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 Abstract  

Promoting recommender systems in real-world applications requires deep 

investigations with emphasis on their next generation. This survey offers a 

comprehensive and systema-tic review on recommender system development life 

cycles to enlighten researchers and practitioners. The paper conducts statistical 

research on published recommender systems indexed by Web of Science to get an 

overview of the state of the art. Based on the review ed findings, we introduce 

taxonomies driven by the following five phases: initiation (arch-itecture and data 

acquisition techniques), design (design types and techniques), develop-ment 

(implementation methods and algorithms ), evaluation (metrics and measurement 

techniques) and application (domains of applicatio ns). A layered framework of 

recomm-ender systems containing market strategy, data, recommender core, 

interaction, security and evaluation is proposed. Based on the framework, the 

existing advanced humanized techniques emerged from computational intelligence 

and some inspiring insights from computational economics and machine learning 

are provided for researchers to expand the novel aspects of recommender systems.  

Keywords: Taxonomy, systematic review, computational intelligence, 

recommendation techniques, similarity computation algorithms, evaluation. 

1. Introduction  

Our global information society is increasingly producing large amounts of data 

which makes finding useful and relevant information at the right moment difficult. 

We face, daily, various options about services and products that need to be filtered 



based on our preferences. Recommender systems have emerged to provide a 

means for handling vast amount of data on the web by retrieving the most relevant 

information in a customized manner. These systems aim to provide personalized 

models by gathering user activities and/or item data to assist users per their 

preferences expressed either explicitly or implicitly. Recommender systems 

generate a list of items (or people) to be recommended to the users.  

Historically, the area of recommender systems was part of data mining and 

information filtering. Later, in the 90s, it has been recognized as a full-fledged 

research area. Currently, major companies such as Amazon, Netflix, Launch, 

Google, YouTube and Facebook are heavily using and relying on recommender 

systems to sell their products and services by recommending the most relevant 

items to the users, leading to a significant increase of revenue. Due to its 

economical role, Netflix announced the Netflix Grand Prize (1 Million US Dollars), 

an open competition on the best collaborative recommender system to predict the 

ratings of the films based on the users’ preferences. BellKor’ Pragmatic Chaos won 

the Netflix 2009 Grand Prize by providing prediction at only 10.06% of accuracy [1]. 

Another successful example is the Chris Anderson’s book, “Touching the Void”, that 

became the bestselling book on Amazon a few years after its publication thanks to 

the collaborative recommender system employed on Amazon website [1]. 

Among the earliest published surveys of recommender systems, a classification of 

recommender system techniques and an architecture for hybrid recommender 

systems have been provided by Burke [2, 3] in 2002 and 2007. In 2005, 

Adomavicius et al. [4] conducted another survey on limited techniques including 

content-based, collaborative and hybrid filtering. Following the discussion of few 

related challenges, the authors suggested the incorporation of the contextual 



information and support for multi-criteria ratings. In 2011, Shani et al. [5] studied 

the efficiency and effectiveness of recommender systems and proposed a complete 

list of measures for evaluating their performance in theory and application. 

Though, the use of these measures by researchers and practitioners has not been 

explored yet. In an attempt to study the algorithmic aspect of recommender 

systems, a survey on recommendation algorithms and user satisfaction has been 

conducted by Konstan et al. [6] in 2012. However, the survey does not cover a 

variety of algorithms and lacks a comprehensive classification of the covered ones. 

Bobadila et al. (2013) [7] provided a through survey on recommender system’s 

theory with specific attention to collaborative filtering techniques and algorithms. 

The authors summarized the evolution of recommender systems in the context of 

the recent web advancements (Web 2.0 and 3.0). In a recent study by Lu et al. [8] 

in 2015, eight different applications of recommender systems were identified, 

namely e-government, e-business, e-commerce/e-shopping, e-library, e-learning, e-

tourism, e-resource services and e-group activities. Although recommender 

systems are receiving great interest in business and real life applications, further 

research and development are still needed for these systems to be efficiently 

applied in complex settings and many challenging issues are yet to be addressed 

[9].  

While the existing reviews and surveys on recommender systems focus mainly on 

relevant techniques and algorithms, our paper tries to draw a broader picture and 

aims to illustrate the evolvement of traditional techniques to advanced and 

intelligent methods to guide researchers and practitioners with an insight vision 

towards the next generation of such systems. To avoid loss of generality and 

provide new advancements concealed from past surveys, the paper considers 



various ways of recommender system develop-ents and analyzes their different 

advantages and disadvantages to deliver quality and effective systems. In fact, the 

paper provides a comprehensive review on how to engineer recommender systems 

from the system development life cycle viewpoint. It also presents taxonomies of 

recommender systems during the following five phases: initiation, design, 

development, evaluation and application. Furthermore, the paper discusses 

initiatives and primary approaches and introduces future research opportunities 

from different perspectives ranging from engineering to computer science, 

mathematics, business and computational economics.  

Another distinct feature of this paper is its investigation of existing research papers 

guided by the aim to extract some relevant and informative statistical data about 

the venues of published work and active groups in this domain to get an overview 

of the state of the art and motivate the significance of this area of research. This 

research contributes as follows:  

1. Introducing comprehensive taxonomies driven by different ways of developing 

recom-mender systems.  

2. Discussing relevant and important techniques and algorithms used to develop 

these systems while highlighting the related challenges.  

3. Exploring evaluation techniques and potential metrics.  

4. Comparing the alternative approaches and techniques to expose the strengths 

and weaknesses.  

5. Investigating how computational intelligence contributed to improve 

recommendation-s.                                          6. Proposing new insights into this field.  

 



The rest of the paper is organized as follows. The methodology and process of 

developing taxonomies are discussed in Section 2. Section 3 presents statistics of 

research studies conducted in the domain of recommender systems. Different 

taxonomies of the recommender system’s life cycle are provided in Section 4. New 

insights and future research opportunities to develop the next generation of 

recommender systems are identified and discussed within a proposed layered 

framework in Section 5. Finally, Section 6 concludes the paper. 

2. Review Methodology and Taxonomy Development Process  

The paper is organized in two parts. First, the status of research publications in 

recommender systems is presented. The Web of Science database by Thomson 

Reuters has been selected for this statistical investigation. Several keywords 

including, but not limited to “recommender system”, “recommender technique”, 

“recommendation agent”, “recommendation system”, “recommendation method”, 

“collaborative filtering”, “content-based”, “hybrid recommender”, “knowledge-

based recommender”, “user modeling” and “user profiling” have been explored in 

the date range between 2005 and 2015. The retrieved papers are analyzed in 

Section 3. Second, a systematic survey was performed on recommender systems. 

Unlike the first part, for the survey part of the paper, we did not limit our study to 

any time to ensure its comprehensiveness. The following steps have been 

conducted in our systematic review: 

Search: a preliminary investigation was performed on “Scopus” and “Web of 

Science” databases with the same keywords mentioned above. Specific attention 

was given to books and survey papers.  

Paper selection: when selecting a paper among the retrieved papers, we considered 

inclusion and exclusion criteria. All the retrieved survey papers and books were 



considered for the review. For a research paper to be included in our survey, it 

must introduce a new approach, technique, algorithm, evaluation measure or 

application. Otherwise, the paper was opted out. Among the selected papers, those 

using methods having very low popularity were eliminated.  

Paper review: Taxonomy development is not an easy task. In this paper, we follow 

the taxonomy development steps in information systems provided by Nickerson et 

al. as depicted in Figure 1 [10]. As argued by the authors, being concise, sufficiently 

inclusive, comprehensive and extensible are the four quality characteristics for a 

desired taxonomy. The taxonomy development task is broken into the following 

steps:  

1- Investigate a subset of objects which should be classified; they are probably 

known by the developer or easily accessible through a literature review.  

2- Identify general characteristics of the collected objects and investigate in which 

ways they are similar or what distinguishes them from each other.  

3- Assemble the characteristics into dimensions to form an initial taxonomy; each 

dimension consists of a set of characteristics that are mutually exclusive and 

collectively extensive.  

4- Conceptualize new characteristics and dimensions that might not have been 

identified or present previously. In this process, some dimensions or characteristics 

might be deduced or even combined.  

5- Examine the objects with the new perspectives of characteristics and 

dimensions, then revise the taxonomy and create a new version.  

6- Discover missing objects in the taxonomy after it is completed and used.  

7- Design new objects with the missing characteristics. 



3. Status of Recommender Systems Research  

Overall, 5333 publications were retrieved from the Web of Science database which 

were related to recommender systems. Figure 2 presents the number of 

publications and their citations in each year since 2005 until May, 2015. The trend 

of the number of publications is showing a slight increase since 2013 despite two 

periods of increase. Meanwhile, citations are expected to rise as Figure 2 is 

illustrating. 

From the retrieved publications, 58% are Conference papers and about 41% are 

published in academic journals. Very few publications are review studies or books 

as shown in Table 1. Even though the dominant language is English, a considerable 

number of journal papers are published in other languages.  



 

 

 

 

 

 

As shown in Figure 3, the country that contributed the most in this field is China. 

China has published 1026 research articles followed by the United States that 

contributed with 592 publications. This is not surprising since according to a report 

of science watch by Thomson Reuters [11], the USA and China, in this order, have 

the highest amount of papers and citations in all research fields. Then Spain, South 

Korea, Taiwan, Germany, Italy, Japan, India and Canada are the major contributors 

to this research field. Spain, Germany, Italy and Japan are among the top 10 places 

in the overall number of publications and citations subject wide as well. South 

Korea, India and Taiwan are listed among the top 20 in publications and citations. 

