCH model of Baillie et al (1996) 
does not allow for the “leverage effect”, which is also known as a volatility asymmetry. 
Discovered by Black (1976), “leverage effect” means that volatility tends to rise in response to 

                                                 
6 Non-stationarity is assumed to be mainly the result of structural change, such as policy changes, 

technological and financial innovation.  
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lower than expected returns and to fall in response to higher than expected returns. Several 
researchers have found empirical evidence of such asymmetry in stock returns behaviour 
(Nelson, 1992; Glosten, Jagannathan and Runke, 1993). Hence, we also use the FIEGARCH of 
Bollersev and Mikkelsen (1996).7 The superiority of FIEGARCH model, in comparison to 
GARCH, comes from its flexibility. In fact, other than modeling volatility clustering and excess 
kurtosis, FIEGARCH process is capable of describing high volatility persistence, long memory 
in the conditional variance, as well as leverage effect, which are common features that stock 
market indices are likely to exhibit. 
Now let us go back to the implications of Hsieh’s test. If the result from the third-moment test 
shows that the non-linearity dependence is additive then a GARCH-in-mean (GARCH-M) model 
of Engle et al. (1987), would better describe returns series. The particularity of GARCH-M 
model is that it accounts for risk premium effect by introducing a volatility term into the return 
equation: 
 

2
0

1

k

t i t i t t
i

r rβ β δσ ω−
=

= + + + (5) 

 
That is, GARCH-M measures the relationship between risk and returns. An insignificant δ 
implies that risk does not affect the returns process. Once we select the model that best fits the 
data, we test for any ARCH effects using the Lagrange Multiplier test (LM) proposed by Engel 
(1982).8 If the null hypothesis that the disturbance lacks ARCH effect is accepted, then we 
employ the BDS test to the standardized residuals of the model to see whether all the non-
linearity is accounted for.9 
3. Data and Descriptive Statistics 
Empirical research in non-linear dynamics needs large sample sets. Working with ultra-high 
frequency data or choosing a long time interval or both, can solve this. However, as noted by 
Hiesh (1991), ultra-high frequency data captures some artificial dependencies, which are caused 
by market microstructure and are detected easily by the BDS test. On the other hand, long time 
interval data series can be non-stationary. To handle this problem, we use the daily closing price 
of the Toronto Stock Exchange Index, TSX, from April 23, 1994 to April 23, 2000. That is 3 
years before the automation date (i.e. April 23, 1997) and 3 years after, with a total of 1,512 

                                                 
7 Bollerslev and Mikkelsen (1996) argue that FIEGARCH is stationary when the integration parameter is 

between 0 and 1. 

8 It is important to mention that to the extent that any non-normality is attributable mainly to excess 

kurtosis, we expect deviation from normality of returns to diminish when ARCH effects are accounted 

for.  

 
9 Brock (1987) proves that BDS test provides the same results whether employed to residuals or raw data 

in linear models.   
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observations. The data is obtained from the CFMRC database. Market index prices are 
transformed to daily returns ( )1100 lnt t tr P P−= ⋅ , where Pt and Pt-1 are prices at date t and t-1 

respectively. 
 
Fig. 1 
 
Table 1 below provides descriptive statistics of index returns for the whole sample, before and 
after automation. Figs 2 and 3 present the graphs of the log daily market index, the ACF and 
partial ACF as well as the QQ plot for each sub-sample.10 The distribution of daily returns is 
negatively skewed before and after automation. The null hypothesis of skewness coefficient 
conforming to the normal distribution value of zero is rejected at 1% level. In addition, the null 
hypothesis of kurtosis coefficient conforming to the normal distribution value of three is rejected 
at 5% level. The daily returns are thus not normally distributed before and after automation, a 
conclusion confirmed by the QQ plots. We can also see that large price changes tend to follow 
large changes, and small changes tend to follow small changes. The volatility clustering seems to 
be more apparent after automation. Further analysis is needed to investigate this pattern in daily 
returns and volatility clustering following automation. 
 
