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1  Introduction

Recently, robots that have many degrees of freedom have 
drawn considerable attention. Snake-like robots or robots 
of serially connected crawlers are typical examples. In gen-
eral, these robots have high mobility that is realized due to 
the many degrees of freedom while in motion. So, they can 
be operated in complex and quick-shifting environments 
like rubble, and they are expected to be used for practical 
applications such as rescue operations [1–8].

On the other hand, the application of reinforcement 
learning for controlling real robots also attracts consider-
able attention because robots can learn effective behavior 
by trial-and-error [9–11]. Therefore, by applying reinforce-
ment learning to a robot with many degrees of freedom, 
an autonomous robot with high mobility can be realized; 
such a robot will be very useful for various tasks such as 
rescue operations. However, conventional reinforcement 
learning has a serious problem when applied to robots with 
many degrees of freedom that operate in complex environ-
ments. These are known as the state explosion problem 
and the lack of generalization ability. The size of the state-
action space increases exponentially with an increase in the 
robot’s degrees of freedom as well as the complexity of the 
environment. As a result of this increase, learning cannot be 
completed within a reasonable time limit [10]. In addition, 
if some part of environment is changed, additional learning 
is required. So, it is highly difficult to apply reinforcement 
learning to robots operating in a dynamic environment.

In contrast, animals can learn by trial-and-error in spite of 
the many degrees of freedom afforded by their bodies and 
despite the fact that the daily environment that they live in, 
and contend with, is very complex and dynamic. How ani-
mals are able to cope with such a challenging environment 
is still an open question. But in embodied cognitive science 
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[12], or ecological psychology [13], it is thought that the 
body plays an important role in realizing adaptive behaviors.

In this paper, we have designed the mechanical body 
of a robot such that it can abstract state-action space, on 
the basis of our previous work [14, 15]; this design is 
expected to solve the problems outlined above. Using the 
proposed mechanism, the size of the state-action space can 
be reduced drastically, so that it is possible for the robot 
to learn in real time. Moreover, the robot’s obtained policy 
is generalized and is applicable without additional learning 
even if the environment is changed dynamically.

To demonstrate the effectiveness of the proposed mecha-
nism, we conduct experiments. The task of the robot is 
to learn the effective behavior for moving towards a light 
source in a dynamic environment. There are many unknown 
obstacles in the environment, and the obstacles move up 
and down constantly. The learning process is performed in 
both the static and dynamic environments, and the obtained 
policy is applied to other environments as well, where the 
obstacles are placed in different positions.

2 � Task and environment

Figure 1 shows a dynamic environment. The environment 
is composed of 24 modules, and each module has two 
obstacles that move vertically. The range of movement of 
the obstacles ranges from a height of 5–12 cm. The dimen-
sions of the environment are 240 cm (length) and 180 cm 
(width). We employ five different modules, as shown in 
Fig. 2, all of which are placed randomly. There is one light 
source that the robot must move towards, and the aim of 
the task is to learn effective behavior for homing in, on the 
light source within this 3D dynamic environment.

3 � Proposed method

3.1 � General framework

Figure 3 shows the general framework for the abstraction of 
the state-action space that we proposed in past studies [14, 

15]. The robot consists of the generalization module and the 
learning module. A remarkable concept central to the pro-
posed framework is that the generalization module is real-
ized by the body of the robot itself instead of being imple-
mented in a remote computer. The body is designed such 
that the necessary calculations for generalization are per-
formed by utilizing the physical properties of the real world. 
The abstracted information is passed to the learning module 
in a computer, where the learning process is actually com-
pleted, with the selected action being fed back to the gener-
alization module. The generalization module embodies the 
abstracted action that enables the complex movement of the 
robot. In the following subsection, we discuss the design the 
body of a snake-like robot on the basis of this framework.

3.2 � Hardware design of body

In this study, we develop a 3D snake-like robot by improv-
ing our previous robot [14]. Figure 4 shows the mechanism 
of the robot. The robot is composed of three links that have 
crawlers. The joints are realized by rubber poles and are 

Fig. 1   Example of a dynamic operating environment

Fig. 2   Layout pattern of the obstacles

Fig. 3   General framework
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moved passively. Two wires are installed on both the sides, 
and their length can be adjusted by an active pulley that is 
mounted on the rear end. Upon turning the active pulley, 
one wire is rolled up while the other wire is loosened. This 
causes the body of the robot to turn, as shown in Fig. 5.

Due to the passive nature of the joints and the constrain-
ing influence of the wires, the robot can adapt to a bumpy 
and unstable environment. The robot’s direction of move-
ment can be controlled by just actuating the active pulley.

3.3 � Hardware design for sensing

We employ 18 CdS cells for detecting the direction that 
the light is coming from, as shown in Fig.  6. Each mod-
ule is composed of 6 CdS cells (Fig.  6a), and three such 
modules are embedded on the robot as shown in Fig. 6b). 
The CdS cells have directional characteristics and their lay-
out is hemispherical. Therefore, the light direction can be 
obtained by Eq. (1):

Fig. 4   Outline of robot

Fig. 5   Mechanism for pulling wires

Fig. 6   Sensing system using CdS cells

Fig. 7   Developed robot
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where Rij denotes the electrical resistance of the j-th CdS 
cell in the i-th module. x represents the center of gravity of 
the light intensity and is equivalent to the light direction. 
For more details, please refer to [14].