However, to have a fair judgment of countries’ publications, we need to consider 

multiple criteria such as science funding, population size, GDP, education levels, 

facilities and language advantages which are beyond the scope of this study. 

 

 

 

 

 

 

 



 

As expected, the National Natural Science Foundation of China had the largest 

investment in the research conducted on recommender systems. The European 

Union, the National Science Foundation of USA, and the Swiss National Science 

Foundation are the major funding agencies which contribute to recommender 

systems advances. The fifth position is held by another Chinese agency. The exact 

numbers of research papers funded by these agencies are reported in Figure 4.  

Since recommender systems research is interdisciplinary, we investigated the 

research fields of the retrieved publications to understand their content relevancy. 

As expected, computer science and computer engineering are the main research 

fields of the considered publications. Social media is receiving the highest attention 

from researchers, with 371 publications. Particularly, many researchers have used 

social network-based techniques [12]. Moreover, several research proposals have 

been produced on recommendation algorithms using mathematical models; 

making mathematics the second most used field (218 of total publications). 

Recommender systems have strongly contributed in the business evolvement of 

multiple companies in the way of marketing or even providing public services [6]. 



Therefore, business and economic considerations occupy the third place of the 

most searched fields with 198 publications. Education and health have also tried to 

get advantages of recommender systems in providing their 5 services which were 

cited in 139 and 62 publications respectively. Later, we will introduce the other 

applications of recommender systems which have potential and have not been well 

utilized yet. 

4. Recommender System Taxonomy  

4.1) Initiation  

The first step to develop a recommender system is to think of the right approaches 

about the system and available data. Figure 5 presents four different approaches 

which might be considered as the initial task for the development of a 

recommender system. They include what kind of data we have or we need, how to 

obtain the data and what are the system structure requirements. 

 



Target of data  

The data target user, item or context. Most of the recommender systems applied in e-

commerce follows the user-centered approach [13]. This approach determines 

similarities between different users and stores user-to-user relations. From the sales 

point of view, this approach is advantageous since it collects valuable user information 

which can be used in customer relationship management. On the other hand, it is not 

necessarily preferred on the user side due to privacy concerns, which may impede user 

participation. When it comes to applications with strong privacy affairs, item-centered 

recommender systems are a better choice [14]. These systems observe users’ usage of 

items anonymously and keep the data as item-to-item relations. There is another 

complementary approach which collects contextual data along with the above-mentioned 

approaches. In recommender systems, contextual data is considered 6 as any additional 

data which has a direct impact on the relevance of recommendations such as time, 

location, nearby people or objects.  

Recommendations may be provided for a single user or may target a group of users, such 

as recommending a travel package for a family. Most of recommender systems consider 

an individual user and deal with the optimal options for a single user. However, 

recommending to a group of users would be more complicated since it should combine 

users’ models and be optimal for all users [15]. Providing recommendations to users 

requires certain type of identification from those users. User observation or user explicit 

input is a part of this identification. As much as the system acquires information regarding 

the user, the recommendations would be more personalized. It is worth mentioning that 

there can be a case where the system does not have any information regarding a specific 



user. In this case, the system would generate non-personalized recommendations for the 

unknown user [16].  

Mode of acquisition  

The type of the data stored in a database may vary in different aspects such as ratings, 

items features and content, registration information of users, social relationships and so 

on. If the required data is not currently available in the database, then it should be 

collected in two different ways [17]:  

Explicit: the input data comes from factual data about items or users (e.g., item 

features, user demographic data and time) or a direct user feedback, such as ratings to 

items made by users.  

Implicit: the input data is based on the behavioral usage such as a user’s purchase 

behavior, browser session location, number of times a user has heard a song or detection 

of user’s feeling about the song [18].  

The explicit method has the advantage of simplicity, but may fail in cognitive measures to 

catch the users’ feelings about items. The implicit method does not require a direct user 

involvement, although bias is likely to happen such as phone call interruption while 

reading.  

Decision criteria  

In a recommender system, the items of interest and the user preferences are represented 

in the forms of singular or multiple attributes. Particularly in the systems where 

recommendations are based on the opinions of others, it is crucial to take into 

consideration the multiple criteria that affect the users’ opinions to make effective 

recommendations. Researchers have used Multi Criteria Decision Making (MCDM) 

methods to facilitate the process of recommendation creation [19]. This is specifically 



practical when there is a group of users. The commonly utilized techniques for MCDM are 

1) finding Pareto optimal or multiple criteria linear combinations; and 2) reducing the 

criteria to a single-criterion solution by utilizing the most important criterion or using one 

criterion at each time [20].  

Architecture  

Two types of recommender system architectures are distinguished: centralized and 

distributed. Centralized means that the recommender system is located in one particular 

place. In a distributed architecture, the system components are distributed over several 

locations. Peer-to-peer architecture is an example of distributed architecture. Distributed 

algorithms are not as accurate as their centralized versions that have complete user 

profile information [21]. However, disaggregation of user information in distributed 

settings can solve the privacy issues to a large extent. Distributed recommender systems 

are not experienced with yet in real world applications compared to the centralized ones 

[22]. The cooperation of users is very important and necessary to make the system run 

properly.  

4.2) Design  

The next step is to specify a technique depending on the application. Different techniques 

are shown in Figure 6. There are various classifications of recommender system 

techniques, and the most recognized one is defined by Burke as followed [3]: 

Content-based: in this technique, the recommender system analyzes a set of descriptions 

of items that a user has rated in the past. Then, it builds a user model or profile of the 

users’ interests according to the features of the rated objects and matches the attributes 

of the profile against the attributes of a content of an object. Thus, the system learns to 

recommend items similar to the ones liked in the past. For example, if a comedy movie is 



given a positive rating by a user, then the system learns to recommend other movies 

belonging to the same category.  

 

Collaborative filtering: collaborative techniques are the most widely known and used in 

recommender systems. This approach recommends items to the user that were liked in 

the past by other users with similar tastes. The recommendations are produced based on 

ratings or usage patterns without any need of vital information about users or items. The 

following four filtering approaches are discussed in collaborative filtering: 

User-based collaborative filtering measures the correlation between pairs of users. This 

method has been adopted in making high quality predictions and recommendations, but 

it failed in practice for online applications. It performed too slowly to process hundreds of 

thousands or millions of users [13].  



-based collaborative filtering is an alternative method, assigning correlations 

between items and recommending items with high similarity to the set of items already 

rated by the user. The item-based algorithms tend to be faster in terms of online 

response time than the user-based algorithms, specifically, if the item relationships are 

pre-computed. The item-based algorithm, which also fits nicely into unary rating sets, 

quickly became popular in commercial applications [13]. Unary datasets are those with 

positive or no information at all, for instance sales data.  

-based systems work only with the matrix of user-item ratings and use any 

rating generated before the referral process. They mostly use similarity metrics to 

measure the distance between two users or two items, based on each of their ratios. 

Memory-based methods suffer from scalability problems, since they need to process the 

whole data to make a single prediction, which requires high computing resources and 

makes the process time consuming [23].  

-based systems create a model using the obtained information to generate the 

recommendations. Model-based systems are time consuming in the preprocessing step, 

but once the model is generated, the recommendations can be generated instantly. 

Model-based systems have disadvantages as well. Some of the models are very complex 

as they should estimate multi-dimensional parameters. This leads to high sensitivity in 

terms of data changes. There is a risk of mismatching the model with the data, which 

causes irrelevant recommendations, so not any theoretical model has the potential to be 

applied in real world applications [24].  

Demographic: demographic recommender systems classify users based on their personal 

attributes to provide recommendations per demographic profiles. The underlying theory 

is that different demographic niches should receive their own specific offers. This type of 



recommender systems acts somehow similar to content-based, but the benefit over this 

approach is that unlike collaborative and content-based techniques, it does not 

necessarily need user ratings history [25].  

Knowledge-based: this approach focuses on knowledge sources that are not revealed by 

content-based and collaborative filtering techniques. It generates recommendations 

based on specific domain knowledge of the users’ requirements, the items’ features and 

how these features can meet users’ needs and preferences. This technique tends to act 

better than the other techniques in the beginning of their employment as they do not use 

any ratings. However, in order to keep this superiority, they should be equipped with 

learning components to exploit the human/computer interaction logs [2]. There are two 

schemes for knowledge-based recommendations:  

-based: it uses similarity metrics to retrieve items similar to users’ needs.  

-based: it exploits a set of recommendation rules to find out the items which 

satisfy the users’ requirements.  

Both approaches are similar in terms of the recommendation process: the user must 

specify the requirements, and the system tries to identify a solution. Some studies 

investigated utility-based recommender systems which can be inferred as a specific type 

of knowledge-based recommender system [26]. Generally, utility-based recommendation 

uses a constraint-based approach and sometimes it combines it with case-based methods 

.Utility-based recommendations compute the utility of each item for a specific user. It 

uses features of items as background data, produces utility functions of items from users 

to explain user preferences, and utilizes the function to rank items for a user.  

Context-based: it focuses on additional contextual information including time, location, 

wireless sensors and so on. The contextual data may be collected using explicit and 



implicit feedback or data mining techniques [17]. For example, mobile applications use 

mostly geographic information to generate recommendations by considering the location 

of the user. For incorporating contextual information into the recommendation process, 

three methods of contextual pre-filtering, post-filtering and modeling have been used 

[17]. In the pre-filtering method, contextual information is used to select or construct the 

relevant dataset for rating prediction. Post-filtering ignores the contextual information 

initially. However, after doing the rating prediction using the entire data, it adjusts the 

result using contextual information for each user. Contextual modeling directly uses 

contextual information in the modeling technique as a part of the rating estimation.  

