
Forwarding of Multicast Packets with Hybrid
Methods Based on Bloom Filters and Shared Trees

in MPLS Networks
Gonzalo Fernández-Del-Carpio

School of Electronics and Communications Engineering
Universidad Católica San Pablo

Arequipa, Peru
Email: gfernandezdc@ucsp.edu.pe

David Larrabeiti and Manuel Urueña
Dept. of Telematics Engineering
Universidad Carlos III de Madrid

Madrid, Spain
Email: {dlarra, muruenya}@it.uc3m.es

Abstract—Multicast forwarding in the context of IP-MPLS
networks for services like VPLS has important scalability issues.
Alternatives to per-VPLS tree construction based on aggregation
of multipoint requests onto shared trees have been studied. Other
works have focused on stateless forwarding based on Bloom
filters. Both suffer from some type of forwarding anomalies.
This paper proposes the combination of both forwarding modes:
shared multicast trees and an efficient variant of stateless switch-
ing based on Bloom filters. Simulations prove that constraining
the forwarding to the shared tree is an effective mechanism
to prevent most side effects of Bloom filter-based forwarding,
making the combined technique a good trade-off in terms of
forwarding state consumption, yielding best performance in
terms of overhead with respect to each technique in isolation.

I. INTRODUCTION AND RELATED WORK

Making use of multipoint LSP (Label Switched Path) sup-
port in a multi-service IP-MPLS network to take advantage of
the benefits of multicast in terms of transmission efficiency, en-
tails also the well-known scalability problem of multicast over
any type of switching technology. This problem consists of
the fact that the most efficient solution in terms of bandwidth
consumption -creating a tree per source and group- is also
the most network resource consuming in terms of forwarding
state.

The creation of a shared tree (ST) per-group, like PIM-SM
(Protocol Independent Multicast - Sparse Mode) does in IP
routing, improves the situation but does not solve the problem
completely, as the number of groups (multicast requests) is
unbounded. Furthermore, in the case of services like VPLS
(Virtual Private LAN Service) where the operator emulates
the Broadcast/Multicast/Unknown service of Ethernet for their
clients, the use of a tree per VPLS breaks a fundamental
rule of MPLS VPN service provision architectures: VPNs can
add state to the Provider Edge (PE) routers where VPN sites
are attached to (see Fig. 1), but, by no means, any VPN
can add state to the core nodes. Hence, the standard solution
consists of ingress replication, where the ingress PE copies the
broadcast/multicast frames over as many point-to-point LSPs
as PEs with sites attached the Virtual Private LAN has.

Given that ingress replication does not take full advantage of
multipoint, several solutions have been devised by researchers.
One alternative in the case of MPLS is the aggregation of
multipoint requests onto a fixed number of shared trees [1].
The amount of state required in the core is determined by the
chosen number of trees. The main drawback of this technique
is the fact that packets are delivered to all the PE leaves of
the shared tree, even if no site of the VPLS is served by those
PEs. This technique can be improved by heuristics that try to
put together the most similar requests [2].

Another alternative is stateless switching based on Bloom
Filters (BF) [3]. Stateless switching is a kind of efficient source
routing, whereby the path or tree of node interfaces is coded
into the header of the packet as a BF, and packets are copied
to all the interfaces that match the BF. This approach has two
interesting advantages: (a) no forwarding state is required, and
(b) the paths followed by packets can be optimal. However
BF-based stateless switching also has drawbacks: (a) BF false
positives create unnecessary forwarding branches, (b) BF false
positives create unnecessary forwarding branches that may
cause a loop in the tree, leading to packet storms. A lot of
research work has been devoted to prevent or diminish these
forwarding anomalies [4] but the probabilistic nature of BFs
make all solutions imperfect. A few flows are sent to unin-
tended PEs, the same problem as with shared trees, causing
overhead transmission and switching. If instead of coding the
interfaces with a BF, we encode only the addresses of the
set of egress PEs (Destination Oriented Multicast vs. Tree
Oriented Multicast [5]), the BF can be smaller, at the price
of some per-egress state, but the forwarding anomalies due to
false positives persist and IP trace-back check mechanisms are
required to get rid of them.