4. Empirical Results 
4.1. Testing for Normality, Stationarity and Linear Dependence 
Table 2 below reports the OLS estimate of the constant (or drift) by estimating Equation (2), 
along with a JB test statistic. The results suggest that the mean of the return series before 
automation is significantly different from zero, which is inconsistent with the random walk 
hypothesis. After automation, however, the intercept is insignificantly different from zero. Note 
that JB test statistic for both series supports the same conclusion as with the descriptive statistic 
in Table 1, indicating a departure from normality in return series. 
As mentioned earlier, under the random walk hypothesis, the distribution of returns should be 
stationary over time. Furthermore, since structural changes can cause a rejection of the i.i.d 
process, it is important to explore the possible non-stationarity before and after automation to see 
whether we have chosen the right sample interval. To examine the stationarity assumption, we 
employ Carrioni-Silvestre, Kim and Perron (2009) unit root tests with three structural breaks. 
Table 3 presents the outcomes of unit root tests where we provide three test statistics (MZα, 
MSB, MZt) to test the null of a unit root against the alternative of trend stationarity. Our unit root 
test results suggest that the series before and after automation are stationary, at 1% level of 
significance. 
Although these results are consistent with the random walk hypothesis, we cannot decide on the 
latter until we explore the dependence structure of the returns series.11 To examine the linear 

                                                 
10 The QQ-plot is a scatter plot of the standardized empirical of data series against the quantiles of a 

standard normal random variable. 

 
11 The reason is simple; unit root tests are not tests for predictability. They are designed just to investigate 

whether a series is difference-stationary or trend stationary. 
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dependence of the returns series, we use the modified Q-statistic of Ljung and Box (1978). The 
results of Q-statistic up to lag 40 (not tabulated here) suggest the existence of significant serial 
autocorrelation at several lags. As mentioned earlier, evidence of a temporal linear relationship 
can be spurious; therefore, independence assumption should not be ruled out without an 
extensive examination of the underlying linear as well as non-linear dependencies. 
 
To test for the i.i.d assumption before and after automation we employ the BDS test. Table 4 and 
5 below reports the BDS statistic for embedding dimension 2 to 8 and for epsilon values starting 
from 0.5 to 2 times the standard deviation of the returns series before and after automation, 
respectively. The results for both sub-samples strongly reject the null hypothesis of 
independently and identically distributed index price changes at 1% significance. However, we 
note a higher level of nonlinearity following the implementation of electronic trading. Now that 
we reject the Random Walk I, we focus on uncovering the structure of dependency in the returns 
series. Since the BDS test has a good power against linear as well as non-linear systems, we use a 
filter to remove the serial dependence in the return series and the resulting residuals series are re–
tested for possible non-linear hidden structures. We use an autoregressive AR(k) model to take 
out all the linearity in each series. The identification of the AR(k) is based on the lowest AIC. 
Fig. 3 below shows a plot of Akaike’s criterion for each sub-sample. Both start indexing at 1, but 
the first element of the AIC component is for order 0. Note that the minimum AIC is at 1 for sub-
sample before automation, suggesting an autoregressive model of order 1 to fit the returns series. 
However, the AIC criterion suggests introducing 15 lags to capture the serial correlation after 
automation (Fig. 4). 
To confirm the presence of non-linear dependence, we applied the BDS test to the residuals of 
the whitened series. Although lower than those of Tables 4 and 5, the BDS statistics displayed in 
Table 6 and 7 strongly reject the i.i.d assumption, which gives a clear indication of the existence 
of non-linear dependencies in returns series of both period. The squared residuals measures the 
second moments of the series and therefore, significant autocorrelations are evidence of time 
varying conditional heteroskedasticity in the residuals of the AR(1) and AR(15). It is noteworthy 
however, that evidence of non-linear dependence is stronger in the period after automation. 
Since we can rule out the non-stationarity and linearity as causes of the rejection of the i.i.d 
assumption, we can say that the inherent non-linearity in both sub-samples is either stochastic or 
deterministic. The results from Lyapunov exponents tests and Kolmogorov-Sinai entropy tests 
tests (not tabulated here), strongly reject the hypothesis that chaos is the cause of non-linearity in 
each sub-period, which suggest that the rejection of the i.i.d assumption is due to non-linear 
dependency. 
 
4.2. Uncovering the Source of Nonlinearity and Modeling it 
Although the results from the BDS test strongly support the existence of inherent non-linearity, it 
does not tell us whether it enters through the mean or variance of the returns series. To uncover 
the source of non-linear behaviour, we calculate the third-order moment test statistics of Hsieh 
(1991). All the values of the approximately normally distributed Hsieh test statistic (not tabulated 
here) are significant, implying a rejection of the null hypothesis of multiplicative dependence in 
both sub-samples. Therefore, a GACRH-M model is most likely to succeed in describing the 
return generating process than a GACRH model for both sub-samples. 