Trust-aware (Community-based): this type of systems considers preferences of the users’ 

friends for its recommendation. It is generally admitted that people tend to accept the 

recommendations from their friends rather than from similar anonymous people [27]. 

The day-to-day growing popularity of social networks raised the interest in community-

based recommender systems also called social recommender systems. In general, the 

system obtains information about the social relations of the user and her friends’ 

preferences and ratings to provide its recommendations.  

Hybrid: these recommender systems combine the above-mentioned techniques to 

achieve higher performance. A hybrid recommender system, merging two techniques, 

tries to use the advantages of one to fix the disadvantages of the other. For example, 

collaborative filtering is not able to handle new-items without any ratings, while content-

based approach does not face problems with new items since the recommendations are 

based on the items features which are easily available. There are different methods for 

hybridization [2]: Weighted hybrid – this hybrid technique uses a linear formula to 



combine scores of each recommendation component. Thus, the components should have 

the ability to generate recommendation scores that are linearly combinable.  

– in this approach, the system selects one recommendation technique 

among some candidates. There are different selection criteria, such as confidence value 

or external criteria, based on the experienced situation. Each component may have a 

different performance in different situations.  

– this approach relies on merging and presenting multiple ranked lists into 

one. Therefore, components should use the core algorithm to produce recommendation 

lists with ranks which can be merged into a single ranked list. The main issue is how to 

generate the new rank scores.  

 

Feature combination hybrid – there are two different recommendation components: 

contributing and actual recommender. The contributing component inserts features of 

one source to the source of the actual recommender. The actual recommender works 

with data modified by the other one.  

– this hybrid is similar to the feature combination hybrids; 

however, it is more flexible and adds smaller dimensions since the contributor produces 

new features.  

-level hybrid – it employs two components; the first one uses the model generated 

by the second as input. This is different from feature augmentation, which uses a learned 

model to generate features as input into the second algorithm. In this approach, 

however, the entire model is the input for the other one.  

– first, this method utilizes one recommendation component to produce 

the ranked list, and then the second component refines the recommendation list.  



Pros & Cons of recommendation techniques:  

Table 2 summarizes the current challenging issues organized in two classes: data and 

algorithms. The challenges are identified based on the features of the used techniques 

with respect to these two classes. In fact, based on the data and algorithms that each 

technique employs, the technique may face specific challenges with different scales. It is 

worth noticing that some of these challenges fall into both classes. Each technique has its 

own advantages and disadvantages and there is no single technique fitting with any 

system in any application. Depending on the application and sensitivity of the 

requirements, a more suitable technique can be selected. The challenges are listed as 

follows: 

User independence. Some systems, such as content-based and demographic 

recommenders, use profile or ratings of the user to build her own profile and it is 

independent of other users [28]. However, collaborative filtering and trust-aware systems 

need extensive user involvement and ratings from other users to find out the similarities 

among them.  

-based 

recommenders are transparent [29]. They can explain how the system works by explicitly 

listing content features that caused the item occurrence. However, some other systems 

are unable to provide justifications for their recommendations. For instance, 

collaborative systems act as black boxes, and they do not provide much transparency.  

generate accurate recommendations. The system reliability is generally lowered when it 

faces new users without ratings. This problem is even more sensitive for learning systems 

[30].  



by any user, so they do not have problems with new items [31]. On the other hand, 

collaborative recommenders rely only on users’ preferences and cannot recommend a 

new item which is not rated yet.  

-based techniques are limited to the number and type 

of features related to the items they recommend [32].  

unexpected. A good content-based technique would not find anything novel since it 

recommends items similar to user profile [4].  

uisition. Most of the techniques can make recommendations according 

to user’s rating, but knowledge-based techniques require obtaining additional knowledge 

before making the recommendations [33]. This is the most challenging issue which 

knowledge-based techniques are confronting.  

 

Data acquisition. The quality of recommendations is totally influenced by the relevancy 

and quality of collected data about users [32]. For explicit data, concerning the security 

and privacy issues, users are not willing to reveal their private and sensitive information 

such as demographic information. Implicit data is also difficult to obtain, for instance 

gathering contextual data in context-aware techniques which demands a high degree of 

interactivity and user involvement.  

improve the quality of their recommendations over time [34]. Techniques that work 

based on given rules, such as knowledge-based recommenders, have consistent 

performance and cannot improve themselves.  



 

 

Stability vs. plasticity (sensitivity to preference changes). Plasticity refers to the system 

capability to learn while reaching a stable state, while stability is the system ability to 

remain stable to disturbances or unimportant input data. Once a user profile has been 

learned and created in the system, it is hard to change its preferences [35]. For instance, 

a person with an interest in eating meat, who becomes a vegetarian will continuously 

receive steak recommendations (for example) for a while, until newer ratings report the 

change.  

recommendations as those with rich history profiles. Mainly, content-based and 

collaborative systems require large historical data to predict user rating. However, some 

systems including knowledge-based do not need any background data [33].  

 happens due to lack of information. In most of the applications, there 

are almost always many users that have rated only a few items. Some recommender 

system techniques such as collaborative-filtering generate users’ neighborhoods using 

their profiles. When the user has rated just a few items, it is difficult to recognize her 

taste and she might be related to wrong neighborhoods [36].  

through their choices, inducing the system to change an item rating would be profitable 

to an interested party. Such efforts to influence the recommendations are called shilling 

attacks [37]. In such cases, anyone may give many positive ratings for their own materials 

and negative ones for their competitors.  



  

4.3) Development  

In this section, we discuss the most popular and important algorithms that have been 

developed so far (see Figure 7). In general, content-based algorithms rely on the following 

steps:  

1. Extracting the item attributes.  

2. Comparing the attributes with the user preferences.  

3. Providing recommendations by matching item characteristics with user preferences.  

 



Vector-based representation and machine learning algorithms are mostly used for 

content-based recommender systems. Collaborative recommendation algorithms, as 

explained earlier in the first phase, have two general structures: 11  

 

memory-based and model-based. Memory-based algorithms are essentially heuristics 

and predict ratings based on the entire previously collected rated items by the users, 

whereas model-based algorithms use the ratings collection to learn a model and make 

predictions for future ratings. We identify two major methods for implementing 

collaborative filtering with nearly the same categories of structure: neighborhood 

methods which are mostly memory-based and latent factor models which are model 

based [38]. This mapping is presented in Table 3. The rest of the recommendation 

techniques mainly use the same algorithms as the collaborative and content-based 

techniques. 

 

Vector-based representation  

A simple way to describe an item is to keep an explicit list of attributes or features of each 

item. When the user preferences are stated in terms of these features, the 

recommendation task would be matching them. However, it may not be appropriate to 

store “meta-information features”, which are additional knowledge rather than reflecting 

the content of the item. Therefore, content-based systems maintain a list of relevant 

keywords appeared within the item. 



 

There are different ways of encoding the item in a keyword list. In a very first approach, a 

list of all words appearing in all items can be made and each item would be described by 

a Boolean vector (1: the word is appeared, 0: the word is not appeared). User profile can 



have the same list of preferences in terms of vectors, so that for recommendation 

purposes, the overlap between item content and user interest should be measured. 

However, this method is not sufficient as it does not consider the weight of each word 

and also it tends to recommend items with longer descriptions, which have more words 

and more overlap [39]. The major algorithms using vector-based representation are: 

Term Frequency-Inverse Document Frequency (TF-IDF), latent semantic analysis, Rocchio 

and nearest neighbor. These algorithms are explained hereafter, while latent semantic 

analysis will be explained in the category of latent factor model under matrix 

factorization.  

TF-IDF was proposed by Salton et al. to come up with the issue of traditional approaches 

[40]. It is designed to specify keyword weights in a content-based method. Content 

documents can be TF-IDF encoded as vectors in a multidimensional Euclidian space. The 

space dimensions correspond to the keywords appearing in the documents. The 

coordinates of a given document in each dimension are calculated as a product of two 

sub-measures: term frequency and inverse document frequency. Term frequency 

describes how often a certain term appears in a document. A keyword weight for a 

document is in direct proportion to the frequency of the keyword’s occurrence in the 

document and in inverse proportion to the number of documents that the keyword 

appears in. A content profile can be represented as a vector of TF-IDF keyword weights. 

The similarity between two documents can be measured by treating each document as a 

vector of word frequencies and computing the cosine of the angle formed by the 

frequency vectors. TF-IDF vectors are classically large and too sparse. To make them more 

concise while having relevant information from the vector, additional techniques can be 

utilized.  



In information retrieval, the success of retrieving a document depends on the well-

constructed documents, queries and keywords. There have been several proposed 

methods to help users refine their queries based on previous search results, called 

relevance feedback. The main principle is that users can rate the retrieved documents by 

considering what they need. In this context, Rocchio’s algorithm is the standard relevance 

feedback algorithm operating in the vector space model [41]. The algorithm is based on 

the modification of an initial query by the mean of prototypes of relevant and non-

relevant documents with different weights. This approach builds two document 

prototypes by taking the vector sum over all relevant and irrelevant documents. 

Theoretically speaking, this algorithm does not guarantee coverage and performance 

[42].  