In 2015, a new working group (WG) named Bit Index
Explicit Replication (BIER) was chartered at IETF, aiming to
define a deterministic form of multicast by coding nodes in a
more explicit way than a BF. Given the required changes in
the data plane its work is progressing as Experimental. The
goal of BIER is to provide optimal multicast packet forwarding
through a multicast domain without intervention of an explicit

Fig. 1. MPLS VPN-based network scenario

tree-building protocol, nor requiring intermediate nodes to
maintain any per-flow state. In BIER, when a multicast data
packet enters the domain, the ingress router determines the
set of egress routers to which the packet has to be sent.
The ingress router then encapsulates the packet in a BIER
header. The BIER header contains a bit-string where each
bit represents exactly one egress router of the domain. To
forward the packet to a given set of egress routers, the bits
corresponding to those routers are set in the BIER header.
Packets follow the unicast shortest path tree to the destinations
according to the bit-string. The advantages of BIER are that the
tree is optimal, causes no per-flow state, only per-egress state.
However, BIER also has scalability issues for big domains
as the maximum number of egresses is limited by the bit-
string length. A practical future-looking target was set to 256.
Therefore BF still keeps on being a choice to study for big
networks not partitioned into small BGP domains.

In this paper we focus on the large domain scenario and
propose a combined shared-tree-BF mechanism to prevent
forwarding anomalies; in particular BF loops are completely
removed and most useless forwarding is eliminated (we call
this latter anomaly overhead traffic in the rest of the paper).
The proposed mechanism works as follows. Firstly, packets
are sent to the root node of a shared tree in the core using
an existing point-to-point LSP. The packet carries a header
with a BF representing the tree of interfaces to use down
the shared tree. At the root node, the packets are added a
new label to travel down the shared tree. Both MPLS label
and BF are employed to forward the packet: (a) an efficient
variant of stateless switching [6] called D-MPSS [7] based on
Bloom filters is applied (section II) to the packet to determine
the output interfaces for that packet, but (b) only the shared
tree’s output interfaces for its input label are checked for

Fig. 2. Number of links to be tested with any Bloom filter-based technique
without/with aggregation.

membership. In [8] a hardware deployment on NetFPGA card
of both stateless routing mechanisms was succesfully achieved,
in order to prove their viability and to make a proposal to
implement them.

The paper is structured as follows. Section II addresses
the main concept of combinig BFs and shared trees, and III
describes the approach in detail. Section IV gives simulation
results and V presents conclusions.

II. COMBINING BFS AND SHARED TREES

We explore the possibility of realizing multicast forwarding
by combining aggregation techniques with the use of Bloom
filters. This new method is based on setting up two fields
in the packet header: one corresponding to the MPLS label
corresponding to the shared tree, and the other to the Bloom
filter. Our proposal is mainly supported by the idea that the
reduction in number of outgoing links to be evaluated, at
each node, will reduce the overhead traffic generated by false
positives. In the example presented in Fig. 2, picture (a) has
an individual tree to forward packets from A to B, C and
E. In the picture (b) the same tree is aggregated to a given
shared tree (note that the individual tree is a subset of the ST).
Observe that in the first case (without aggregation) the number
of links to be checked (done with any of the Bloom filter-
based techniques) in nodes A and C, are 6 in total; but in the
second case there are only 4. As a consecuence, the ST limits
the scope of the BF-based forwarding, and conversely, even
though we are re-using the same ST for multiple multicast
sessions, the multicast distribution over the ST is limited by
the BF. Therefore they work as complementary mechanisms
to fight overhead traffic.

Although this approach may be used for any type of network
that requires to enable its provision of multicast services, we
develop it for the scenario of an MPLS VPN-based network, as
explained in [2]. In that scheme, u multicast VPNs (MVPNs)
are aggregated to s shared trees, which are set up among the

Fig. 3. Packet header of the technique proposed, using MPSS (a) and D-MPSS
(b) as Bloom filter-based methods.

transport network. Core intermediate nodes keep information
only for the forwarding of the STs, but do not have any
knowledge about the VPN specific information of the packets
that are traversing them. The VPN specific information is
encapsulated in the packets at the PE source node, and is only
inspected at the final destination PEs. The main difference
here is that the Bloom filter is located between the MPLS
label (corresponding to the shared tree) and the packet data,
as shown in Fig. 3. The figure also outlines the difference
between the two BF-based forwarding mechanisms used in
this paper. MPSS uses a single BF to code the set of output
interfaces of the tree for that packet [6]; each interface is
assumed to have a unique identifier in the network. D-MPSS
[7] has several BFs of growing size, one per tree depth,
achieving a lower degree of forwarding anomalies than MPSS.

