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Abstract

Linear motion commands of computer numerical control (CNC) machine tools need to be
smoothed at the transition corners in order to guarantee continuous and steady machining.
However, because of the complex kinematic constraints, very few researches have devoted to
developing analytical and high order continuous corner smoothing algorithms of five-axis tool
paths, although it is important to guarantee both high calculation efficiency and good dynamic
performance of five-axis CNC machining. This paper develops an analytical C3 continuous cor-
ner smoothing algorithm of five-axis tool paths by locally inserting specially designed quintic
micro splines into the transition corners of five-axis linear commands. C3 continuity of the tool
tip position and the tool orientation are guaranteed along the entire tool path. The maximal
approximation errors of the tool tip position and the tool orientation are both constrained in
the workpiece coordinate system. The synchronization of the tool tip position and tool orien-
tation are mathematically guaranteed at the junctions of the linear and spline segments. The
proposed corner smoothing algorithm can calculate all control points of the locally inserted tool
tip position and tool orientation splines analytically without any iteration, which makes it very
suitable to on-line calculation. Experiments on an in-house developed five-axis CNC platform
verify that the maximal approximation errors of both tool tip position and tool orientation are
constrained, and the proposed C3 continuous corner smoothing algorithm has higher tracking
accuracy and lower acceleration frequency content at higher frequencies than the C2 continuous
algorithm.

Keywords: Five-axis, position independent geometric errors, differential motion matrices,
kinematics, CNC
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An analytical local corner smoothing algorithm for five-axis CNC

machining

Abstract

Linear motion commands of computer numerical control (CNC) machine tools need to be
smoothed at the transition corners in order to guarantee continuous and steady machining.
However, because of the complex kinematic constraints, very few researches have devoted to
developing analytical and high order continuous corner smoothing algorithms of five-axis tool
paths, although it is important to guarantee both high calculation efficiency and good dynamic
performance of five-axis CNC machining. This paper develops an analytical C3 continuous cor-
ner smoothing algorithm of five-axis tool paths by locally inserting specially designed quintic
micro splines into the transition corners of five-axis linear commands. C3 continuity of the tool
tip position and the tool orientation are guaranteed along the entire tool path. The maximal
approximation errors of the tool tip position and the tool orientation are both constrained in
the workpiece coordinate system. The synchronization of the tool tip position and tool orien-
tation are mathematically guaranteed at the junctions of the linear and spline segments. The
proposed corner smoothing algorithm can calculate all control points of the locally inserted tool
tip position and tool orientation splines analytically without any iteration, which makes it very
suitable to on-line calculation. Experiments on an in-house developed five-axis CNC platform
verify that the maximal approximation errors of both tool tip position and tool orientation are
constrained, and the proposed C3 continuous corner smoothing algorithm has higher tracking
accuracy and lower acceleration frequency content at higher frequencies than the C2 continuous
algorithm.

Keywords: Tool path, corner smoothing, five-axis, CNC machining, interpolation

1. Introduction

Although modern industrial computer numerical control (CNC) machine tools are capable of
following spline representations of the tool paths, most of the milling tool paths generated by
computer aided manufacturing (CAM) software are still defined by a series of linear segments
(G01 commands). However, the transition corners between linear segments lead to tangential
discontinuities, which force the machine to stop and start at each corner, since the machine
tool axes have finite acceleration and jerk limits. This often leads to increased cycle time and
poor surface finish in the milling process. To avoid this behaviour, the tool path geometry
needs to be smoothed. In literature, two main methods are available to smooth the tool paths,
which include global smoothing and local smoothing. The global smoothing method fits all
desired cutter locations to spline representations, such as the polynomial spline [1] and NURBS
curve methods [2–7] for 3-axis CNC machining, and the dual-spline [8; 9] or decoupled-spline
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methods [10–12] for 5-axis CNC machining. The global smoothing method guarantees tool path
smoothness, but is mathematically complex to control and evaluate the exact approximation
error. The local smoothing method smooths the tool path by inserting micro-splines into the
transition corners of linear segments, the challenge with which is to ensure high order continuity
at the junction between the corner rounding curve and the linear segment while respecting pre-
defined error tolerances. This paper focuses on developing an analytical C3 continuous local
smoothing algorithm for 5-axis CNC machining.

Several local smoothing approaches have been proposed for 3-axis tool paths, where transition
corners between linear toolpath segments are smoothed by inserting cubic B-splines [13; 14],
quartic Bézier splines [15], quintic B-splines [16] or seven degree Pythagorean Hodograph (PH)
curves [17]. However, local smoothing for five-axis tool paths presents additional challenges. The
first challenge is that in addition to inserting micro splines to smooth the tool tip position, the
tool orientation must also be smoothed between linear segments in order to guarantee continuous
motion as shown in Fig. 1. Since the position and orientation are smoothed independently, a
second challenge is to synchronize the two smoothed results. Beudaert et al. [18] represented
the corner of five-axis tool paths with a bottom spline defining the tool tip position and a top
spline defining the tool orientation. The main difficulty was the connection between the initial
tool path and the newly inserted smoothing portion of the tool orientation. In order to address
this problem, a third parametrization spline was designed to link the bottom and top B-spline
parameters using a Newton-Raphson iterative algorithm. Tulsyan et al. [19] proposed a five-axis
corner smoothing algorithm by inserting quintic micro-splines in the Cartesian space for the tool
tip position and septic micro-splines on the unit sphere for the tool orientation at the adjacent
linear tool path segments. Due to the non-linear nature of the constraint equations, closed
form solutions of the orientation control points do not exist and a Newton-Raphson iterative
optimization algorithm was utilized instead. The iterative algorithms needed in [18; 19] in-
crease the computational burden of the 5-axis corner smoothing and make them unsuitable for
real-time application.