Nearest neighbor [43] algorithms store all the training data, called labeled items, in 

memory. When a new item or unlabeled item arrives, the algorithm compares it to all the 

stored items using a similarity function and identifies the k-nearest items to assign a class 

label to the new item. The similarity function used by the algorithm depends on the type 

of data. For structured data, Euclidean distance metric is usually deployed. When the 

vector space model is used, the cosine similarity measure would be suitable. Despite the 

simplicity of this algorithm, it can compete with complex learning algorithms. It is easy to 

implement, and can adapt quickly to the changes. Besides, it can make predictions with 

reasonable and reliable performance when a small number of ratings is available. 

However, the prediction accuracy is not very high compared to the best-known methods.  

Machine learning  

Deciding about suggesting an item to a user can be viewed as the problem of modeling a 

task and predicting if it is liked by the user. To this end, various standard (supervised) 



machine learning techniques can be applied so that an 13 intelligent system can predict 

whether a user will be interested in an item or not. Supervised learning means that the 

algorithm relies on the existence of training data. The data might be collected through 

explicit feedback, or be obtained implicitly through observing the user. The rest of the 

section explains the main machine learning-based algorithms including classification 

algorithms, Genetic Algorithms (GA), Artificial Neural Networks (ANN), K-means, 

association rules, and Markov Decision Process (MDP).  

Linear classifiers learn linear decision boundaries and separate instances in a multi-

dimensional space. There is a large number of algorithms falling into this category, such 

as naïve Bayesian, decision trees and Support Vector Machines (SVM), and applied in 

content-based recommender systems successfully [42]. The training data of the 

classification learner is classified into the binary categories of items that the user “likes” 

or “dislikes”. Decision trees are simple, understandable with reasonable performance for 

content-based models when only a small number of structured attributes is being 

considered. However, it tends to lead to poor performance on text classification as only 

few tests are possible [42]. SVM has a very good accuracy in text classification tasks even 

with noisy features. As reported in [34], there has been much research done on Naïve 

Bayesian classifier for modeling content-based recommendations. Bayesian classifiers are 

robust enough to isolate noisy and irrelevant features, and handle missing values by 

ignoring the instance during the probability estimations. Linear regression application in 

recommender systems can be summarized as a rating predictor based on neighbors 

rating and pattern identifier between the neighbors and active users or items [44]. Linear 

regression is more appropriate when the rating scale is discreetly continuous, for example 

between 0 to 10, or when the values are ordered in a clear fashion.  



As argued in [7], many of the proposed recommender systems are based on bio-inspired 

methods such as Genetic Algorithms (GA) and Artificial Neural Networks (ANN). Genetic 

algorithms are heuristic and based on evolutionary principles such as natural selection 

and survival of the fittest. They are mostly used for clustering, optimization and/or hybrid 

recommender systems [7]. Artificial neural networks are grounded on biological neurons’ 

behavior. They try to simulate the way a brain processes information and learns to a 

certain degree. ANN model contains several interconnected nodes, each handling a 

specific domain of knowledge with several input networks. A node learns the 

relationships based on the inputs and operational feedback and model them to generate 

the desired output. The main advantage of ANN is its ability to perform non-linear 

classification tasks, and to operate even when a part of the network fails. They can be 

used to either construct a recommendation model or integrate the input from several 

recommendation modules [45].  

Clustering is an unsupervised learning containing items assigned to groups, so that items 

belonging to the same group are the most similar to each other. K-Means algorithm is the 

de facto algorithm for clustering data. It partitions the dataset of items to several subsets 

forming a set of items, which are close to each other according to a given distance 

measure. It is simple and efficient but with few shortcomings and limitations: it needs 

prior knowledge to choose appropriate clusters, and it faces problems when dealing with 

clusters in different sizes and densities and when the outliers exist. Some studies applied 

K-Means to cluster the data and then to form the neighborhoods in KNN algorithm based 

on the clusters [23].  

Association rule mining tries to find the rules that predict the occurrence of an item based 

on the occurrence of other items in a transaction. The main positive point of this classifier 



is its expressiveness as it operates with data features without any transformation. This 

makes it easy to implement and interpret [46].However, like other classifiers such as 

decision trees, it is not really efficient to build a whole recommender system based on 

rules [34].In fact,rules are more appropriate when used to improve the recommendations 

by injecting some domain knowledge.  

Markov Decision Process (MDP) algorithms view the recommendation process as a 

sequential optimization problem rather than a prediction problem [47]. MDPs model 

sequential stochastic decision problems and are applied when an agent is acting and 

affecting its surrounding environment. An MDP model consists of a four tuple: (S, A, R, 

Pr). S is a set of states, A represents actions, R is a real-valued reward function, and Pr 

denotes probability of transition between states given an action. An optimized solution is 

to maximize the function of its reward stream. Shani et al. defined k tuples of items as the 

states, and some null values referring to missing items [47]. Recommending an item 

corresponds to actions, and the utility of selling an item corresponds to a reward. The 

state coming after the recommendation is the user response to that recommendation, 

such as picking the recommended item or picking another item. The probability of buying 

an item depends on his current state, item and whether the item is recommended or not. 

Latent factor model  

Latent factor models aim to characterize both items and users using several factors to 

justify the ratings patterns. For instance, discovered factors for a movie recommender 

might measure genre, amount of action or age considerations for the movie; and for the 

users, how interested the user is on the movies with high score on the considered factors 

for a movie.  

Latent factor models offer expressive ability to explain various aspects of the data and 



provide results with higher accuracy than neighborhood methods’ results in most of the 

cases [48]. However, concrete recommender systems use neighborhood methods due to 

its ability to provide recommendations based on just entered user feedback. Another 

reason is that they can furnish intuitive explanations for the reasoning behind the 

recommendations which enhances users affect [34, 49]. Latent factor model includes 

probabilistic models, slope one and matrix factorization which are introduced along with 

their related algorithms as follows.  

Probabilistic model formulation of collaborative filtering was proposed in addition to 

employing probabilistic approach and combining similarity functions in other methods 

[50]. Probabilistic methods aim to build probabilistic models of user behavior patterns to 

predict future behavior. The main idea is to compute the probability that a user will pick 

an item, or the probability distribution over user ratings of the item.They can be deployed 

for ranking the recommendations as well.  

Personality diagnosis is a probabilistic user model assuming that user ratings are a 

combination of their preferences and Gaussian noise [51]. The active user is assumingly 

generated by choosing one of the other users uniformly at random and adding Gaussian 

noise to her ratings. Given the active user known ratings, we can calculate the probability 

that she has the same “personality type” as other users, and the probability she will like 

the new items. Personality diagnosis can also be regarded as a clustering method with 

exactly one user per cluster. This approach is both model-based and memory-based.  

The slope one algorithms are based on predictors of form f (x) = x + b, therefore, simpler 

than those used in the regression-based algorithms [52]. In the original slope one 

algorithm, the constant b is defined as the mean difference between each item and the 



item to predict, computed among the users that have rated both items. Slope one 

performs well in sparse data and is computationally efficient [53].  

Matrix factorization infers rating patterns to characterize items and users as vectors of 

factors. When a high correspondence between factors of item and user is observed, a 

recommendation is produced. Matrix factorization has become popular recently by 

promoting high predictive accuracy and scalability in dealing with large and multi-

dimensional datasets [38]. Besides, it is more flexible in terms of modeling real world 

situations. In addition, it allows incorporation of supplementary information using implicit 

feedback. Matrix-Factorization is acknowledged by high accuracy in most of the research 

performed on collaborative filtering [54]. However, when computational efficiency 

becomes an important factor, slope-one could be a better option [53].  

As discussed earlier, data sparsity is one of the major problems of collaborative filtering 

techniques and many methods have been proposed to alleviate this problem. 

Dimensionality reduction techniques, such as Singular Value Decomposition (SVD), 

remove insignificant users or items to reduce the dimensionalities of the user-item matrix 

[34]. SVD converts a matrix B into three matrices. Given m × n matrix B, the SVD is 

defined as SVD(B) = U × S × VT. U and V are two orthogonal matrices of dimensions m×m 

and n×n respectively and S is a diagonal matrix of dimension m × n formed by the singular 

values of the rating matrix. U and V are called the left and the right singular vectors. SVD 

provides high accurate results, but it is highly expensive to update the data as it requires 

a re-computation for each new received rating. SVD is more suitable to be deployed in 

off-line settings when the known preferences do not change over time. A technique 

called folding-in was introduced to incorporate new data into an existing decomposition 

[55]. After a high amount of folding-in the decomposition misses its accuracy, and should 



be updated. There are several algorithms for computing SVD, such as Lanczos’ algorithm 

[56], the generalized Hebbian algorithm [57], and expectation maximization [58] which 

are very specialized and beyond the scope of this research to be described.  

Latent Semantic Indexing (LSI), also known as Latent Semantic Analysis, is a well-known 

method in information retrieval for automatic indexing and searching of documents [59]. 

The approach benefits from the implicit structure (latent semantic) in the association of 

terms with documents and it is based on SVD, where user similarity is measured by 

representing users in a reduced space. The new matrices obtained represent latent 

attributes in the ratings, allowing finding relations among items and eliminating the 

problems caused by the sparsity of the matrix or anomalous ratings. LSI and SVD are 

typically combined [60].  

SVD++ considers implicit feedback, leading to an increase in prediction accuracy [61]. 

Nevertheless, it is not limited to a special kind of implicit data. For the sake of simplicity, 

each user u is related with two item sets. One is r(u) which contains all the items with 

available ratings from u. The other one is denoted by N(u) and consists of all items which 

u provided an implicit preference for.  