A way of understanding the power of constraining the
bloomcasting to a shared tree can be obtained by analysing
broadcast storms. In [9], [10] and [11] security vulnerabilities
of the Bloom filter-based forwarding techniques were studied.
In the attack of the 100% fill factor, an attacker sends a packet
with a Bloom filter with all the bits set to 1; thus, the packet
would match positively with every outgoing link ID, causing a
high rate of false positives and a chain reaction. In the case of
MPSS [6] this would generate a broadcast storm (Fig. 4.(a)),
only limited by the packet’s TTL. A simple protection to this
attack is limiting the fill factor in the network and filtering
out packets over e.g. 50%, at the price of potentially needing
larger BFs to keep the fill factor under that rate. With the use
of shared trees it would be possible to remove this fill factor
limitation, as BF-matching is constrained to a loop-less tree.
In the event of an injection of 100% fill factor packets, the
generated packet flow would only spread until the shared tree
bounds (Fig. 4.(b)).

III. THE HYBRID METHODS PROPOSED

A. Packet Forwarding

In our proposed mechanisms every node maintains two
forwarding tables: the standard MPLS forwarding table, with
the corresponding entries for shared tree forwarding; and the
link IDs table, with the entries of every outgoing interface
encoded as Bloom filters. When a packet arrives at a core
node, it first makes the look up process of the header within
the MPLS forwarding table; if it succeeds, then it performs the
Bloom filter header membership check with the corresponding

output links IDs table. Depending on what filtering technique
is being used, the matching process follows the steps described
in [6] for MPSS (with permutation, as in [4]) or D-MPSS [7].

Let us look at the example provided in Fig. 5, that represents
the state information of nodes A and C. The two shared trees,
ST-1 and ST-2, are correctly configured with their respective
forwarding entries at the MPLS forwarding tables. To serve
a given multicast VPN, the individual multicast tree of the
figure has been aggregated to ST-1. The fact that the multicast
tree is aggregated to ST-1 means that all the traffic of this
tree would use the state information assigned to ST-1 (MPLS
forwarding table). Since more individual multicast trees will
be aggregated to ST-1 and ST-2, the inner Bloom filter of the
packet will have to be matched according to the BF technique
and the linkIDs table.

Following the same example of Fig. 5, in Fig. 6 two
packets of the multicast VPN with its corresponding MPLS-
BF headers are launched to the network from node A (for this
example we assume that the BF technique adopted is MPSS).
The multicast tree of the VPN demand should visit nodes B,
C and E. By following the first check (the MPLS look up),
according to the state information of the STs at nodes A and C
(Fig. 5), packets should be delivered to nodes B, C, D and E.
After the second check (the BF matching) the packet in Fig.
6.(a) is filtered adequately and it is only delivered to nodes A
and E. However, the packet in Fig. 6.(b) gives a false positive
and is delivered also to node D.

B. Two Models of Shared Trees to be Combined with BFs

1) First Model: Fit Shared Trees (FST): In this model,
shared trees are used in the way it was introduced in [2], in
which s shared trees are created for aggregating u multicast
VPNs. By following this technique, the multicast VPNs are
aggregated to the most similar available ST (that is why
we call them fit shared trees (FSTs). If necessary, after the
aggregation, the chosen ST can be extended in order to contain
a new VPN. In this method, every ST has its own rendezvous
point (RP) node (the root of the ST) and all the source nodes

Fig. 4. Packet storm caused by a fully set Bloom filter with BF-forwarding
(a) and how it is prevented with a shared tree (b).

Fig. 5. Example of MPLS and link ID forwarding tables.

Fig. 6. Packet forwarding example using the hybrid technique.

have to deliver the packet first to it encapsulated in a LSP, and
then the RP initiates the multicast forwarding process.

This model presents two drawbacks: (1) The creation of
FSTs and on-the-fly computing for the accommodation of
multicast demands into them is not a trivial task. (2) Although
the RP of a FST is supposed to be the node with the minimum
average distance -in number of hops- to the rest of nodes
that take part of the VPN, in addition to the bandwidth
wasted because of packets delivered to non-destination nodes,
a number of transmissions will be wasted to get the RP.