Discrete 
G01 commands

Position 
tolerance

Orientation 
tolerance

pw

ow

Fig. 1. Illustration of the five-axis corner smoothing: (a) discrete G01 commands without
corner smoothing; (b) after corner smoothing

In order to improve the calculation efficiency of corner smoothing algorithms, efforts have been
made towards analytical solutions of the corner smoothing splines. Bi et al. [20] developed an
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analytical corner smoothing algorithm for 5-axis CNC machining by designing dual-Bézier corner
transition curves in the machine coordinate system, where one curve was adopted to smooth
motion commands of three translational axes, and the other curve was adopted to smooth motion
commands of two rotary axes. Shi et al. [21] proposed an analytical 5-axis corner smoothing
algorithm by designing a pair of quintic PH curves in the workpiece coordinate system, with one
curve rounding the corners in the tool tip trajectory and the other curve rounding the corners in
the trajectory of the second point on the tool axis. The analytical corner smoothing algorithms
of [20; 21] did greatly improve the calculation efficiency, but they were limited to the second
order continuity. As having been experimentally verified by Yuen et al. [11] and Tulsyan et al.
[19], the C2 continuous trajectory resulted in jerk discontinuities with higher amplitudes in all
the axes, which excited the resonance modes of the closed loop system more than C3 continuous
trajectories. The use of a C3 continuous trajectory also showed a decrease in tracking error on
each axis since a smoother trajectory avoids demanding discontinuous and high torque from the
drive motors, which has a positive effect on the tracking accuracy of the controller.

An analytical C3 continuous corner smoothing algorithm is developed for five-axis CNC ma-
chining, the flow chart of which is shown in Fig. 2, by combining tool path modifications in both
coordinate frames in this paper. First, quintic micro-splines are adopted to smooth the tool tip
position in the workpiece coordinate system, and the tool orientation in the machine coordinate
system, respectively. Second, the synchronization of the tool tip position and tool orientation
are mathematically guaranteed at the junctions of the linear and spline segments. Last, the
maximal approximation errors of the tool tip position and the tool orientation are both con-
strained in the workpiece coordinate system, by mapping the motion errors from the machine
coordinate system to the workpiece coordinate system using the Jacobian function. Henceforth,
the rest of the paper is organized as follows: Section 2 develops the analytical corner smoothing
algorithm, followed by experiment verification in Section 3. The paper is concluded in Section
4.

Input: discrete G01 
commands

Tool tip position smoothing in 
the workpiece coordinate system

Tool orientation smoothing in 
the machine coordinate system

Synchronization of the tool 
tip position and orientation

Constraints of approximate 
errors in the workpiece frame

Output: smoothed tool path

Fig. 2. Flow chart of the proposed five-axis corner smoothing algorithm
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2. Analytical Corner Smoothing Algorithm

As shown in Fig. 3, motion commands in the workpiece coordinate system are defined as the tool
tip position P = [Px, Py, Pz]

T and tool orientation O = [Oi, Oj, Ok]
T relative to the workpiece,

while motion commands in the machine coordinate system are defined as the drive commands
q = [x, y, z, θa, θc]

T of three translational axes and two rotary axes. Forward kinematics and
inverse kinematics models are needed to transfer motion commands between the two coordinate
systems. In this work, the tool tip position is smoothed in the workpiece coordinate system,
and the tool orientation is smoothed in the machine coordinate system, but the maximum
approximate errors are both constrained in the workpiece coordinate system, because motions
in the workpiece coordinate system directly reflect the relative positions and orientations of the
cutting tool related to the workpiece and is more intuitive to determine machining errors.

Workpiece

Tool

wX
wY

wZ

P0

P1 P2

PN-1

PN

T
, ,x y zP P P   P

T
, ,
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i j kO O O    
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c

Fig. 3. Motion commands in the workpiece coordinate frame and the machine coordinate
system [22]

2.1. Corner smoothing of the tool tip position

In order to achieve velocity, acceleration and jerk continuity at the junction points, C3 continuity
of the tool tip position at the junction points needs to be satisfied first. To smooth local corners
of the linear tool tip position segments, as shown in Fig. 4, the quintic B-spline method proposed
by Tulsyan et al. [19] is adopted, with an additional constraint set by the user defined orientation
error of the cutting tool.

The B-spline inserted between two liner segments is defined by the basis functions Ni,p(u),
control points Pi = [Pxi, Pyi, Pzi]

T (i = 0, 1, .., N), and the degree p− 1 with the following form:
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Linear Segment 0u 

0P
1p

1P

Linear Segm
ent

2P
3P

4P

5P

6P

2p

3p

1u 

Spline Segment

2

pw


O wX

wY

wZ

Fig. 4. Corner smoothing of the tool tip position in the workpiece coordinate frame [19]

P (u) =
N∑
i=0

Ni,p(u)Pi 0 ≤ u ≤ 1. (1)

The basis functions Ni,p(u) are functions of the geometric parameter u and knot vector U =
[u0, u1, ..., uN+p+1]

T, which can be evaluated recursively as follows [23]:


Ni,0(u) =

{
1 if ui ≤ u ≤ ui+1

0 otherwise
u ∈ [0, 1],

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u).

(2)

For the quintic B-spline used in the paper, the degree of the spline curve and number of control
points are chosen as 5 and 7, respectively, in order to achieve third order continuity of the geo-
metric derivative at junctions of the inserted micro splines and original linear segments, which
is necessary to achieve jerk continuity. In order to ensure symmetry across the angular bisector
of the corner angle, the non-uniform knot vector is defined as:

U = [0, 0, 0, 0, 0, 0, 0.5, 1, 1, 1, 1, 1, 1]T. (3)

As shown in Fig. 4, p1, p2 and p3 are the end points of two adjacent linear segments. The seven
control points P0, P1 ... P6 are evaluated based on the user defined position error tolerance
εpw, the user defined orientation error tolerance εow, and conditions for the first, second and
third order differential continuity at the junctions between the linear and the inserted spline
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segments. Based on these conditions, the specific analytic solutions of the control points are
defined as [19]:



P3 = p2,

P2 = P3 +
−→
l1 lp,

P4 = P3 +
−→
l2 lp,

P1 = 2P2 − P3,
P0 = (5P2 − 3P3)/2,
P5 = 2P4 − P3,
P6 = (5P4 − 3P3)/2,

(4)

with

−→
l1 =

−−→p2p1∥∥−−→p2p1∥∥ , −→l2 =
−−→p2p3∥∥−−→p2p3∥∥ , lp = min

{
4εpw

3cos(α/2)
,

∥∥−−→p2p1∥∥
5

,

∥∥−−→p2p3∥∥
5

, lo (εow)

}
, (5)

where α is the angle formed by linear segments −−→p2p1 and −−→p2p3 and lo (εow) is the constraint
imposed by the user defined orientation error tolerance to be discussed in the following sections.
In contrast with the method proposed in [19], the constraints defined in Eq. (5) also account
for the user defined orientation error tolerance.

Eq. (4) leads to a symmetric distribution of the control points, with the length of each segment
equivalent to:


∥∥∥−−−→P0P1

∥∥∥ = 0.5lp,
∥∥∥−−−→P1P2

∥∥∥ = lp,
∥∥∥−−−→P2P3

∥∥∥ = lp,∥∥∥−−−→P5P6

∥∥∥ = 0.5lp,
∥∥∥−−−→P4P5

∥∥∥ = lp,
∥∥∥−−−→P3P4

∥∥∥ = lp.
(6)

The quintic B-spline control points calculated by Eq. (4)-(5) can guarantee that the first, second
and third derivations at the junctions of the linear and spline segments of the tool tip position
are continuous, and the maximum approximation error is within the preset tolerance limits εpw
and εow. The constraint lo (εow) is determined in the following sections, based upon the user
defined orientation error tolerance, εow.

2.2. Corner smoothing of the tool orientation

Quintic B-splines are adopted to smooth the local corners of the tool orientation segments in
order to achieve velocity, acceleration and jerk continuity at the junction points. Unlike the
tool tip position, which is smoothed in the workpiece coordinate system, the tool orientation
is smoothed by inserting micro-splines to the linear segments of rotary drive commands in the
machine coordinate system, as shown in Fig. (5). The inserted tool orientation splines are

6
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defined by the basis functions Ni,p(u), control points Θi = [Θci, Θai]
T (i = 0, 1, ..., N), and the

degree p− 1 with the following form:

Θ(u) =
N∑
i=0

Ni,p(u)Θi 0 ≤ u ≤ 1. (7)

The degree of the spline curve and number of control points are chosen as 5 and 7, respectively.
The same parameter for the tool tip position spline is adopted for the tool orientation at the
same corner, and the same non-uniform knot vector, as defined in Eq. (3), is chosen for tool
orientation smoothing spline.

Linear Segment 0u 

0
1

1

Linear Segm
ent

2
3

4

5

6

2

3

1u 

Spline Segment

c

a

O
max





Fig. 5. Corner smoothing of tool orientation in the machine coordinate frame

The choice of the non-uniform knot vector ensures that the B-spline curve will pass through
the first and the last control point Θ0 and Θ6, respectively, and tangential to the first and

the last segment of the control polygon
−−−→
Θ0Θ1 and

−−−→
Θ5Θ6, respectively, as shown in Fig. 5.

In order to maintain the orientation and tangential continuity at the junctions between the
linear segments and the orientation micro-splines, the first three control points Θ0, Θ1 and Θ2

should be located in the linear segment
−−→
θ1θ2. Likewise, the last three control points Θ4, Θ5

and Θ6 should be located in the linear segment
−−→
θ2θ3. The fourth control point Θ3 is chosen

at the corner orientation θ2. However, constraints based on second and third order differential
continuity at junctions Θ0 (u = 0) and Θ6 (u = 1) and the maximum approximation error need
to be imposed to find the exact locations of the other six control points.

In order to achieve acceleration and jerk continuity at the junction point between the linear
segment and inserted micro-spline, the control points of the inserted micro-splines are chosen
to guarantee d2Θ

du2
= 0 and d3Θ

du3
= 0 at u = 0 and u = 1, which correspond to the start and end

of the inserted micro-spline. Substituting u = 0 to evaluate the values of d2Θ
du2

and d3Θ
du3

at the
junction Θ0(u = 0), the following expressions are obtained

7
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
d2Θ

du2

∣∣∣∣
u=0

= 80Θ0 − 120Θ1 + 40Θ2 = 0,

d3Θ

du3

∣∣∣∣
u=0

= −480Θ0 + 840Θ1 − 480Θ2 + 120Θ3 = 0,

(8)

the solution of which leads to

Θ1 = 2Θ2 −Θ3, Θ0 = (5Θ2 −Θ3)/2. (9)

Similarly, the conditions for d2Θ
du2

= 0 and d3Θ
du3

= 0 at the junction of Θ6(u = 1) are found as

Θ5 = 2Θ4 −Θ3, Θ6 = (5Θ4 −Θ3)/2. (10)

The length of the linear segments
∥∥∥−−−→Θ2Θ3

∥∥∥ and
∥∥∥−−−→Θ4Θ3

∥∥∥ are defined as loa and lob, respectively.

From Eqs. (9) and (10), the length of each segment composed by tool orientation control points
is evaluated as following


∥∥∥−−−→Θ0Θ1

∥∥∥ = 0.5loa,
∥∥∥−−−→Θ1Θ2

∥∥∥ = loa,
∥∥∥−−−→Θ2Θ3

∥∥∥ = loa,∥∥∥−−−→Θ5Θ6

∥∥∥ = 0.5lob,
∥∥∥−−−→Θ4Θ5

∥∥∥ = lob,
∥∥∥−−−→Θ3Θ4

∥∥∥ = lob.
(11)

It should be noted that loa and lob are not necessarily equal to each other. Their values must
be evaluated to guarantee the tool orientation and the tool tip position are synchronized and
the user-defined orientation error tolerance is not violated. Details of the mathematical rules
to choose loa and lob are introduced in the next two subsections.