 

 

 



Page 9 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

 9

Given the results of Hsieh’s test, for each sub-sample, we have examined several GARCH-M 
(p,q) models.12 Using the AIC and BIC as tools for model selection, it turns out that a AR(1)-
GARCH-M (1,1) is the best model to fit the data before automation and a AR(15)-GARCH-M 
(1,1) for returns series after automation. Table 8 reports the estimation results of both GARCH-
M(1,1) processes under the assumption that the innovations follow a student distribution. The 
coefficients of the conditional variance equation, 1λ and 1θ , are significant at 1% level implying 
a strong support for the ARCH and GARCH effects in both periods. However the ARCH and 
GARCH effect seems to be more persistent for the period after automation, which is consistent 
with our prior analysis. 
It is noteworthy that coefficient of arch-in-mean measures the inter-temporal relationship 
between expected return and conditional volatility in a series. The results from Table 8 suggest 
that, before automation, the conditional volatility is weakly priced in the Canadian stock market. 
An increase in the conditional variance is associated with a small, if any, decrease in the 
conditional mean; implying that risk neutral investors may have dominated trading in the TSX 
before automation. This is somewhat consistent with most of the studies that examined the inter-
temporal relationship between expected returns and conditional volatility. For example, 
Theodossiou and Lee (1995) found no relationship between returns and volatility in ten 
industrialized countries. Chan, Karolyi and Stulz (1992) showed that the conditional expected 
excess return on S&P 500 is not related to its conditional volatility. 
After automation, however, the coefficient of the conditional volatility in mean equation is 
negative and significant (p-value = 0.004), which suggests a negative relationship between risk 
and returns. This is consistent with Nelson (1992) and Glosten, Jagannathan, and Runkle (1993) 
stating that unanticipated stock market returns are negatively related to unanticipated movement 
in conditional volatility. 
Note however, that for both models the sum of the parameters estimated by the variance equation 
is close to one. A sum of 1λ and 1θ  near one is an indication of a covariance stationary model 

with a high degree of persistence; and long memory in the conditional variance. The sum 1 1λ θ+  
is also an estimation of the rate at which the response function decays on a daily basis. Since the 
rate is high, the response function to shocks is likely to die slowly. During the period before 
automation, a month after an initial shock, 15% (or 0.938 30) of the impact remains in effect. Six 
months later, the initial shock vanishes (0.938 180 = 0%). However, after automation, a month 
after an initial shock 75% (or 0.991 30) of the impact remains in effect. After six months, 18% of 
the initial stock remains persistent. 
4.3. Diagnostic tests 
The results of the diagnostic tests show that the two models are correctly specified. The modified 
Q-statistics for the standardized residuals and standardized squared residuals are both 
insignificant, suggesting the chosen GARCH-M process are successful at modeling the serial 
                                                 
12 It is should be noted, however, that our analysis is not limited to GARCH type models. In fact, we have 

tested numerous varieties of volatility models including bilinearity models. Our results are consistent with 

the results of Hansen and Lunde (2005) who compare 330 ARCH-type models in terms of their ability to 

describe the conditional variance, and find that a GARCH (1,1) outperforms all tested models. 
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correlation structure in the conditional mean and conditional variance. Given the evidence of 
long memory in the period after automation we have estimated the series with a FIGARCH type 
models and also FIEGARCH type models to examine the leverage effect. The results presented 
in Table 8 show that our original GARCH-M model is better than a FIGARCH (1,1) in modeling 
volatility following automation. 
We also calculate the Lagrange-multiplier (LM) for ARCH effect proposed by Engle (1982); 
results are shown in Table 8. The null hypothesis, that the residuals lack ARCH effect, is not 
rejected, which shows that the GARCH-M models has counted for all the volatility clustering in 
the data.13 JB and Sharp tests for normality fail to reject the null hypothesis that the standardized 
residuals are normally distributed. To examine whether the GARCH-M model has succeeded in 
capturing all the nonlinear structure in the data, we employ the BDS test to its standardized 
residuals. A rejection of the i.i.d hypothesises will imply that the conditional heteroskedasticity is 
not responsible for all the nonlinearity in index returns, and there is some other hidden structure 
in the data. To have a preliminary view of the GARCH-M modeling capability, we look at the 
autocorrelation coefficient for both the standardized residuals and squared standardized 
residuals. Our results show that the AR(1)-GARCH-M and AR(15)-GARCH-M models capture 
all the linear as well non-linear dependencies in the index returns series. Tables 9 and 10 displays 
the BDS statistics on the standardized residuals from the GARCH-M processes. In line with the 
observations from Table 8, the BDS test fails to reject the null hypothesis that the standardized 
residuals are i.i.d random variables at 5% and 1% degree of significance for the sub-sample. This 
confirms that the AR(1)-GARCH-M and AR(15)-GARCH-M models indeed capture all the non-
linearity in the both series, and that the conditional heteroscedasticity is the cause of the non-
linearity structure uncovered in the returns series. 
 