#entriesFSTs(nodei) ≤ s+ degree(nodei) (1)

2) Second Model: Broadcast Shared Trees (BST): Getting
rid of the complexity and dynamic nature of FSTs, in this
model a number of broadcast trees are created with diverse
roots and sending PEs try to send the multicast traffic to the
closest one. Taking the same MPLS-VPN network model of
1 and the provider aggregation (PA) model [12], PA nodes
(nodes located between core and PE nodes) are selected as
the roots of the broadcast trees, and each PA node acts as the

Fig. 7. A broadcast shared tree (BST) in an MPLS-VPN network.

rendezvous point of a BST. As shown in Fig. 7, note that the
number of state entries at each node is exactly given by

#entriesBSTs(nodei) = |PAnodes|+ degree(nodei) (2)

Given that |PAnodes| is a constant value, the number
of entries in this model remains also constant at each
node and, depending on the network size, in general
#entriesBSTs(nodei) ≤ #entriesFSTs(nodei), except for
high values of aggregation ratio AR (e.g. AR = 100%), when
a very few STs are built (e.g. one ST for aggregating all the
demands). If state consumption is definitely an issue in the
design, a single spanning tree can do the job, leading to

#entriesBSTs(nodei) = degree(nodei) (3)

In Fig. 7 we present an example of a BST, which is supposed to
be one of the 8 BSTs built by default before any transmission
is done (each per PA node). As it may be observed, VPN 1
is attached to 6 of the points of presence or PE nodes, and
all of them can potentially be the root of another multicast
transmission. Let us suppose that the PE node labeled as PE
source node originates a multicast transmission, in which case
it chooses to be aggregated -among the 6 BSTs available- to
the BST with the nearest RP (in this case, BST-1 with its RP
attached to the provider backbone node B). As BST-1 has been
set up to reach every node in the network, multicast packets
will be delivered through it to all PE nodes. When any other
site of VPN 1 has to send packets, the multicast transmission
has to be aggregated to the BST with the nearest RP.

C. Performance Evaluation
This proposal, as being a hybrid technique that combines

aggregation with Bloom filters for the multicast packet for-
warding, is expected to reduce the overhead traffic generated

Fig. 8. Overhead propagation of MPSS in a regular network, with d ≥ 4,
v = 2 and h = 3.

by false positives, overcoming in this aspect -to the best of
our knowledge- all the previous and current approaches that
aim with the same problem. Nevertheless, as explained before,
the counteract is that it needs a little of state information
(specially for the BST model) and some extra processing.
In this subsection we formulate the corresponding numerical
analysis in order to measure these facts.

1) False Positives and Overhead: Both in MPSS and D-
MPSS techniques, the false positives rate (fpr) depends on
m, n and k values (see the correspondent equations 4 and
5), i.e. the Bloom filter size, the number of links/elements
to be added to the BF, and the number of hash functions,
respectively. In this sense, the fpr of the hybrid technique has
the same formulation as the BF technique used in combination
with the aggregation method. In equation 5 M is the upper
size that each individual BF of size mi (inside the stack of
BFs) should have.

fpr = ρk =

(
1−

(
1− 1

m

)kn
)k

≈
(

1− e−kn/m
)k

(4)

fpri = ρki =

1−

((
1− 1

M

)kni
) M

mi

k

(5)

However, the real benefits of the hybrid technique should
be seen in the reduction of the overhead traffic. Since now
the domain of links for the BF matching process at each node
is reduced to the set of branches of the FST or BST, less
overhead packets are generated. Computing how many links
are part of an ST might be an impossible task to be realized
analytically in the case of the FST model, because it depends
on the number of STs built, in the first place (note that the
more STs are built, the less number of links they have). It also
depends on the distribution of the multicast VPNs sites and
the similitude among the multicast VPN demands.