2.3. Synchronization of the tool orientation and the tool tip position

Since the tool tip position and tool orientation are smoothed in different coordinate systems,
conditions must be met to ensure that the rate of change of the tool orientation with respect
to the tool tip displacement is also C3 continuous at the junctions between the original linear
segments and the inserted micro-splines. This ensures there are no abrupt tool orientation
changes during interpolation which may lead to high acceleration or jerk demands. Thus, the
first, second and third order differentials of the tool orientation vectors with respect to the tool
tip displacement should be continuous at the junctions, i.e.,


dΘ

ds

∣∣∣∣
u=0

=

−−−→
θ1Θ0∥∥∥−−−→p1P0

∥∥∥ , dΘ

ds

∣∣∣∣
u=1

=

−−−→
Θ6θ3∥∥∥−−−→P6p3

∥∥∥ ,
d2Θ

ds2

∣∣∣∣
u=0,1

= 0,
d3Θ

ds3

∣∣∣∣
u=0,1

= 0.

(12)
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The differential equations in Eq. (12) can be rewritten as



dΘ

ds

∣∣∣∣
u=0,1

=

(
dΘ

du

(
du

ds

))∣∣∣∣
u=0,1

,

d2Θ

ds2

∣∣∣∣
u=0,1

=

(
d2Θ

du2

(
du

ds

)2

+
dΘ

du

d2u

ds2

)∣∣∣∣∣
u=0,1

,

d3Θ

ds3

∣∣∣∣
u=0,1

=

(
d3Θ

du3

(
du

ds

)3

+ 3
d2Θ

du2
du

ds

d2u

ds2
+
dΘ

du

d3u

ds3

)∣∣∣∣∣
u=0,1

.

(13)

The differentials of the spline parameter related to the tool tip displacement are



du

ds

∣∣∣∣
u=0,1

=
1

5lp
,

d2u

ds2

∣∣∣∣
u=0,1

= 0,

d3u

ds3

∣∣∣∣
u=0,1

= 0,

(14)

the specific deriving process of which is provided in the Appendix A. Hence, combining Eqs. (13)
and (14), the sufficient conditions for Eq. (12) to be true are



dΘ

du

∣∣∣∣
u=0

=
dΘ

ds

/
du

ds

∣∣∣∣
u=0

=
5lp∥∥∥−−−→p1P0

∥∥∥−−−→θ1Θ0,

dΘ

du

∣∣∣∣
u=1

=
dΘ

ds

/
du

ds

∣∣∣∣
u=1

=
5lp∥∥∥−−−→P6p3

∥∥∥−−−→Θ6θ3,

d2Θ

du2

∣∣∣∣
u=0,1

= 0,

d3Θ

du3

∣∣∣∣
u=0,1

= 0.

(15)

Because d2Θ
du2

∣∣∣
u=0,1

= 0 and d3Θ
du3

∣∣∣
u=0,1

= 0 have already been guaranteed through Eqs. (8)-(10),

the sufficient conditions for the synchronization of the tool orientation and the tool tip position
turn out to be

9
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

dΘ

du

∣∣∣∣
u=0

=
5lp∥∥∥−−−→p1P0

∥∥∥−−−→θ1Θ0,

dΘ

du

∣∣∣∣
u=1

=
5lp∥∥∥−−−→P6p3

∥∥∥−−−→Θ6θ3,

(16)

Based on the B-spline function of the tool orientation in Eq. (7), the differentials of the tool
orientation at u = 0, 1 are


dΘ

du

∣∣∣∣
u=0

= 10
−−−→
Θ0Θ1,

dΘ

du

∣∣∣∣
u=1

= 10
−−−→
Θ5Θ6.

(17)

Combining Eq. (16) with Eq. (17), the synchronization of the tool orientation and the tool tip
position can be guaranteed if



∥∥∥−−−→Θ0Θ1

∥∥∥ =
lp

2
∥∥∥−−−→p1P0

∥∥∥
∥∥∥−−−→θ1Θ0

∥∥∥ ,
∥∥∥−−−→Θ5Θ6

∥∥∥ =
lp

2
∥∥∥−−−→P6p3

∥∥∥
∥∥∥−−−→Θ6θ3

∥∥∥ . (18)

Then combining Eq. (18) with Eqs. (6) and (11), the sufficient conditions for the synchronization
of the tool orientation and the tool tip position are


loa =

∥∥∥−−→θ2θ1∥∥∥∥∥−−→p2p1∥∥ lp,
lob =

∥∥∥−−→θ2θ3∥∥∥∥∥−−→p2p3∥∥ lp,
(19)

the specific deriving process of which is provided in the Appendix B. Thus, the ratio between
segment lengths lob and loa needs to satisfy the following relation in order to guarantee the
synchronization of the tool orientation and the tool tip position,

lob = k · loa, with k =

∥∥∥−−→θ2θ3∥∥∥∥∥∥−−→θ2θ1∥∥∥
∥∥−−→p2p1∥∥∥∥−−→p2p3∥∥ . (20)
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2.4. Approximate error constraints of the tool orientation

Tool orientation error will cause machining error as shown in Fig. (6)(a). Hence, the maximum
approximate error of the tool orientation caused by the corner smoothing must be constrained
in the workpiece coordinate frame as shown in Fig. (6)(b). The unit orientation vectors before
and after corner smoothing are noted as O and O′, respectively. The maximum discrepancy
between O and O′ must be smaller than the user-defined constraint εow, and the vector between
which are noted as ∆O.