5. Summary and Conclusion 
One of the major features of the worldwide stock-market restructuring is the replacement of floor 
trading systems by electronic trading systems. The implementation of electronic trading by major 
stock market exchanges has generated great debate among both practitioners and academicians 
on the advantages and disadvantages of adopting such systems. Opponents of electronic trading 
argue that it leads to lower market liquidity and increases transaction cost while advocates of 
electronic trading systems argue that it leads to lower bid-ask spread and higher volume 
transactions than floor trading systems. 
The present paper investigates this issue using the case of Toronto Stock Exchange (TSX) where 
an automated trading system was implemented on April 23, 1997. Using a battery of unit root, 
stationarity, as well as linear tests, we find that though the Random Walk Hypothesis (RWH) is 
rejected before and after the automation, the latter led to an increase in linearity dependence of 
the TSX daily returns. In addition, when we examine the nonlinearity dependencies using 
powerful econometric tests, we find that the introduction of electronic trading has increased 
nonlinear dependencies in returns series, which tend to be the main cause of rejecting the RWH. 
This pattern seems to be the cause of a high level of conditional volatility that may be due to an 

                                                 
13 Under the null hypotheses the test statistic ( )pTLM

A
  ~R  22 χ⋅= , where T is the sample size and R2 is 

computed using the estimated residuals. 
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increase in trading volume since automation facilitated trading and increased liquidity. We also 
find evidence of long memory following automation, which suggests that the introduction of 
electronic trading systems have increased the level of persistence of information and trading 
shocks. 
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Fig. 1 Before Automation 
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Fig. 2 After Automation 
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Fig. 3 Optimal Number of Lags Based on AIC: Before and After Automation 
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Fig. 4 ACF of Residuals and Squared Residuals from AR(1) and AR(15) 
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 Before Automation: Residuas from AR(1)
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0 5 10 15 20 25

Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

After Automation: Squared Residuals from AR(15)

 
 
 
Table 1 Descriptive statistics 

 Whole Series Before Automation After Automation 
Mean 0.0002 0.0002 0.0002 
Standard Error 0.0001 0.0001 0.0002 
Median 0.0004 0.0003 0.0007 
Standard Deviation 0.0039 0.0024 0.0049 
Kurtosis 6.8447 3.1959 4.2863 
Skewness -0.8029 -0.6737 -0.7227 
n 1512 756 756 

 
Table 2 Results of the Regression of Random Walk Model with Drift 

 Estimated constant P-value JB 
Before 0.0186* 0.0349  374.46** 
After     0.0244 0.1722  634.53** 

  Note: *, **  Significance at the 5% and 1% level. JB is the Jarque-Bera test for normality 
 
Table 3 M unit root test with multiple structural breaks of Carrion-i-Silvestre et al. (2009) 

 MZα MSB MZt 
Before -42.12 ** -0.11 ** -4.54 ** 
After -39.12 ** -0.13 ** -4.44** 

Note: *, **  Significance at the 5% and 1% level respectively. 
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Table 4 BDS test statistic: Before automation 

m є/σ  є/σ  є/σ  є/σ  
2 0.5 4.664 ** 1 5.087 ** 1.5 4.964 ** 2 4.352 ** 
3 0.5 5.367 ** 1 5.731 ** 1.5 5.420 ** 2 4.717 ** 
4 0.5 5.517 ** 1 5.981 ** 1.5 5.773 ** 2 5.074 ** 
5 0.5 5.686 ** 1 6.345 ** 1.5 5.991 ** 2 5.234 ** 
6 0.5 6.314 ** 1 6.725 ** 1.5 6.421 ** 2 5.541 ** 
7 0.5 6.616 ** 1 6.973 ** 1.5 6.670 ** 2 5.843 ** 
8 0.5 7.545 ** 1 7.059 ** 1.5 6.763 ** 2 5.998 ** 

Note. m is embedding dimension, ε  is the bound, *,**  Significance at the 5% and 1% level respectively. 
 