However, the BST model is feasible to be modelled analyt-
ically. Let us consider a regular network (Fig. 8). As shown
in [7], the overhead in MPSS is given by

oh(i)MPSS = (d−v−1)·fpr· 1− ((d− 1) · fpr)h−i+1

1− (d− 1) · fpr
(6)

Where d is the constant degree of each node, v the number
of branches of the tree at each node, h the depth of the tree,
and i the depth of a node in the tree. In Fig. 8 an example
of the behavior of the overhead propagation in such a regular
network is shown. The shortest BST from the RP node will
have N−1 edges, where N is the total number of nodes of the
network. Given that N is a value dependent on the network
topology, and impossible to derivate from the other network
variables, we consider that at the i-th level of the tree there
are δ · vi−1 actual nodes. Let us consider δ as the scalar value
that defines the network dimensions, so that

N = δ · n (7)

where n (the constant number of branches of the tree) is

n =

h∑
i=1

vi−1 (8)

n = v · (1− vh)

(1− v)
(9)

Now the average fanout (the average number of branches of
the BST at any node of the i-th level) is

fanout(i)BST =
δ · v

(d− 1)i−1
(10)

Thus, following the formulation from Eq. 6, when a multicast
tree is encoded as an MPSS Bloom filter and is aggregated
to the BST described before, the total number of consecutive
false positives generated is

totalOvhBST−MPSS =

h∑
i=1

fpri · i∏
j=1

fanout(j)BST

(11)

In order to evaluate the performance, the forwarding efficiency
(fwe) [13] of any technique is

fwe =
n

n+ oh
(12)

Let us consider a multicast tree with v = 2 and h = 6, which
makes n = 126 the number of edges of the tree. In Fig. 9a
we provide the calculations of the forwarding efficiency for
BST-MPSS, with different values of d and δ, and comparing
it with the native MPSS. As expected, analytical results show
clearly the great reduction of overhead due to the additional
BST constraint, leading to an important improvement of the
forwarding efficiency.

In the case of using D-MPSS as the inner BF technique, we
have that the total overhead given by Eq. 13

totalOvhBST−DMPSS =

h∑
i=1

 i∏
j=1

fprj · fanout(j)BST

(13)

(a) BST with MPSS, m=800, k=4 (b) BST with D-MPSS, M=800, k=6, mult=32

Fig. 9. Forwarding efficiency of BST for a multicast tree with v = 2, h = 6 over a regular network with a constant node degree of d and different values
of δ (multiplier factor of v to determine the number of nodes N).

Let us consider the same multicast tree described before.
Fig. 9b provides the analyticial results of the forwarding
efficiency for BST with DMPSS, with different values of d
and δ, and comparing it with D-MPSS. In general, hybrid
BST aggregation makes the forwarding efficiency higher than
99%, outperforming D-MPSS and BST-MPSS methods.

2) Number of Forwarding Entries: It is not possible to
calculate analytically the number of forwarding entries for
hybrid techniques that involve the use of fit shared trees (FST-
MPSS and FST-DMPSS), since the creation of STs is not a
trivial task (the RP of an ST is actually the core node that gives
the average shortest distance in number of hops from the RP
to the rest of nodes). Also the state entries for the LSP from
the source PE node to the RP node must be considered. But
in the case of BST-MPSS and BST-DMPSS this formulation
is possible. Let |PA| be the total number of BSTs built (one
per each PA aggregation node as RPs) and E the total number
of unidirectional links (which gives the number of forwarding
entries of the inner native BF technique). The total number of
state entries over the network is

totalStateBST = |PA| · (N − 2) + E (14)

3) Header Overhead: The header overhead is calculated in
a similar manner to the equation provided by [7] for the case
of MPSS, with the only difference that now the 32 bits of the
MPLS label (for the signaling of the ST or the BST) has to

be added. Thus, with the same regular network and the same
regular tree we have that

headerOvhhybrid = (m+ 32) · n (15)

For the hybrid aggregation - D-MPSS technique, the formu-
lation presented in [7] for the D-MPSS case needs to be
reformulated, obtaining:

headerOvhhybrid =

h∑
i=2

32 · ni + (mi + s)

i−1∑
j=1

nj

 (16)

IV. SIMULATIONS AND RESULTS

The simulations have been run over diverse reference net-
works such as NSFNET, Abilene, KPN (Europe), Tiscali
(World) and COST-266. We only present the results obtained
for NSFNET, because of space limitations and since the results
obtained with the other networks were really similar and
did not differ from the expected. All the network topologies
were extended according to the provider aggregation model
described in [12], thus resulting, in the case of NSFNET, 107
PE nodes 282 links. Simulations were run for testing all the
hybrid techniques presented in this work under the following
conditions. PE routers provide Internet and Layer 3 MPLS
VPN services from these major locations. We generated 1,000
random sets of VPN samples with uniform distributions for
each iteration. In all cases we used packets of 1,000 bytes.
Simulations were run under Java 1.7.0 03 using the IDE

Fig. 10. Bandwidth used and header overhead of the MPSS and FST-MPSS
approaches (NSFNET network, m=256, k=4).