P

 O'
O

ow

Linear Segment 0u 

0
1

1

Linear Segm
ent

2
3

4

5

6

2

3

1u 

Spline Segment

c

a

O
max



rl



wO

wYwZ

wX

 a

ed

O
'O

P



 b

Workpiece 
surface

Cutter

wO

wYwZ

wX

Fig. 6. Constraints of the tool orientation error: (a) illustration of cutting error caused by tool
orientation error; (b) constraints of tool orientation in the workpiece coordinate frame

In order to guarantee that the orientation error are constrained in the workpiece coordinate
frame, the projection length of ∆O along the perpendicular direction of O must be smaller
than sin(εow) as shown in Fig. (6)(b). Thus, the following geometric relation exists

lr = ‖O ×∆O‖ =
∥∥∥Ô ·∆O∥∥∥ ≤ sin(εow), (21)

where Ô represents the skew-symmetric matrix of vector O = [Oi, Oj, Ok]
T, with

Ô =

 0 −Ok Oj

Ok 0 −Oi

−Oj Oi 0

 . (22)

Due to the non-linear kinematics, the effect of the tool orientation smoothing tolerance in the
workpiece coordinate frame is difficult to be exactly predicted by modifying rotary drive com-
mands in the machine coordinate frame. However, because the tool orientation error tolerance
is usually set less than 0.005rad [19], the orientation differentials in the workpiece coordinate
frame ∆O = [∆Oi,∆Oj,∆Ok]

T and the machine coordinate frame ∆Θ = [∆Θc,∆Θa]
T can be

linearly approximated

∆O ≈ Jo∆Θ, (23)
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where Jo is the tool orientation Jacobian function with

Jo =


∂Oi

∂Θc

∂Oi

∂Θa
∂Oj

∂Θc

∂Oj

∂Θa
∂Ok

∂Θc

∂Ok

∂Θa

 . (24)

As shown in Fig. (5), the maximum deviation between the linear polygon and the transition
curve in the machine coordinate frame is defined as the shortest distance from the corner
orientation Θ3 to the inserted B-spline Θ(u). Thus, ‖∆Θ‖max should be less than or equal to
the distance between Θ3 and Θ(u) when u = 0.5, i.e.

‖∆Θ‖max ≤ ‖Θ3 −Θ(0.5)‖

=

∥∥∥∥1

4
(Θ3 −Θ2) +

1

16
(Θ3 −Θ1) +

1

4
(Θ3 −Θ4) +

1

16
(Θ3 −Θ5)

∥∥∥∥
=

∥∥∥∥3

8
loa
−→
la +

3

8
lob
−→
lb

∥∥∥∥
=

3

8
loa
√

1 + k2 + 2kcos(β),

(25)

where
−→
la =

−−→
θ2θ1

‖−−→θ2θ1‖ ,
−→
lb =

−−→
θ2θ3

‖−−→θ2θ3‖ are the unit vectors of
−−→
θ2θ1 and

−−→
θ2θ3, respectively, β is the

angle formed by
−−→
θ2θ1 and

−−→
θ2θ3, loa and lob are the segment lengths of

∥∥∥−−−→Θ1Θ2

∥∥∥ and
∥∥∥−−−→Θ4Θ5

∥∥∥,

respectively, as represented in Eq. (11), and k is the ratio between lob and loa as represented in
Eq. (20).

Thus, combining Eq. (21), (23) and (25), the maximum tool orientation error can be constrained
as

∥∥∥Ô ·∆O∥∥∥ ≈ ∥∥∥Ô · Jo ·∆Θ∥∥∥
≤ 3

8
loa
√

1 + k2 + 2kcos(β)
∥∥∥Ô · Jo∥∥∥

≤ sin(εow),

(26)

where
∥∥∥Ô · Jo∥∥∥ =

(
maximum eigenvalue of (Ô · Jo)T(Ô · Jo)

)1/2
. Eq. (26) can be guaranteed

if

loa ≤
8sin(εow)

3
√

1 + k2 + 2kcos(β)
∥∥∥Ô · Jo∥∥∥ . (27)
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As a result, by combining Eq. (27) and (19), the constraint imposed by the user defined orien-
tation error tolerance, lo (εow), can be found as follows

lp =

∥∥−−→p2p1∥∥∥∥∥−−→θ2θ1∥∥∥ loa ≤ lo (εow) =
8sin(εow)

∥∥−−→p2p1∥∥
3
√

1 + k2 + 2kcos(β)
∥∥∥Ô · Jo∥∥∥∥∥∥−−→θ2θ1∥∥∥ . (28)

Thus, in order to guarantee that the approximate error of the tool orientation is constrained
in the workpiece coordinate frame, the constraints of length lp in Eq. (4)-(5) that are adopted
to calculate control points of the tool tip position splines incorperate the full form of lo(εow) as
defined in Eq. (28), as follows:

lp = min

 4εpw
3cos(α/2)

,

∥∥−−→p2p1∥∥
5

,

∥∥−−→p2p3∥∥
5

,
8sin(εow)

∥∥−−→p2p1∥∥
3
√

1 + k2 + 2kcos(β)
∥∥∥Ô · Jo∥∥∥∥∥∥−−→θ2θ1∥∥∥

 (29)

With lp known, it is possible to solve for the control points of the position smoothing spline
defined in Eq. (4). Further more loa and lob are known through Eq. (19), which allow for the
control points of the orientation smoothing spline to be solved as follows:



Θ3 = θ2,

Θ2 = Θ3 +
−→
la loa,

Θ4 = Θ3 +
−→
lb lob,

Θ1 = 2Θ2 −Θ3,
Θ0 = (5Θ2 − 3Θ3)/2,
Θ5 = 2Θ4 −Θ3,
Θ6 = (5Θ4 − 3Θ3)/2,

(30)

The quintic B-spline control points calculated by Eq. (30) can guarantee that the maximum
approximate error of the tool orientation is within the preset tolerance limit εow. Meanwhile, the
synchronization of the tool orientation and the tool tip position is mathematically guaranteed
through ensuring the continuity of the first, second and third differentials of the tool orientation
vectors with respect to the tool tip displacement.