 
Table 5 BDS test statistic: After automation 

m є/σ  є/σ  є/σ  є/σ  
2 0.5 7.363 ** 1 6.852 ** 1.5 6.366 ** 2 5.519 ** 
3 0.5 8.480 ** 1 7.712 ** 1.5 7.281 ** 2 6.825 ** 
4 0.5 10.200 ** 1 8.848 ** 1.5 8.227 ** 2 7.805 ** 
5 0.5 11.699 ** 1 10.289 ** 1.5 9.353 ** 2 8.633 ** 
6 0.5 13.634 ** 1 11.506 ** 1.5 10.159 ** 2 9.286 ** 
7 0.5 16.027 ** 1 12.482 ** 1.5 10.785 ** 2 9.746 ** 
8 0.5 18.487 ** 1 13.836 ** 1.5 11.508 ** 2 10.271 ** 

 Note. m is embedding dimension, ε  is the bound, *,**  Significance at the 5% and 1% level, respectively. 
 
 
Table 6 BDS test statistic for residuals of AR(1): Before automation 

M є/σ  є/σ  є/σ  є/σ  
2 0.5 3.293 ** 1 3.550 ** 1.5 3.499 ** 2 3.124 ** 
3 0.5 3.313 ** 1 3.756 ** 1.5 3.428 ** 2 2.989 ** 
4 0.5 3.267 ** 1 4.216 ** 1.5 3.807 ** 2 3.353 ** 
5 0.5 3.484 ** 1 4.615 ** 1.5 4.068 ** 2 3.597 ** 
6 0.5 2.964 ** 1 5.071 ** 1.5 4.557 ** 2 3.988 ** 
7 0.5  2.366 * 1 5.387 ** 1.5 4.911 ** 2 4.355 ** 
8 0.5  1.536 1 5.601 ** 1.5 5.070 ** 2 4.596 ** 

Note. m is embedding dimension, ε  is the bound, *,**  Significance at the 5% and 1% level respectively. 
 
 
Table 7 BDS test statistic for residuals of AR(14): After automation 

M є/σ  є/σ  є/σ  є/σ  
2 0.5 4.204 ** 1 4.807 ** 1.5 4.583 ** 2 4.140 ** 
3 0.5 4.672 ** 1 5.281 ** 1.5 5.361 ** 2 5.307 ** 
4 0.5 5.200 ** 1 5.837 ** 1.5 5.968 ** 2 5.937 ** 
5 0.5 5.990 ** 1 6.866 ** 1.5 6.754 ** 2 6.432 ** 
6 0.5 6.681 ** 1 7.807 ** 1.5 7.448 ** 2 6.993 ** 
7 0.5 6.220 ** 1 8.485 ** 1.5 7.903 ** 2 7.350 ** 
8 0.5 7.154 ** 1 9.546 ** 1.5 8.563 ** 2 7.834 ** 

Note. m is embedding dimension, ε  is the bound, *,**  Significance at the 5% and 1% level respectively. 
 
Table 8 Modeling Conditional Heteroscedasticity: before and after automation 
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Note: 
λ, θ, d 
and ρ 
are 
the 
ARC
H, 
GAR
CH, 
integr
ation 
and 
levera
ge 
param
eters, 
respec
tively. 
S-W 
is the 
Shapir
o-
Wilk 
test 
for 
norma
lity 
propo
sed by 
Shapir
o and 
Wilk 
(1965
). 
MQ(k
) is 
the 
modif
ied Q-
statisti
c at 
lag k 
for the 
standa
rdized 
residu
als 

series. ML(k) is the McLeod-Li test at lag k for the squared standardized residuals series. 
 