Eclipse Juno, and were stopped when the target average X and
confidence interval of 95%, X ±∆X , held: ∆X/|X| ≤ 5%
(for the sake of clarity, intervals are not represented in figures).
For fair comparisons MPSS has been implemented with the
bit permutation method [4] but not including the time-to-live
(TTL) field in the header, since it is not necessary in an
environment where shared trees are used (because any packet
storm would be stopped as soon as it reaches one of the ST
leaves, signaled by the MPLS labels). Since the FST method
is not source-rooted, there is an amount of bandwidth wasted
for sending packets from the PE sources to the rendesvouz
point node of the ST, what is taken into account.

A. Bandwidth Used, Header Overhead and Forwarding Effi-
ciency

In Fig. 10 we can see that, although the FST hybrid
approach reduces (and for low levels of aggregation ratio (AR),
it eliminates) the bandwidth wasted after false positives, it has
the drawback of using a fair amount of bandwidth to deliver
packets from PE sources to RP nodes of the FSTs. However,
even for high values of AR, where only a few STs are built
(therefore, less state is needed), these approach outperforms
MPSS (with short filters of m = 256). Therefore, FST-MPSS
represents a viable alternative when the global percentage of
header overhead means an issue for the network performance
and it is necessary to lower it, because in this cases it does not
represent more than 5% of the traffic. As it was expected from
the analytical formulations (Eq. 11), although fpr does not
change in the shared tree scenario, the overhead that follows
the false positives are minimized and almost withdrawn, thanks
to the hybrid technique.

Regarding Broadcast Shared Trees with MPSS (BST-
MPSS), Fig. 11 shows how the BST model contributes to save

Fig. 11. Bandwidth used and header overhead of the BST-MPSS and MPSS
with permutation techniques (NSFNET network).

Fig. 12. Bandwidth used and header overhead of the BST-DMPSS and D-
MPSS techniques (NSFNET).

the bandwidth wasted for PE-RP transmissions, because BST
roots are located at one hop of distance from PE nodes. The
results gathered for BST with D-MPSS (BST-DMPSS) (Fig.
12) follow the same behavior as the previous one, with the
only difference that, since the inner Bloom filter-based method
(D-MPSS) performs better (better forwarding efficiency and
lower header overhead), the global results are also improved
thanks to the BSTs. It should be noted that from all of the
above techniques tested, this one performs the best, regarding
both forwarding efficiency and the load of header overhead.
The same results were obtained in networks with different
topologies and with different sizes. Thus, BST-DMPSS with
M = 1024, k = 6, and mult = 32 could be used by a VPN
Service Provider using this technique to support multicast
communications with only less than 1% of bandwidth wasted
and 4% of header overhead.

Fig. 13. Total number of state forwarding entries for native and hybrid
techniques (NSFNET network).

B. Forwarding State Entries

The number of state forwarding entries at intermediate
nodes to forward the whole set of VPNs samples through
shared trees is summarized in Fig. 13. These figures also
represent the state for the MPSS and D-MPSS cases, which are
expected to be very low (each node has to maintain only one
entry per outgoing link). As we can see, FSTs show acceptable
results from AR = 80%, which would make the bandwidth
and forwarding efficiency metrics get worse. Also observe that
the BST model does show a very low amount level of state too
(in this simulation, below 20 entries per node in average), in
coherence with the analytical results (Eq. 14). In this sense, the
BST model provides a good trade-off between the forwarding
efficiency, header overhead and state information, although the
extra processing for the MPLS label.