Matrix factorization can nicely model temporal effects to improve the accuracy when 

timing factors are considered, called Time-aware factor model [62]. Decomposition of 

ratings into distinct terms allows treating different temporal aspects separately. 

Especially, there are three factors which vary over time: user preferences, item biases 

(e.g., a movie may go in or out of popularity by the appearance of an actor) and user 

biases (e.g., a change in the user rating scale). On the other hand, the item characteristics 

are static in nature.  

Neighborhood methods  



Neighborhood methods compute the relationships between items (item-based) or, 

alternatively, between users (user-based). The item centered approach investigates the 

user’s preferences for an item based on ratings of the neighborhood items by the same 

user. The user-oriented methods detect users with the same mind who can supplement 

each other’s ratings [63].  

There are two approaches in this method known as: similarity-based computation and 

top-N recommendation. They generally follow three steps:  

1. Calculate the similarity or weight (referred as distance or correlation) between two 

users or two items;  

2. Generate a prediction for the user by taking the weighted average of all the ratings of 

the user or item on a certain item or user.  

3. In top-N recommendation, find the K most similar items or users after calculating the 

similarities, then gathering the neighbors to make the top-N most frequent items to 

recommend.  

In what follows, we introduce the K-Nearest Neighbor algorithms (KNN) and the 

algorithms used for similarity measure, best item and top-N recommendations.  

K-Nearest Neighbors (KNN) algorithms are the reference algorithms for collaborative 

filtering and work with similarity measures [63]. They have the advantage of simplicity 

and accuracy, but short fall in scalability and sparsity. KNN algorithms in item-item 

approach follow three tasks: 1- identify q items in the neighbor of each item in the 

database; 2- For item i, which is not rated by active user u, predict based on the ratings 

given by u from the q neighbors of I; and 3- select Top-N recommendations for the user. 

The first step might be conducted periodically to facilitate an accelerated 

recommendation regarding the user-user version.  



A similarity measure identifies the similarity between pairs of users or pairs of items. The 

most used measures are as follows [5, 43]:  

Rating-based similarity measures are calculated by comparing rating values assigned to 

the items by different users.  

Pearson Correlation: measures the extent to which two variables linearly relate with 

each other. This method has problems in calculating high similarity between users with 

few common ratings. Setting a threshold on the number of co-rated items can alleviate 

this issue.  

Vector Cosine-Based Similarity: two users are modeled as two vectors in a multi-

dimensional space and the similarity is evaluated by computing the cosine of the angle 

between them. It is worth mentioning that TF-IDF algorithms for content-based systems 

also use this metric to measure the similarity between vectors of TF-IDF weights. The 

difference is that this approach captures the similarity between vectors of the actual user 

ratings.  

Mean Squared Difference (MSD): it evaluates the similarity between two users as the 

inverse of the average squared difference between the ratings given by them on the 

same item. The negative point of this measure is that it cannot obtain negative 

correlations between preferences of the user or the appreciation of different items.  

Ranking-oriented similarity measures determine the similarity between users by their 

preferences over the items, which is reflected by their ranking of the items. Two 

approaches are distinguished:  

Spearman rank correlation: in this similarity function, the rated items by a user are 

ranked in a way that the highest rated item is the first rank and lower rated ones have 



higher ranks. The computation is similar to Pearson correlation, except that the ranks are 

used instead of ratings.  

Kendall’s τ correlation: it is like the Spearman rank correlation, but instead of using 

ranks themselves, only the relative ranks are used to calculate the correlation.  

Many modifications have been proposed as extensions to the standard correlation-based 

and cosine-based measures to improve their performance. Some of them are weighted-

majority prediction [64], default voting [65], inverse user frequency [28] and case 

amplification [66]. However, they mostly short fall whenever there are few user ratings 

since the similarity measure between two users is based on the intersection of the sets of 

items rated by both users [4].  

Using the similarity measure, Best item recommendation aims to differentiate between 

levels of user similarity and estimates the best item by aggregation functions. To make a 

prediction for the active user, on a certain item, we can take a weighted average of all the 

ratings on that item. But the most common approach is to use weighted sum [4]. The 

similarity measure is essentially a distance measure which is used as a weight. The more 

similarity between users results in the more weight of rating occurring in the prediction 

of the new rating.  

Top-N recommendation is a set of N top-ranked items of interest to a particular user 

which are mostly used in collaborative filtering and, also in some cases, in content-based 

techniques [67]. Top-N recommendation technique analyzes the user-item matrix to 

reveal relations among users or items and utilize them to generate the list of 

recommendations. User-based Top-N recommendation algorithms have limitations on 

scalability and online performance. Some models, such as association rule mining based 



models [46], greedy order [68] and random walk [69] can be used to make Top-N 

recommendations.  

Greedy order algorithm searches through the possible rankings in an attempt to find the 

optimal ranking with maximum value. It generates a ranking from the highest position to 

the lowest position, by picking the item that presently has the highest potential and 

assigns a rank to the item which is equal to the number of remaining items, so that it will 

be ranked above all the other remaining items.  

Random walk differs from the greedy order algorithm by having the advantage of 

utilizing transitive relations among implicit preference functions. Instead of searching for 

a ranking directly as the greedy algorithm does, it attempts to define a Markov chain 

model with the transitional probability corresponding to a user preference function.  

Association rule that is a part of machine learning, is used in Top-N recommendation as 

a technique of identifying rule-like relationship patterns to detect groups of items that 

are favored together. For example, a rule may detect that “if a user likes both item 1 and 

item2, then the user will probably like item 5”. Then it can generate a ranked list of 

recommended items based on the statistics about the co-occurrence of items in the sales 

transactions.  

Neighborhood vs. latent factor model approaches:  

The literature about recommendation techniques has shown that the model-based 

approaches are superior in terms of rating prediction accuracy [7, 43]. However, there is a 

rising awareness about insufficiency of predicting accuracy as the system effectiveness. 

Moreover, other factors, such as serendipity, are considered equally or more important. 

Model-based algorithms are suitable for capturing user characteristics and preferences 

with latent factors due to their learnable nature. On the other hand, neighborhood 



algorithms can obtain local associations in data. For example, a movie recommender can 

recommend a movie different from what the users usually prefer or a movie which is not 

well known, if one of his neighbors has given it a good rating. Neighborhood methods are 

very simple and justifiable for what they predict, meanwhile they enjoy efficiency without 

expensive training [49]. However, the recommendation production is more expensive to 

re-compute upon the arrival of new ratings. This can be overcome by an off-line pre-

computation. Neighborhood methods are also more stable and less affected by adding 

users, items and ratings [63].  

As a matter of fact, the appropriate algorithm for a certain application should be selected 

by considering a combination of the characteristics of the target domain and the context 

of use, the requirements of computational performance of the application, and the user’s 

requirements.  

Graph theory  

In today’s social networks, web users reveal their relations and connections among other 

users, where the posted images and videos are shared within their trusted network. 

Users also provide more information on their demographic characteristics and 

preferences willingly. Standard collaborative filtering algorithms are not able to find 

sufficient similar neighbors in sparse datasets. Thus, trusted social relationships of users 

emerged as an alternative improvement for recommender systems [70]. To model trust 

networks, some methods have been used such as machine learning, semantic models, 

fuzzy models and graph theory. Trust network can be a dedicated graph in which users 

are nodes and edges are trust relationships. The edges can also be weighted to show how 

strong the trust is.  



In the context of recommender systems, graph representation of ratings is called 

hammock. A hammock of width R links two users sharing a minimum of R ratings. To 

connect two users, a sequence of hammocks can be used. A recommendation is 

generated by comparing user feedback and predicted ratings from hammock paths. 

Different algorithms use hammocks in different ways to make recommendations, and the 

most important ones are LikeMinds and Horting [71]:  

LikeMinds: it uses a single hammock to signify the importance of R shared ratings in 

terms of recommendation quality. To predict the rating of item i for user u, LikeMinds 

computes the agreement scalar between u and every other user who has rated i. The 

algorithm utilizes the ratings of the users with the highest agreement scalar to generate 

the recommendation. The ultimate goal of LikeMinds is to offer fast and accurate real-

time personalization.  

Horting: this algorithm was developed by IBM research to overcome the sparsity issue 

by not requiring a direct link between the user and the item. Horting exploits explicit 

hammock paths of varying length to produce its recommendations. It uses a 

transformation technique similar to the one used by LikeMinds to perform predictions 

based on the other users’ ratings. However, unlike LikeMinds, it accommodates not only 

the pairs of users with highest agreement scaler, but also the ones with similar or even 

opposite ratings, as well as a combination of them.  

Tag analysis  

Tagging allows users to annotate the content with any kind of label in the web 

environment. Tags can be applied to any kind of items, even users. This plays a key role in 

sharing content across the social networks. The following is a list of the most popular 

examples of tagging systems:  



Folksonomy: free annotations on the web formed folksonomies. The notion of 

folksonomies is taken from folk-generated taxonomies which perform tagging in a 

horizontal and inclusive way rather than in a hierarchical way. This assures users to get all 

relevant items in one query. A folksonomy is a tuple F = (U, T, R, Y), where U is a user, T 

represents the tag and R is a resource. Y defines the relation between them. A 

folksonomy exploits the information of how items are tagged by the community for 

predicting interesting items to a user. A number of algorithms (e.g. Affinity Propagation) 

have been proposed to obtain folksonomies [72]. One of the issues of folksonomies is 

that users’ ways of annotating are different; therefore, fuzziness approaches have been 

introduced in the tags.  