 
 
Table 9 BDS test Statistic for Residuals of AR(1)- GARCH-M(1,1): Before Automation 

M ε /σ  ε /σ  ε /σ  ε /σ  
2 0.5  -2.218 * 1 -1.773 1.5 -1.075 2 -0.405 
3 0.5 -1.484 1 -1.370 1.5 -1.087 2 -0.278 

 Before Automation After Automation 
 AR(1)-GARCH-M(1,1) AR(15)-GARCH-M(1,1) AR(15)-FIEGARCH(1,1) 
Coefficient Estimate p-value Estimate  p-value Estimate  p-value 
β0 0.001 0.007 0.001 0.000 0.000 0.024 
β1 0.203 0.000 0.186 0.000 0.185 0.000 
β2 - - -0.057 0.124 -0.080 0.032 
β3 - - -0.034 0.348 -0.028 0.277 
β4 - - -0.071 0.049 -0.071 0.067 
β5 - - 0.017 0.645 0.015 0.370 
β6 - - 0.030 0.408 0.010 0.414 
β7 - - -0.080 0.019 -0.075 0.039 
β8 - - 0.050 0.153 0.047 0.147 
β9 - - -0.014 0.677 0.017 0.351 
β10 - - 0.073 0.028 0.078 0.035 
β11 - - -0.017 0.591 -0.020 0.317 
β12 - - 0.053 0.116 0.068 0.054 
β13 - - -0.005 0.880 -0.035 0.230 
β14 - - 0.052 0.097 0.052 0.120 
β15 - - -0.010 0.763 -0.012 0.395 
Arch-in-Mean -106.601 0.062 -44.257 0.004 - - 
η 0.000 0.049 0.000 0.021 0.000 0.030 
λ1 0.095 0.001 0.126 0.000 0.300 0.000 
θ1 0.843 0.000 0.864 0.000 0.500 0.001 
λ1 + θ1 0.938 - 0.991 - - - 
d - - - - 0.500 0.001 
ρ - - - - 0.166 0.000 
AIC -7077.29 - -6097.86 - -6014.61 - 
BIC -7044.91 - -6005.30 - -5922.05 - 
LM Test 17.039 0.148 12.350 0.418 14.045 0.298 
JB 125.7 04 0.000 149.801 0.000 186 0.000 
S-W 0.975 0.000 0.983 0.000 0.984 0.225 
MQ(10) 13.329 0.207 9.350 0.499 9.198 0.513 
MQ(20) 17.366 0.629 19.866 0.466 16.721 0.671 
MQ(30) 25.050 0.723 40.004 0.105 33.551 0.299 
MQ(40) 39.217 0.505 47.572 0.192 40.263 0.459 
MQ(50) 45.043 0.672 60.852 0.140 52.518 0.377 
ML(10) 14.561 0.149 9.884 0.451 14.985 0.133 
ML(20) 22.693 0.304 15.484 0.748 20.924 0.402 
ML(30) 25.080 0.721 19.867 0.920 24.570 0.746 
ML(40) 31.013 0.845 30.269 0.868 33.498 0.756 
ML(50) 37.224 0.910 32.748 0.972 36.750 0.919 

 

 

 



Page 19 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

 19

4 0.5 -1.587 1 -1.606 1.5 -1.430 2 -0.544 
5 0.5 -1.126 1 -1.186 1.5 -1.157 2 -0.342 
6 0.5 -0.986 1 -1.004 1.5 -1.110 2 -0.291 
7 0.5 -0.020 1 -0.921 1.5 -0.917 2 -0.088 
8 0.5 0.674 1 -0.657 1.5 -0.610 2 0.174 

Note. m is embedding dimension, ε  is the bound, * Significant at the 5% level.,** Significant at the 1% level. 
 
 
 
Table 10 BDS test Statistic for Residuals of AR(15)- GARCH-M(1,1): After Automation 

M є/σ  є/σ  є/σ  є/σ  
2 0.5 -0.290 1 -0.187 1.5 0.210 2 1.129 
3 0.5 -0.147 1 -0.239 1.5 0.276 2 1.121 
4 0.5 -0.427 1 -0.470 1.5 0.106 2 1.026 
5 0.5 -0.714 1 -0.677 1.5 0.029 2 1.155 
6 0.5 -0.747 1 -0.677 1.5 0.071 2 1.236 
7 0.5 -0.871 1 -0.589 1.5 0.169 2 1.264 
8 0.5 -0.726 1 -0.644 1.5 0.134 2 1.220 

Note. m is embedding dimension, ε  is the bound, * Significant at the 5% level.,** Significant at the 1% level. 

 
 
 

 

 

 