V. CONCLUSIONS

In this paper we have proposed and studied several tech-
niques for Hybrid Aggregation - Bloom filter-based forwarding
techniques for multicast traffic in a VPN service provider
network scenario. These techniques have been studied under
two models for shared tree construction: fit shared trees (FST)
and broadcast shared trees (BST), and with two BF forwarding
mechanisms: MPSS and D-MPSS. The results show that the
combination of BF and ST mean a relevant improvement
in forwarding efficiency, removing most overhead traffic and
cancelling loops. Regarding the shared tree models, FST
presents the drawback of having to use an amount of links
for sending packets from the provider edge nodes (PE nodes)

to the corresponding roots of the shared trees, which initiate
the multicast transmission, and the amount of forwarding
entries is higher. Therefore, we advocate for the BST model
of aggregation. In this approach, broadcast shared trees are
built, locating their rendezvous points (RP) near the PE nodes,
typically one hop before the PE node at an aggregation node,
in order to save PE-RP bandwidth. The results showed that
this hybrid aggregation method really contributes to improve
the Bloom filter-based techniques and also limit the amount
of the state forwarding entries to very low levels, as given by
the few pre-configured broadcast shared trees, independently
of the number of multicast groups or VPLS instances.

ACKNOWLEDGMENT

The authors would like to acknowledge the sup-
port of projects TIGRE5-CM (grant no. S2013/ICE-2919),
TEXEO (grant no. TEC2016-80339-R) and Elastic Networks
(TEC2015-71932-REDT) to the development of this work.

REFERENCES

[1] I. Martinez-Yelmo, D. Larrabeiti, and I. Soto, “Multicast traffic aggre-
gation in mpls-based vpn networks,” IEEE Communications Magazine,
vol. 45, no. 10, pp. 78–85, 2007.

[2] G. M. Fernandez, D. Larrabeiti, and J. A. de la Fuente, “On forwarding
state control in vpn multicast based on mpls multipoint lsps,” in 2012
IEEE 13th International Conference on High Performance Switching
and Routing, 5 2012, pp. 133–140.

[3] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Journal of Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2005.

[4] M. Sarela, C. E. Rothenberg, T. Aura, A. Zahemszky, P. Nikander,
and J. Ott, “Forwarding anomalies in bloom filter-based multicast,”
in Proceedings of the IEEE Conference on Computer Communications
(INFOCOM), Shangai, China, 2011, pp. 2399–2407.

[5] X. Tian and Y. Cheng, “Loop mitigation in bloom filter based multicast:
A destination-oriented approach,” in Proceedings of the IEEE Confer-
ence on Computer Communications (INFOCOM), Orlando, FL, USA,
2012, pp. 2131–2139.

[6] A. Zahemszky, P. Jokela, M. Sarela, S. Ruponen, J. Kempf, and P. Nikan-
der, “Mpss: Multiprotocol stateless switching,” in Proceedings of the
IEEE Conference on Computer Communications INFOCOM Workshops,
San Diego, CA, 2010, pp. 1–6.

[7] G. M. Fernandez and D. Larrabeiti, “Depth-wise multi-protocol stateless
switching of multicast traffic,” in Proceedings of the IEEE Latin Amer-
ican Conference on Communications (LATINCOM), vol. (Submitted for
acceptance), Cuenca, Ecuador, 2012.

[8] R. B. Martinez-Aguilar and G. M. Fernandez, “Implementation of
stateless routing mechanisms for multicast traffic on netfpga card,” in
Proceedings of the IEEE Colombian Conference on Communication and
Computing (IEEE COLCOM 2015). IEEE, 2015, pp. 1–5.

[9] C. Rothenberg, P. Jokela, P. Nikander, M. Sarela, and J. Ylitalo, “Self-
routing denial-of-service resistant capabilities using in-packet bloom
filters,” in Proceeding of the European Conference on Computer Network
Defense, IEEE, Ed. IEEE, 2009, pp. 46–51.

[10] M. Sarela, C. E. Rothenberg, A. Zahemszky, P. Nikander, and J. Ott,
“Bloomcasting: Security in bloom filter based multicast,” Lecture Notes
in Computer Science (15th Nordic Conference on Secure IT Systems,
Revised Selected Papers), vol. 7127, pp. 1–16, 2010.

[11] M. Antikainen, “On the security of in-packet bloom-filter forwarding
(master thesis). aalto university. espoo, finland,” Master’s thesis, Aalto
University, Espoo, Finland, June June 2011.

[12] J. Guichard, F. L. Faucheur, and J.-P. Vasseur, Definitive MPLS Network
Designs. Cisco Press, 2005.

[13] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P. Nikander,
“Lipsin: Line speed publish/subscribe inter-networking,” in Proceedings
of the ACM SIGCOMM Conference of the Special Interest Group on
Data Communications, ACM, Ed., Barcelona, Spain, 2009, pp. 195–
206.