3. Experiments

The proposed 5-axis corner smoothing algorithm is experimentally verified on a table-tilting
5-axis machine controlled by an open and modular CNC system developed in-house as shown in
Fig. 7. The translational Y-axis carries the X-axis and the rotary table, and the Z-axis carries
the spindle. The tilting axis is the A-axis and the rotary axis is the C-axis with the C-axis
being mounted on the A-axis. The workpiece is fixed on the rotary table.
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- Position Control (PID, Lead Lag etc.)
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- Quadrature Encoder Decoding
- Write DAC

Encoder Feedback

Motor Current Command

X

YZ
C

A

Fig. 7. Five-axis machine tool used in experiments

The forward kinematics transformation from 5-axis motion commands q = [x, y, z, θa, θc]
T in

the machine coordinate system to the tool tip position P = [Px, Py, Pz]
T and tool orientation

O = [Oi, Oj, Ok]
T in the workpiece coordinate system can be obtained by using screw theory or

D-H notations, details of the deriving process of which can be found in [12; 24].



Px = −Ccx− CaScy + SaScz − SaScLTya,z,
Py = Scx− CaCcy + SaCcz − SaCcLTya,z,
Pz = Say + Caz − CaLTya,z − Lac,z,
Oi = SaSc,

Oj = SaCc,

Ok = Ca,

(31)

where Sa, Ca , Sc and Cc are the abbreviations of sin(θa), cos(θa), sin(θc) and cos(θc), respec-
tively, and LTya,z = 150mm and Lac,z = 70mm are the offsets determined by the geometry of
the rotary table. In experiments, the tool tip position Pw = [Px, Py, Pz]

T and tool orientation
Ow = [Oi, Oj, Ok]

T of trajectories are measured by applying forward kinematics (Eq. (31)) on
the encoder readings of each drive [x, y, z, θa, θc]

T. Geometric errors caused by imperfect as-
sembly or manufacture of the machine components are not considered in this work as they are
outside the scope of the work presented, but they can be calibrated and compensated by using
techniques introduced in existing publications [25–27].

The inverse kinematics to determine the 5-axis motion commands, based on the desired tool tip
position and tool orientation, is obtained by solving Eq. (31), i.e.,
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

θa = arccos(Ok),

θc = arctan(Oi, Oj),

x = −CcPx + ScPy,

y = −CaScPx − CaCcPy + SaPz + SaLac,z,

z = SaScPx + SaCcPy + CaPz + CaLac,z + LTya,z.

(32)

The orientation Jacobian function of the experimental machine is derived by differentiating the
forward kinematics model of the tool orientation in Eq. (31)

Jo =

CaSc SaCc
CaCc −SaSc
−Sa 0

 , (33)

which approximates a linear relationship between the tool orientation in the workpiece coordi-
nate system and the machine tool coordinate system, and is used to restrict the tool orientation
approximation error when calculating the control points of the inserted splines as represented
in Eq. (28).

Two testing tool paths composed of a series of linear segments are smoothed and used to
demonstrate the efficacy of the proposed corner smoothing algorithm. The first tool path is
a four-segment testing tool path containing three corners as represented in Fig. 8(a), and the
second one is an irregular fan-shaped tool path as represented in Fig. 8(b).

Yw [mm] Xw [mm]

Z w
[m
m
]

1st
corner

3rd
corner

2nd
corner -50

0
50

100
-100

-50

0
0

20
40

Yw [mm]
Xw [mm]

The irregular fan-shaped trajectory used in tests

Z w
[m

m
]

(a) (b)

Fig. 8. Discrete cutting location commands of the testing tool paths: (a) the four-segment
path; (b) the irregular fan-shaped path

In order to verify the effectiveness of the proposed corner smoothing algorithms under differ-
ent conditions, different user defined error tolerances for the tool tip position and tool orien-
tation are set for the two testing tool paths. Tolerances for the four-segment path are set as
εpw = 1mm and εow = 5e−3rad, while for the irregular fan-shaped path are set as εpw = 0.08mm
and εow = 6e−4rad. It should be noted that the corner tolerances can be set to smaller values,
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but naturally at the expense of lower feed speeds to avoid exceeding the acceleration and jerk
limitations of the drives. Taking the extreme condition as an example, if the error tolerance is
set as 0, the tool path will become C0 continuous, and the machine must fully stop and then
start at each corner in order to avoid acceleration and jerk limitations of the drives.

The corner smoothing results of the four-segment path are shown in Fig. 9, and the corre-
sponding errors caused by corner smoothing in the workpiece coordinate frame, calculated by
numerical algorithms, are shown in Table 1.

20
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Z 
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m
]

0.4 0.5 0.6
0
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0.2

0.3

0.4

c [rad]


a [r

ad
]

Tool orientation

Before smoothing
After smoothing

Fig. 9. The corner smoothing results of the four-segment tool path

Table 1. The maximum error caused by corner smoothing in the workpiece coordinate frame of
the four-segment tool path (εpw = 1mm, εow = 5e−3rad)

1st corner 2nd corner 3rd corner

Tool tip position 1.000(mm) 1.000(mm) 1.000(mm)
Tool orientation 2.815e−3(rad) 2.815e−3(rad) 0.723e−3(rad)

The corner smoothing result of the irregular fan-shaped tool path is shown in Fig. 10, and the
corresponding errors caused by corner smoothing are shown in Fig. 11. It can be seen that
although different approximation errors are set for two paths, errors of the tool tip position and
tool orientation in two conditions are all constrained well within the user defined tolerances.