Folkrank: it was developed with the idea that a resource is important if it is tagged by 

influential users [73]. Folkrank algorithm is inspired by the PageRank algorithm and is a 

graph-based search and ranking method for folksonomies.  

Adapted PageRank: the PageRank algorithm is graph-based and emphasizes on the fact 

that a web page is important if it is linked with many pages which are important 

themselves. Due to the different nature of folksonomy compared to the web graph, 

PageRank cannot be applied directly into folksonomies [74]. This algorithm has proven to 

be one of the top performers in tag recommenders. However, it imposes high 

computational costs [75].  

4.4) Evaluation  

Recommender system evaluation can be conducted either online or offline. Offline 

evaluation is the simplest approach since it does not need to interact with real users. For 

a real-world recommender system, it is desired to be tested online to investigate the 

system influence on user behavior. However, this experiment is expensive when the 



performance of many algorithms should be compared, and it is difficult to completely 

understand the relation between the user and the system properties. There is an 

alternative to these two evaluation methods which is called user experience (user study) 

[76]. In this case, a small number of users are asked to use the system in a moderated 

environment and to report their experience with the system.  

A complete list of measures for evaluating recommender systems performance, which is 

shown in Figure 8, has been proposed in [5, 77]. However, many of these measures 



remained theoretic and inexperienced. Table 4 provides a brief introduction about these 

measures and more details can be found in [5, 77]. In this section, the most recent 

progress made in this area is discussed. 

 

 

Despite the comprehensive evaluation measures proposed so far, there is no standard 

technique and functional algorithm to evaluate most of them. The measure which has 



been most experimented with on recommender systems performance is accuracy. 

Another important measure is reliability as proposed by A. Hernando et al. [78]. Although 

it is a common metric, it is limited to recommender systems using KNN algorithms. The 

definition of reliability on the prediction is based on two numeric factors: one measures 

the similarity of the neighbors used for making the prediction, and the other one 

measures the degree of disagreement between the habits of neighbors in rating the 

items.  

A variety of metrics has been used to measure novelty and diversity of a recommender 

system [79, 80]. Most of the methods proposed to evaluate diversity use item-item 

similarity based on the item content to form item neighborhoods, then measures the 

min, max, sum or average distance between pairs of items. Another way is to measure 

the value of inserting a new item to the list of recommendation, as done by Ziegler et al. 

[81]. Adomavicius and Kwon used the total number of different items recommended 

across all users as an aggregate diversity measure to measure the recommendation 

algorithm performance based on the Top-N recommended items lists (Lu) that the system 

provides to its users (u) [82]. 

 



where u is the set of users, i and j are the items, and #𝐿𝑢 indicates the number of 

recommended items. The function of sim measures the similarity of item i to item j that 

refers to the similarity measures explained in Section 4.3 under the category of 

neighborhood methods. In fact, 1−𝑠𝑖𝑚(𝑖,𝑗) denotes the distance or dissimilarity between 

the two items. In another study towards novelty and diversity, Vargas and Castells 

developed a formal framework to define these two measures in order to unify the current 

state of the art measures [83]. They proposed two novel features of “sensitivity” and 

“relevance awareness” in novelty and diversity measurement rank through a probabilistic 

recommendation browsing model. Occasionally, the defined metrics of precision and 

recall for accuracy evaluation have been used to assess other measures such as novelty 

and robustness [84].  

To the best of our knowledge, experimental studies on serendipity are rare. Ge et al. tried 

to measure serendipity using a benchmark model generating expected recommendations 

[85]. When the recommendation provided by the recommender system does not belong 

to the benchmark model, it can be concluded as an unexpected item (UNEXP). The 

authors also argued that not all the unexpected recommendations are useful (USEFUL). 

Considering this point, they defined a new serendipity measure called SRDP: (Eq4) 

 

 

Adamopoulos and Tuzhilin revised SRDP measure and proposed a new measure by 

defining expectedness as the mean ratio of those items in the consideration set of a user 

(Eu) as well as in the generated recommendation list (Lu) [86]. The value of serendipity 

(UNEXPECTED) is computed based on the mean ratio of those items that are not included 



in the set of expected items for the user but are included in the generated 

recommendation lists: (Eq5) 

 

Based on the fact that a stable recommender system does not change its prediction 

strongly over a short period, a quality measure named Mean Absolute Shift (MAS) was 

proposed by Adomavicius et al. [87]. MAS is defined by a set of predictions of all unknown 

ratings P1. For a period of time, users would rate a subset S of these unknown ratings and 

the recommender system can start make new predictions of P2: (Eq6) 

 

 

4.5) Application  

Thanks to the development of efficient and advanced recommendation techniques and 

algorithms, more industries and businesses have employed recommender systems. Park 

et al. revealed that considering the age of big data, applications analysis is the main focus 

of current recommender systems studies [9]. Lu et al. defined eight application domains 

for recommender systems [8]. As shown by the statistics presented in Section 3, there is a 

widespread adoption of recommender systems in social media and health-related fields. 

We adopted Lu’s list of applications and refined it in our new classification as illustrated in 

Figure 9. We considered three main areas, namely entertainment, education, and service. 

The applications of recommender systems in each of these domains are described briefly. 

To show how recommender systems were practiced with in the academic and 

commercial world, Table 5 provides one sample for each application through the 

explained system lifecycles. 

 



 

 

 

 

 

 

 

 

 



Entertainment  

Recent years have seen an increasing interest in the application of recommender systems 

in multimedia including movies, music, TV programs and online materials. Movie and 

music recommender systems mainly use collaborative filtering based on users’ ratings. An 

example of such systems is CoFoSIM that makes use of implicit ratings in the context of 

mobile music market [88]. TV program recommender systems rely heavily on content-

based techniques. However, since content information is described by features, they may 

also adopt collaborative filtering with the possibility of rating, specifically with new smart 

TVs [101]. Online documents, images, web pages, emails and newspapers can also benefit 

from recommender technologies. In most cases, a list of keywords is extracted from 

historical data or search engines/URLs as textual content. The recommendations are 

provided based on the analysis of these keywords using mainly probabilistic models [89]. 

From the social perspective, researchers have designed group recommender systems to 

combine the individual expectations of users in two ways: offline, meaning the group is 

already formed, and online, which means the system should make the grouping. In fact, 

the Internet has changed the way people socialize and so user profiles with known social 

links can nourish the input of recommendation techniques for recommending friends or 

social communities. Trust links are mostly computed based on the social network analysis 

using graph theories. Social networking applications rely primarily on trust and context-

aware techniques to generate efficient recommendations [91].  

Education  

E-learning recommender systems aim to help learners choose the courses, subjects, 

materials and their learning activities such as study group discussions. Knowledge-based 

techniques play a very important role in developing such recommender systems when 



there is no sufficient historical data. Otherwise, simulated users and ratings have to be 

investigated [92]. Application of recommender systems in digital libraries assists users in 

finding and selecting information and knowledge sources. The proposed recommenders 

in research mostly utilized hybrid techniques with fuzzy models to take advantage of 

different techniques and manage information of linguistic labels [8]. However, in real 

world digital libraries, deployed systems are practiced with less complex techniques 

[102].  

Service  

To support citizens and businesses to access personalized public services, such as finding 

a proper business partner and getting appropriate event recommendations, the 

government can adopt recommender systems. The most deployed approach in this 

context is item-based collaborative filtering with semantic similarity, as done in [96]. 

Another example of service is provided by e-shopping systems where rating is a common 

feature that can be used for recommendations. Many large commercial websites, such as 

eBay or Amazon, have already used recommender systems to suggest relevant products 

to different customers. These systems recommend products based on top sellers, 

costumer demographic profiles and past purchase behavior of returning costumers.  

There are several recommender systems with a variety of techniques in individual 

business applications, such as beauty and make-up [103], property rental [104], stock 

market [105] and Finance advisory [97]. Moreover, tourism recommender systems create 

substantial opportunities for tourists to get advice, for instance on their mobile devices, 

for a variety of attractions, destinations, tour plans, transportation, restaurants and 

accommodations. Among these attractions, restaurant recommender systems are of high 

interest. In health recommender systems, the items of interest for users are a piece of 



non-confidential medical information that is scientifically proven. These systems mainly 

use knowledge-based techniques by leveraging the expressiveness of ontologies [106].  

5. New Insights and Potential Advancements in Recommender Systems  

Helping users handle the issue of information overload was perceived to be the original 

task of search engines or information retrieval systems [107], but what make 

recommender systems distinct from search engines are the criteria of being 

“personalized, interesting and useful”. In fact, when a user is using a search engine, she 

knows what she is looking for, and makes the query accordingly. In contrast, 

recommender systems operate when the user does not know what she wants or likes, 

but the system knows the user’ tastes; finds items that she prefers. In fact, a search 

engine requires the user to formalize a query to receive the information, while 

recommender systems notify the user with possible useful information without the need 

of an explicit query. Thus, search engines and recommender systems come up with a 

different scope towards the same goal, which makes them complementary. Nowadays 

search engines are equipped with recommender systems. 

What makes a recommendation more interesting and useful is the factor of “intelligence”. 