3.4 � Developed robot

Figure  7 and Table  1 show the developed robot and its 
specification. The passive joints are realized by using 

rubber poles. To obtain adequate elasticity, the dimen-
sions of the rubber poles are very important. However, it 
is very difficult to determine the dimensions theoretically. 
So, in this paper, these sizes were tuned by preliminary 
experiments.

Figure 8 shows the result of the preliminary experiment 
performed for examining the capability of the sensor mod-
ule. From the results, we find that the horizontal direction 
of the light can be obtained from the output voltage.
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4 � Experiment

4.1 � Setting of reinforcement learning

We employ typical Q-learning [9] as reinforcement learn-
ing. Equation (2) represents Q-learning [9].

where s is the state; a, the action; r, the reward; α, the 
learning rate; and γ, the discount rate.

We set α as 0.5 and γ as 0.9. The action is selected by 
using the ε–greedy method, and the probability of random 
selection of the action is 0.1.

One trial was conducted for a duration of 24 s, and cal-
culations were performed every action is conducted by 
using Eq. (2).

Table 2 and Fig. 9 show the state of the light direction. 
The values are the outputs of Eq.  (1). Table  3 shows the 
state of the body. These values are the angle of the active 

(2)
Q(s, a) ← (1− α)Q(s, a)+ α{r(s, a)+ γ max

a′
Q(s′, a′)}

pulley. Table 4 shows the actions. While the robot is mov-
ing towards the light source (the state of the light direction 
is 2 and the value of the angle of the active pulley is 2), a 
reward of 100 is assigned for any action. When the robot 
loses the light source (light source goes out of the perceiv-
able range), a negative reward −100 is assigned for any 
action. The trial then ends, and the next trial starts from ini-
tial position.   

4.2 � Experiment

The obstacle is placed randomly as shown in Fig. 10, and 
we conduct the learning process by using a real robot. We 
consider two cases. One is a static environment where the 
obstacles do not move. The other is a dynamic environment 
in which objects move vertically. The learning process is 
conducted separately for each case.

After the learning process is completed, we apply the 
policy that is obtained in the static environment to the 
dynamic environment without additional learning, and we 
confirm the generalization capabilities of the proposed 
framework.

Figure 11 shows the learning curves, and Figs. 12 and 13 
show the behavior after learning. In both cases, the value 
of the obtained reward has converged during the 40th trial. 

Table 1   Specification of the developed robot

Length 85 cm

Width 13 cm

Height 11 cm

Weight 2 kg

Fig. 8   Output of the sensor module

Table 2   States of the direction of light

State Voltage [V]

0 (0.50, 1.00)

1 (1.00, 1.40)

2 (1.40, 1.60)

3 (1.60, 2.00)

4 (2.00, 2.50)

Fig. 9   States of the direction of light

Table 3   States of the body

State 0 1 2 3 4

Degree [°] −50 −25 0 25 50

State of robot Left bend Straight Right bend

Table 4   Action

Action Motion

0 Turn tail motor by −25° (Robot will turn left)

1 Hold the tail motor (Maintain state of the body)

2 Turn tail motor by +25 (Robot will turn right)
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This implies that the learning can be completed in a rea-
sonable time. From Figs.  12 and 13, we can confirm that 
though the moving direction of the robot is changed by the 
obstacles, the robot can always recover and can move to the 
light source.

From the result, we conclude that the problem of real-
time learning is solved and effective policy is obtained.

Next we consider the generalization capability of the pro-
posed framework. Figure 14 shows an example of behavior 
realized by applying the policy obtained in the static envi-
ronment to the dynamical environment. In this case, there 
was no additional learning. Nevertheless, the robot could 
move to the light source. This implies that the obtained 
policy can be generalized and is applicable to unknown but 
similar environments without requiring re-learning.

To confirm the generality, we compare state transitions. 
Figure  14 shows an example of a state transition graph 
in the static environment, and Fig.  15 shows one for the 
dynamic environment. From these figures, we found that 
similar policy was obtained. The policy is very simple, 
it is “If the light is on the left (right), then turn the motor 
to the left (right)”. The differences of the environment is 
abstracted by the body. So, the robot can behave effectively 
by the simple obtained policy even in such complex envi-
ronment. We can confirm that effective generalized policy 
was obtained.

5 � Conclusion

In this study, we examined autonomous control of a multi-
crawler robot in a dynamic environment through the use of 
reinforcement learning. To solve the problems inherent to 
conventional approaches, which pertain to real-time learn-
ing and a lack of generality, we redesigned the mechanical 
body to abstract state-action space by utilizing the physi-
cal properties of the body. To demonstrate the effectiveness 
of our proposed approach, a prototype robot was developed 
and experiments were conducted. As a result, the behav-
ior for moving towards a light source was learned within 
a reasonable time limit and the obtained policy could be 
generalized.

Fig. 10   Environment

Fig. 11   Learning curve

Fig. 12   Behavior after learning (static environment)
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We conclude that the proposed framework is effective 
for developing autonomous robots that operate in dynamic 
environments.
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