The proposed corner smoothing algorithm increases the continuity of the linearly interpolated
toolpath from position continuous, C0, to jerk continues C3. As a result, when the smoothed
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Fig. 10. The corner smoothing results of the irregular fan-shaped tool path
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Fig. 11. The maximum error caused by corner smoothing in the workpiece coordinate frame of
the irregular fan-shaped tool path (εpw = 0.08mm, εow = 6e−4rad)
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toolpath is interpolated, the resultant axis jerks are lower and smoother. In order to verify
this, experiments are conducted on the four-segment testing tool path to compare with a C2

continuous algorithm, which is achieved by inserting cubic micro B-splines into the transition
corners of the tool tip position and tool orientation. To ensure the tested corner smoothing
algorithms shared a similar feed profile and to preserve the continuity of the trajectories, a C3

continuous cubic acceleration profile [28] is used to generate reference position commands of
five drives in both cases. The nominal feedrate is set as 50mm/s in experiments in order to
guarantee that the mechanical limits are not violated. In order to compare the smoothness of
the five-axis tool path generated by different corner smoothing algorithms, the reference jerk
commands of five drives are analyzed using digital differentiation

Je =
d3q

dt3
≈ q(ti+3)− 3q(ti+2) + 3q(ti+1)− q(ti)

∆t3
, (34)

where q = [x, y, z, θa, θc]
T are the interpolated position commands of five drives and ∆t = 0.001s

is the sample time of the closed loop controller. The reference jerk commands for each drive
of the C2 continuous trajectory and the proposed C3 continuous trajectory are compared in
Fig.12. As it can be seen, the C3 trajectory results in smoother, lower amplitude jerks in all the
axes. By having smoother reference commands, the chance of saturating higher order limits,
such as the current amplifier, is reduced, resulting in better tracking performance for all axes.

The frequency content of the acceleration profiles for the C3 and C2 corner smoothing algorithms
are compared by performing the Fast Fourier Transformation (FFT) on the acceleration of the
reference commands. As shown in Fig. 13, the acceleration of C2 motion commands has more
content at higher frequencies, which has a higher potential to excite resonance modes of the
feed drive than the C3 motion commands.

In order to further evaluate the effects of different corner smoothing algorithms to the closed loop
system of machine tools, the actual accelerations are measured with an accelerometer attached
to the table during experiments. By taking the X-axis as an example, the FFT results of the
measured accelerations are shown in Fig. 14. It can be seen that the C3 motion commands
excite the resonance modes of the closed loop system less than the C2 motion commands, which
match well with the FFT results of the reference accelerations as shown in Fig. 13.

In addition to decreasing vibrations, C3 motion commands show improvements in tracking
accuracy on each axis. The drives in both the C3 and C2 cases are controlled by the same
PID controller at a sampling frequency of 1kHz as shown in Fig. 15, where Ka is the current
amplifier gain and Kt is the torque constant of the motor. The equivalent inertia and viscous
damping reflected at the motor shaft are J and B , respectively. The ball-screw transmission
gain from angular to linear motion is Rg. The non-linear friction disturbances are identified and

compensated by a feed-forward compensation [29], where Tf is the real and T̂f is the estimated
non-linear friction.

The maximum values of absolute tracking errors at different corners are presented in Fig. 16,
and specific tracking error values of the first corner are summarized and compared in Table 2.
It is observed that the proposed C3 continuous corner smoothing algorithm shows reduction in
maximum axis tracking errors for all the drives when compared against the C2 continuous case.
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Fig. 12. Comparison of the C2 and C3 reference jerk for the four-segment tool path
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Fig. 13. FFT comparison of C2 and C3 reference accelerations for the four-segment tool path
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Fig. 14. FFT comparison of measured accelerations at the X-axis in experiments
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Due to a higher degree of smoothness from the C3 trajectory, saturation of higher order limits
and excitation of resonance modes is avoided, resulting in better tracking accuracy.
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Fig. 16. Comparison of the maximal tracking errors of the four-segment tool path in different
situations

Table 2. Tracking errors in different situations.

Axis X-axis Y-axis Z-axis A-axis C-axis

Max‖C3Error‖ 118.9(µm) 167.1(µm) 220.3(µm) 1.919(mrad) 0.998(mrad)
Max‖C2Error‖ 140.5(µm) 182.1(µm) 232.0(µm) 2.086(mrad) 1.185(mrad)
Max‖C3Error‖
Max‖C2Error‖ 84.7% 91.8% 95.0% 92.0% 84.2%

4. Conclusion

Analytical and high order continuous corner smoothing algorithms are important to guarantee
both high calculation efficiency and good dynamic performance. This paper develops an ana-
lytical C3 continuous corner smoothing algorithm of 5-axis tool paths. The C3 continuity, the
constraints of maximal approximation errors, and the synchronization of the tool tip position
and tool orientation are all guaranteed by using the proposed algorithm. When compared with
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existing C3 continuous corner smoothing algorithms, the proposed algorithm can calculate all
control points of the locally inserted tool tip position and tool orientation splines analytically,
and the time consuming iterative algorithms required in previous works are avoided. Thus,
the calculation efficiency is improved in the proposed corner smoothing algorithm and makes
it suitable to on-line calculation. On the other hand, when compared with existing analytical
corner smoothing algorithms of 5-axis machine tools, the proposed algorithm can guarantee C3

continuity of the smoothed tool path. C2 trajectories result in discontinuous jerks with higher
amplitudes, which can excite the resonance modes of the closed loop system more than C3

interpolation. As a result, the C3 trajectory has a potential to decrease tracking errors because
smoother trajectory avoids demanding discontinuous and high torque from the drive motors.
Experiments on an in-house developed 5-axis CNC platform verify that the maximal corner
smoothing errors of both tool tip position and tool orientation are constrained, and the tool
path generated by using the proposed C3 continuous corner smoothing algorithm results in
comparatively lower frequency content in acceleration and higher tracking accuracy than the
C2 continuous algorithm.
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Appendix A. Derivation of Eq. (14)

By noting the tool tip position as P (u) = [Px(u), Py(u), Pz(u)]T, the derivatives of spline pa-
rameter u with respect to the tool tip displacement s can be evaluated as:



du

ds
=

1(
ds
du

) =
1∥∥dP
du

∥∥ =

((
dPx
du

)2

+

(
dPy
du

)2

+

(
dPz
du

)2
)−1/2

=
1

f(u)
,

d2u

ds2
= − f ′(u)

(f(u))2
du

ds
= − f ′(u)

(f(u))3
,

d3u

ds3
=

3(f ′(u))2 − f(u)f ′′(u)

(f(u))5
,

(A.1)

where
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

f(u) =

∥∥∥∥dPdu
∥∥∥∥ ,

f ′(u) =

(
dP
du

) (
d2P
du2

)T∥∥dP
du

∥∥ ,

f ′′(u) =

∥∥dP
du

∥∥2((d2P
du2

)(
d2P
du2

)T
+
(
dP
du

) (
d3P
du3

)T)
−
((

dP
du

) (
d2P
du2

)T)2

∥∥dP
du

∥∥3 .