Intelligence is the key core of personalization to understand the user’s preferences, 

predict user’s unknown favorites, and at the end provide recommendations beyond a 

simple search by matching the query and the content. Recommender systems research 

has incorporated a wide variety of Artificial Intelligence (AI) techniques including machine 

learning, data mining, user modeling, case-based reasoning, and constraint satisfaction, 

among others. The idea of having an intelligent system, which can think and learn like a 

human, led into more humanized techniques called Computational Intelligence (CI). CI is a 

branch of AI that explores the adaptive mechanisms to enable intelligent actions within 



the compound and changing environments [108]. Thus, CI exhibits those AI paradigms 

which can discover and infer new information, to learn and adapt to different situations, 

and to generalize and make associations. In general, five techniques have been defined 

for CI [109]: 1) Fuzzy Sets (FS), 2) Artificial Neural Networks (ANN), 3) Evolutionary 

Computing (EC), 4) Swarm Intelligence (SI), and 5) Artificial Immune Systems (AIS). CI 

techniques initially originate from the human biological system. ANN simulate the 

biological neural system, EC is a replicate of natural evolution (e.g., genetic and 

behavioral evolutions), SI represents social behavior (e.g., organisms living in swarm or 

colony), AIS model the immune system (learning to produce the right antibodies to fight 

over each antigen), and finally, FS study how different organisms interact within their 

environment. Earlier, we explained how ANN-based technique has been employed as a 

recommendation algorithm. The other CI techniques are also receiving prominent 

attention from researchers working in recommender systems since they have significant 

potentials to make recommender systems more robust, effective, personalized and even 

context-aware [110]. Regardless of the fact that each individual technique has been 

successfully applied, the current trend is to use a hybrid solution as there is no superior 

one in every situation.  

Figure 10 illustrates our layered framework for recommender systems containing market 

strategy, data, recommender core, interaction, security, and evaluation layers. The 

relevant existing techniques which can be applied in different layers of the system are 

identified (own as grey boxes). Moreover, we propose some new techniques which have 

high potential to be employed in this area and can overcome some of the challenges 

summarized in Table 2 (e.g., cold start, sparsity and scalability) that recommender 

systems are facing but have not investigated yet in the literature. The broad and diverse 



practical applications of recommender systems can inspire researchers to explore novel 

and innovative solutions that will expose these systems into interesting but even more 

challenging areas. In the following, we introduce each layer and focus on advanced 

insights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Market Strategy Layer  

The market strategy is among the key elements of future recommender systems, where 

the system itself and market participants are derived by business and market strategies 



[6, 111]. In today’s market where values are created by users’ networks, product and 

service providers can no longer compete by simply comparing features and prices to gain 

the competitive advantage. Recommender systems can be empowered with theoretical 

foundations such as network effect, two-sided market and game theory. According to the 

theory of network effect, a product or service becomes more valuable to its consumers 

and more profitable for its providers as more users use that same product or service. 

Beyond trust-aware and community-based recommender systems that work in socially-

trusted networks, other types of recommender systems, such as collaborative or context-

based, can benefit from this theory. In fact, designing recommender systems as online 

two-sided platforms will provide a rich source of data (ratings, items, users, etc.) and will 

open the door to innovations in terms of dealing with data as commodity. Moreover, as 

stated by the two-sided market theory, it is enough to induce either the consumers or 

providers to use the platform of recommender systems, so that the other part becomes 

motivated to join the platform [112]. The main challenge is to determine the type and 

amount of incentives to provide to each side (users and providers) so that the other side 

will follow. Thus, the research questions that need to be addressed, and which will open 

interesting research directions are 1) which part to be subsidized and which part to be 

charged; and 2) which pricing schemas and mechanisms to be used. In this context, laying 

theoretical and algorithmic foundations for novel subsidizing and pricing mechanisms of 

recommender systems is a highly appealing objective. This can be accompanied by 

studying users’ perception and unfolding their sensitivity towards price and quality. The 

situation gets more complicated when multiple recommender systems are to be 

considered. Recommender system owners should decide whether to compete or 



collaborate with other recommender systems. Thus, deep analysis of coopetition 

strategies will need to be theoretically and experimentally conducted.  

From the game-theoretical perspective, there can be serious restrictions to achieve an 

equilibrium strategy among item/service providers, item/service consumers, or both. 

First, each participant only has the knowledge of her own ratings and recommendations, 

while others’ ratings cannot be observed, which makes the game information-

incomplete. Moreover, the recommendation algorithm adopted by the system is 

unknown to participants. Second, since there is no perception of users’ expectation for 

recommendation quality, it would be hard to determine the optimum gain of the users in 

a game. The effects of ratings on providers’ income and the analysis of the uncertainty 

are yet to be investigated.  

To overcome the sparsity and cold start problems of “new user” and “new item” 

summarized in Table 2, researchers focused on developing more reliable prediction 

models for situations in which only a few item ratings exist. Most of these approaches 

depend on adjusting the algorithm that determines a recommendation. However, it is 

acknowledged that rating incurs some costs (time and privacy cost) for the user. 

Consequently, users may not rate or only rate few items that they have experienced. In 

this context, marketing and strategy-oriented approaches using game theory and two-

sided market theory with a motivation and rewarding system that can incentivize 

consumers to participate and to report true ratings are potential alternatives to be 

explored.  

Data Layer  

The data layer oversees the processing of the input data obtained from the interaction 

layer. Contextual information, items and user profiles gather explicit and implicit data for 



inference of similarities or modeling. Referring to data and knowledge acquisition 

challenges in Table 2, user preferences can be vague and gradualness, which makes them 

difficult to analyze. FS can overcome this problem by providing flexible methods to 

manage non-stochastic uncertainty. FS provide the possibility of having fuzzy criterion 

where evaluation of items is represented in relation to its possibility to belong in one of 

the intervals of a qualitative or descriptive evaluation scale. For example, Cornelis et al. 

[113] presented user preferences as two fuzzy sets of positive and negative feelings; from 

user set to item set. Content-based is developed using a fuzzy relation within an item set 

to compute item similarity. Collaborative filtering is generated based on the user 

preferences by fuzzy relations between the items. Composing these fuzzy relations 

provides the final list of recommendations containing positive and negative preferences.  

Evolutionary techniques, such as GA, are also able to extract implicit information from 

user logs, and can be combined with fuzzy techniques to include vagueness in decision 

making. This hybrid approach may allow more accurate and flexible modeling of user 

preferences. SI techniques can be another alternative to model users with relative 

accuracy and simplicity [110].  

Item and user profiles can be stored in ontological repositories. More advanced 

techniques are being applied with the advancement of the web and Internet facilities. 

Web 3.0, or semantic web, opens new opportunities by providing semantic information 

about users or items and improves classical filtering methods [114]. Filtering techniques 

and similarity measurement can be improved by incorporating the semantics using 

domain ontologies and the set of concepts associated to item and user profiles. They can 

alleviate several issues discussed in Table 2, such as sparsity, large historical data and cold 

start.  



In the era of “big data”, recommender systems have to deal with a huge volume of data 

and a large scale of computational tasks and costs. Cloud computing and distributed 

platforms can provide the opportunity to overcome these issues. The dynamic structure 

of cloud and its elasticity make cloud platforms a convenient host for providing the future 

recommendation services.  

Recommender core layer  

This layer supports the main activities of the system that contains analysis and reasoning, 

recommendation techniques, and filtering and ranking algorithms. In concrete and real 

settings, humans require some data to provide recommendations to one another. 

However, having the data is not the end of the story. The data should be processed and 

reasoned to further obtain information and knowledge. Similarly, to make a 

recommendation, the recommender’s brain should infer knowledge from the data, make 

a logical link between the data with prior knowledge and generate a recommendation 

thought to be suitable and helpful. In this process, ontology-based repositories discussed 

in the data layer, and inferred semantic rules can be helpful in data analysis and 

knowledge acquisition (see Table 2). As an example, Maidel et al. [115] used two 

ontological profiles of users and items to develop a similarity function between user 

interests and items. Another method of utilizing semantics is to exploit semantic 

information of items for computing the similarity between them [116]. Then these 

similarities can be combined with the similarities revealed from past user ratings to 

predict future user ratings. However, all these methods need semantic information which 

is hard to be acquired. Researchers are trying to develop systems which are able to 

generate semantics with the least human intervention [117].  



ANN have been trained to learn users behaviors with data obtained from web usage 

mining in the interaction layer, and then group users into different clusters that possess 

similar preferences [118]. This makes ANN a suitable technique to address the challenge 

of adaptive quality (see Table 2). The weights and fitness functions derived from ANN 

training can be optimized using GA to obtain more accurate classification rules. GA itself 

can be used for search optimization. GA can bring randomness in the content filtering 

instead of strictly adhering to user profiles [119]. This can eliminate the content limitation 

challenge (see Table 2) and bring serendipity into recommendations.  

Deep learning is a promising alternative to the conventional neural networks [120]. In 

recommender systems, there are many entities and properties assigned to the items and 

users, finding the proper feature (feature extraction and feature selection) is vital to 

improve the quality of classification and clustering methods. In recommender systems 

that involve users’ behaviors, the most effective features can be a complex combination 

of the system properties, which are hard to be extracted and modeled by ANN. Deep 

learning methods are superior in effective feature learning, especially when there is no 

known effective feature. Deep neural networks learn the effective features 

representation automatically, and there is no need to specify and hardcode the features 

in the design level. The outcome of deep learning is usually surprisingly unexpected, 

specifically when there is no supervised class. Modeling and designing recommender 

systems as online two-sided platforms will benefit from deep learning to effectively learn 

and predict the strategies of the users and providers enabled by the amount of data 

provided by the platforms.  

Providing a suitable solution for the problem of stability vs. plasticity (see Table 2), the SI 

algorithms, such as PSO, can attain feature weights for the user, and therefore, help 



adapt the matching function to the user's specific tastes. Personalized recommendations 

based on individual user preferences or collaborative filtering data have also been 

explored using PSO. This was done by building up profiles of users and then using an 

algorithm to find profiles similar to the current user using supervised learning [110].  