(A.2)

Based on the B-spline function of the tool tip position in Eq. (1), the differentials of the tool
tip position with respect to the spline parameter at u = 0 are



dP

du

∣∣∣∣
u=0

= 10(P1 − P0) = 10
−−−→
P0P1,

d2P

du2

∣∣∣∣
u=0

= 80P0 − 120P1 + 40P2 = −80
−−−→
P0P1 + 40

−−−→
P1P2,

d3P

du3

∣∣∣∣
u=0

= −480P0 + 840P1 − 480P2 + 120P3 = 480
−−−→
P0P1 − 480

−−−→
P1P2 + 120

−−−→
P1P3.

(A.3)

Combining with Eq. (6),
(∥∥dP

du

∥∥)∣∣
u=0

= 5lp,
d2P
du2

∣∣∣
u=0

= 0, d3P
du3

∣∣∣
u=0

= 0 are obtained.
(∥∥dP

du

∥∥)∣∣
u=1

=

5lp,
d2P
du2

∣∣∣
u=1

= 0, d3P
du3

∣∣∣
u=1

= 0 can also be derived analogously. Thus, Eq. (A.2) turns out to be

f(u)|u=0,1 = 5lp, f ′(u)|u=0,1 = 0, f ′′(u)|u=0,1 = 0. (A.4)

Substituting Eq. (A.4) into Eq. (A.1), the differentials of the spline parameter related to the
tool tip displacement at u = 0, 1 are obtained as



du

ds

∣∣∣∣
u=0,1

=
1

5lp
,

d2u

ds2

∣∣∣∣
u=0,1

= 0,

d3u

ds3

∣∣∣∣
u=0,1

= 0.

(A.5)

Hence, Eq. (14) has been derived.

24



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Appendix B. Derivation of Eq. (19)

By considering
∥∥∥−−−→Θ0Θ1

∥∥∥ = 0.5loa and
∥∥∥−−−→Θ5Θ6

∥∥∥ = 0.5lob from Eq. (11), Eq. (18) is easily to be

transferred to



loa
lp

=

∥∥∥−−−→θ1Θ0

∥∥∥∥∥∥−−−→p1P0

∥∥∥ ,
lob
lp

=

∥∥∥−−−→Θ6θ3

∥∥∥∥∥∥−−−→P6p3

∥∥∥ .
(B.1)

From Eq. (6) and Eq. (11), we have
∥∥∥−−−→Θ0Θ3

∥∥∥ = 2.5loa,
∥∥∥−−−→P0P3

∥∥∥ = 2.5lp,
∥∥∥−−−→Θ3Θ6

∥∥∥ = 2.5lob,∥∥∥−−−→P3P6

∥∥∥ = 2.5lp. Thus



loa
lp

=

∥∥∥−−−→Θ0Θ3

∥∥∥∥∥∥−−−→P0P3

∥∥∥ ,
lob
lp

=

∥∥∥−−−→Θ3Θ6

∥∥∥∥∥∥−−−→P3P6

∥∥∥ .
(B.2)

Combining Eq. (B.1) with (B.2),



loa
lp

=

∥∥∥−−−→θ1Θ0

∥∥∥+
∥∥∥−−−→Θ0Θ3

∥∥∥∥∥∥−−−→p1P0

∥∥∥+
∥∥∥−−−→P0P3

∥∥∥ ,
lob
lp

=

∥∥∥−−−→Θ6θ3

∥∥∥+
∥∥∥−−−→Θ3Θ6

∥∥∥∥∥∥−−−→P6p3

∥∥∥+
∥∥∥−−−→P3P6

∥∥∥ .
(B.3)

Considering that



∥∥∥−−−→θ1Θ0

∥∥∥+
∥∥∥−−−→Θ0Θ3

∥∥∥ =
∥∥∥−−→θ2θ1∥∥∥,∥∥∥−−−→p1P0

∥∥∥+
∥∥∥−−−→P0P3

∥∥∥ =
∥∥−−→p2p1∥∥,∥∥∥−−−→Θ6θ3

∥∥∥+
∥∥∥−−−→Θ3Θ6

∥∥∥ =
∥∥∥−−→θ2θ3∥∥∥,∥∥∥−−−→P6p3

∥∥∥+
∥∥∥−−−→P3P6

∥∥∥ =
∥∥−−→p2p3∥∥,

(B.4)
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Eq. (B.3) turns to be


loa =

∥∥∥−−→θ2θ1∥∥∥∥∥−−→p2p1∥∥ lp,
lob =

∥∥∥−−→θ2θ3∥∥∥∥∥−−→p2p3∥∥ lp.
(B.5)

Hence, Eq. (19) has been derived.
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Highlights

1. An analytical C3 continuous corner smoothing algorithm of five-axis tool paths is developed.

2. Maximal approximation errors from corner smoothing of the tool tip position and tool
orientation are constrained.

3. The synchronization of the tool tip position and tool orientation is mathematically guaran-
teed.

4. Control points of the inserted local splines are solved analytically without any iterative
calculation.

5. Experiment results show the proposed algorithm has higher tracking accuracy and lower
acceleration frequency content at higher frequencies than the C2 continuous algorithm.