For ranking and visualization prioritizing purposes, engaging MDCM modeling may allow 

us to explore alternative recommendation forms and avoid over specialization problem 

(see Table 2). For example, rather than recommending a list of items with top-N utility 

values, an item list including the best performance for specific criteria can be suggested. 

However, it requires using more complex modeling methodologies with multi-objective 

optimization. In multi-objective optimization, more advanced algorithms that can handle 

possible conflicts in objective functions are yet to be put forward.  

Most of the recommender systems are developed on centralized architectures. However, 

modern recommender systems are compelled to operate in small-scale and mobile 

devices within peer-to-peer environments, with less computing and storage 

requirements. The multi-agent approach in recommender system design is a flexible 

method for dynamic adaption with user requirements. For instance, D. Rosaci and G. M. 

Sarn developed an e-commerce recommender system using four intelligent agents in a 

distributed fashion [121]. They considered a device agent exploiting the user device, and 

a customer agent representing user profile. Further, a hybrid of collaborative and 

content-based filtering was developed using two agents: seller agent and counsellor 

agent. The scalable architecture of the system allowed it to operate within large 

communities, and upon various devices, sometimes with limited resources. A 

combination of intelligent agents and AIS techniques seems to bring us closer to an 

adaptive and scalable recommender system.  



With the advancement of recommender systems and expansion of the dynamic 

requirements for multi-channel, multi-criteria and adaptive systems, there will be a need 

to explore more novel modeling options. An interesting research direction towards the 

design of adaptive recommender systems is to advocate self-managed systems that can 

autonomously choose the appropriate recommendation algorithm based on the device, 

situation, and properties of the application. An autonomous recommender system would 

be capable of self-directed learning and adapting its behavior to suit its context of use 

where rapid scalability and adaptability with underlying platforms are required across a 

large and diverse community. Thus, autonomous recommender systems can effectively 1) 

address the issue of stability vs. plasticity by handling sensitivity against preference 

changes; and 2) shield against shilling attacks by detecting unexpected behavior changes 

(see Table 2).  

Interaction layer  

In the interaction layer, the system’s user interface is designed and implemented. This 

layer interacts with the core recommendation layer, which decides where to store and 

how to handle the data. As discussed earlier, the design of user interface varies 

depending on the device and application context. It contains visual components, 

interacting with the user, and non-visual components sending and receiving commands 

from the other layers.  

Web usage mining or data mining techniques are being used as implicit methods to 

collect inputs for user modeling [122]. When a user interacts with the web, her situation, 

location and activities, such as navigation or content selection, can be tracked. The 

collected data from the web usage is saved on web server logs and contains hidden 

information about user habits and preferences. In some cases, some personal user data 



also might be obtained explicitly. Analysis of the data reveals individual characteristics 

and requirements that is instrumental in user modeling for the personalization of the 

system recommendations. However, gathering and processing the data using traditional 

techniques might raise some challenges including scalability, processing time, and low 

accuracy of learning techniques.  

The efficiency of designing user interface is a neglected topic among recommender 

system practitioners. There are many aspects of system interface that may affect users’ 

opinions, such as the rating visualization and scale, recommendation sequence 

visualization, justification of recommendation, user trust, the number of 

recommendations to display, the most appropriate location on the search results’ page 

for the recommendations, and display of predictions at the time users rate the items. 

Furthermore, interfaces to better explain multi-criteria recommendations should be 

explored. In particular, user understanding of proposed recommendations that tackles 

the transparency issue (see Table 2) is an important topic to be explored in the context of 

multi-criteria recommenders [123].  

Gamification, using the game design and elements in a non-game context, can increase 

the user’s engagement and retention in interactive recommender systems. To promote 

user experience, the whole system can be designed like a game user-interface, or using 

game-like features such as points and penalties. In a recommender system, the 

gamification aspects can include, but not limited to, providing points for the new 

ratings/reviews, competing with the other users in order to get more points, designing 

the system with interactive objects such as 3D representations and animated characters 

[124].  

Security layer  



The main advantage of centralized architectures for recommender systems over 

decentralized ones is due to the security issues of distributed approaches. The growth of 

user demands from small-scale devices initiates an urgent need of investigating security 

vulnerabilities in decentralized and peer-to-peer environments. In some approaches, CI 

has been applied to preserve the users’ privacy in distributed architectures by storing the 

rating at the user side. In the research by J. Zou et al. [14], a semi-distributed Belief 

Propagation is used by first formulating the item similarity computation as a probabilistic 

inference problem on the factor graph. This probabilistic inference problem was solved 

with Belief Propagation as a probabilistic message passing algorithm.  

Cryptographic methods, obfuscation, perturbation, and probabilistic methods have 

shown a powerful privacy preserving effect. Even though they suffer from some 

drawbacks, such as high computational cost and low prediction accuracy. Furthermore, 

defending against attacks might cause some privacy loss. When a recommender system 

tries to keep the least information about its users, there can be items with sufficiently 

few ratings to be vulnerable to highly-effective attacks. More research needs to be 

conducted on the tradeoff between security and privacy of the users and proper 

frameworks to address the issue. To prevent profile injection known as shilling attack 

(see Table 2), common methods for detecting automated agents, such as noting patterns 

in profiles or user names and the source or speed of account creation, might be 

employed. It is also necessary to determine how much data collection is enough for the 

users to preserve a balance between the sacrificed privacy and the gained quality of 

recommendations.  

Evaluation layer  



The evaluation layer involves all the layers directly, except the market strategy layer 

which is affected by validation and evaluation results indirectly. A recommender system 

performance depends on different aspects, such as the employed algorithms, visual and 

interaction design, and style and sequence of presentation. The evaluation metrics 

defined in our taxonomy are applied to each layer. For example, accuracy, serendipity 

and coverage should be tested in the recommendation core layer, while adaptability and 

trust are addressed in the interaction layer, and privacy in the security layer. Data 

warehouse and Business Intelligence (BI) tools such as dashboards, reports and OLAP can 

provide useful information about the users behavior to monitor the performance of 

recommender systems [125]. The system administrator can analyze charts containing 

data from the acceptance or rejection of the recommendations by users.  

Human aspects of recommender systems are unpredictable and very hard to assess. 

Evaluating a recommender from system aspects such as algorithm accuracy and coverage 

is not difficult or problematic, but evaluating the user trust and perception about the 

system and recommendation quality or usability is not an easy task to perform. In fact, it 

can open many research directions towards user perceptions in the implicit evaluation 

process. Evaluation can include the user privacy concerns, knowledge domain and current 

emotional state in addition to their preferences.  

What makes the recommender system evaluation even harder is the correlation among 

criteria. The problem is not only about maximizing the performance for each criterion 

individually, but it is necessary to investigate the system behavior considering all the 

criteria at the same time and have a balance performance. Azam & Yao [126] tried to 

consider a balance threshold between two properties, namely “accuracy or 

appropriateness of recommendations” and “generality or coverage of 



recommendations”. They applied the game theory model to 1) determine a trade-off 

between multiple cooperative of competitive criteria in a probabilistic rough set model; 

and 2) propose a balanced solution between accuracy and generality. However, 

investigation of criteria interdependency remained unexplored. Finally, the future 

research directions discussed in this section are summarized in Table 6.  

6. Conclusion  

In this paper, we reviewed and investigated the development of recommender systems 

from research and engineering perspectives. The main motivation of this study is to draw 

the researchers and practitioners’ attention to the alternatives during the engineering 

and development process, identify the weaknesses and strengths of each technique, and 

introduce new research questions and challenges for the new generation of 

recommender systems. 

 

 



The survey revealed that to make recommendations, the easiest way to obtain the data is 

to simply ask the users. However, the implicit data can make a considerable difference in 

recommendations and offer a great opportunity to widen this research area. In fact, 

advanced techniques and practices to discover hidden knowledge about users are yet to 

be advocated. The survey also revealed that there is no standard or single perfect 

technique or algorithm to be used in recommender systems. They all have strengths and 

weaknesses with a potential tradeoff between different criteria. Depending on the 

application domain, data and facilities, the suitable techniques and algorithms must be 

chosen. A common threat is that in most cases, there is a need to combine different 

similarity measures and recommendation techniques to gain peak performance. 

Nonetheless, collaborative filtering had received the most attraction from the researchers 

so far mainly due the availability of real-world benchmark cases and the simple structure 

of the data to be analyzed for producing recommendations.  

There is a comprehensive list of introduced metrics, but there is no mature study 

investigating them. This issue leaves the door open for further research to improve the 

performance of recommender systems and make it possible to take them from theory to 



practice. The widely used and evaluated metric is accuracy even though it is criticized 

regarding its inability to determine whether the system can recommend valuable items to 

users, particularly those which are unknown to the requestor.  

A broad range of applications successfully benefited from the advantages of 

recommender systems. Hybrid, collaborative filtering, and content-based systems are the 

most utilized as they are the most advanced ones from the research foundations 

perspective. However, there is still a considerable gap between real-world practices and 

research applications that need further investigations.  

This survey had a thorough insight into the next generation and future directions of 

developing recommender systems. In recent trends, specific attention was given to 

computational intelligence to make recommendations more interesting and useful. We 

discussed these advanced techniques in a layered framework containing market strategy, 

data, recommendation core, interaction, security and evaluation. The inspiring directions, 

which come with computational intelligence, make this emerging research area more 

interesting and appealing for further research, development and practice.  
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