
978-1-5090-4130-5/16/$31.00 ©2016 IEEE 

Situation Awareness in a Smart Home Environment 

Shu-Yun Lee and Fuchun Joseph Lin 

Department of Computer Science 
National Chiao Tung University 

Hsinchu, Taiwan 
{ happy8155.cs03g | fjlin}@g2.nctu.edu.tw 

 
Abstract — Situation awareness is a must for a smart home to 

exhibit its smartness. Normally, this is accomplished by accurately 

detecting the activities of a home user and then responding to the 

need of the user accordingly. This research utilizes a single 

wearable device equipped with an accelerometer and a gyroscope 

to detect eight potential activities in the living room of a smart 

home environment. First, the models of activities are constructed 

based on training data generated from the wearable device. Then, 

when a user performs the activity, the newly generated data would 

be compared with the established models to identify the type of 

current activity. Our method of model construction and activity 

detection is based on Decision Tree and Hidden Markov Model 

(HMM) with the assistance of location data derived from Beacons. 

The unique advantage of our method lies in its low cost as only one 

wearable device and a couple of beacons are required for achieving 

the desired situation awareness. 

Keywords—Wearable Device; Internet of Things; Decision 

Tree; Hidden Markov Model  

I.  INTRODUCTION 

With proliferation of IoT technologies, smart devices are 
now closely connected to our life. Many of these devices such 
as smart phones, wearable devices and tablets greatly improve 
the quality of our life. In particular, wearable devices have 
become more and more popular in recent years [1]. There are 
diverse areas of applications developed for wearable devices [2] 
such as communications, entertainment, sport and lifestyle. 
Among these, lifestyle is considered as the dearest to our daily 
life, especially in a smart home environment. 

This research utilizes a single wearable device and three 
Beacons to identify a user’s eight daily activities in the living 
room of a smart home environment, including watching TV, 
reading newspaper, chatting with other family members, lying 
down on the sofa for a nap, listening to music, doing yoga, 
enjoying massage or just walking around. The user is only 
required to wear a wearable device on the right waist (Fig. 1) 
with three Beacons installed in the living room. Assuming that 
the user would carry his/her own BLE-equipped cellphone all 
the time, the unique advantage of our solution is that it requires 
neither multiple wearable devices nor any camera to detect a 
user’s activity. Through its situation awareness, our system is 
capable of reacting to the user’s need with appropriate 
environment adjustment in terms of light and music control. 

The rest of the paper is organized as follows: Section II 
surveys related work. Section III introduces the background 
including both hardware and software components required by 
our system. Section IV explains our system architecture and its 
three design alternatives. Section V describes the algorithms for 

activity learning and activity identification. Section VI presents 
our experimental results and compares three design alternatives. 
Finally, in Section VII we provide our conclusion and future 
work.  

II. RELATED WORK 

We survey related work in activity recognition using 
wearable devices. Most methods use more than one wearable 
device but produce less accurate results than our approach.  Due 
to the space limit, only two of them are presented below. 

A. Wearable Device and Camera-Based Activity Recognition 

Chun et al. [3] proposed a two-step recognition algorithm for 
indoor daily activity identification using both motion data and 
location data: (1) coarse-grained classification (2) fine-grained 
classification. The coarse-grained classification combines the 
outputs of two neural networks to classify activities. The fine-
grained classification applies a modified short-time Viterbi 
algorithm to solve the hidden states of Hidden Markov Model 
(HMM) and classifies activities in further detail. Then, they 
combine the motion data and location information to reach the 
final result. 

B. Multiple Wearable Sensor-Based Real-Time Activity 

Recognition 

Liang et al. [4] proposed a hierarchical approach for real-
time activity recognition with multiple sensors attached to a user 
or embedded in the environment. A high-level activity usually 
includes gestures and ambulation. To recognize the activities 
hierarchically, they first identify gestures at the sensor node 
level then recognize complex activities at the portable device 
level. To identify gestures, they use a K-Medoids clustering 
method to discover template gestures and Dynamic Time 
Wrapping (DTW) to match the templates using Euclidean 
distance. After matching, they use the Emerging Pattern based 
algorithm to recognize the activities in real time. They did 
experiments for 26 activities and most of them were recognized 
accurately. However, few of them such as making coffee were 
recognized inaccurately (4.3%). The variance of the accuracies 
is very large. 

 
Fig. 1. Koala worn on the waist 
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C. Summary 

To identify activities, some research would use a single 
wearable device and location information while the other would 
use multiple sensors. They usually use Hidden Markov Model 
(HMM) and Viterbi algorithm to find the hidden states. In 
addition to related work we mentioned above, we also survey 
other research work in activity identification [5] [6]. The overall 
accuracy is above 70%. Most of them are about 85%.  

III. BACKGROUD 

We explain sensors, processing hardware and mining tools 
required by our system in the following paragraphs. 

A. Sensors 

Both motion data and location data are required by our 
system to identify the user’s activity. The primary device used 
for collecting both motion data and location data is a wearable 
device called Koala as shown in Fig. 1. 

1) Wearable Device 
Koala is developed by National Chiao Tung University. It 
contains a 3-axis accelerometer and a 3-axis gyroscope, and 
uses Bluetooth Low Energy (BLE) as the communication 
protocol. Its specification is shown in Fig. 2. Any BLE-
equipped smart phone can establish connection with Koala 
and receive approximately 30 sets of acceleration and 
gyroscope data per second. Due to the frequency of motion 
data, the window size is set at 60 data and the movement is 
set at every 15 data. When the window is full, the system 
will execute algorithms to identify the user’s current 
situation, then move the window to collect next 15 motion 
data. 

 
Fig. 2. Specification of Koala 

 

 

Fig. 3. Scanning Beacons with an Android smart phone 

 

 

Fig. 4. Hue control flow 

 

2) Beacon 
To retrieve the user’s location data, the system uses three 
Beacons located at three locations in the living room. The 
Beacon broadcasts messages periodically and the message 
contains MAC (Media Access Control) address and RSSI 
(Received Signal Strength Indicator) value. With the MAC 
address, the system can know the Beacon’s location via the 
Beacon’s identity as shown in Fig. 3. With the RSSI value, 
the system can further decide which Beacon is the closest 
one to identify the user’s current location. 

B. Processing Hardware 

To provide a comfortable environment for the user in a home, 
the system would send control signal to the smart light and the 
music player to change the environment. We use Philips Hue [5] 
to be our smart light. Our system sends control signal to a Hue 
bridge through RESTful (REST is Representational State 
Transfer) communications. A Hue bridge is connected to the 
Ethernet and it can process control signals to control Hue bulbs 
separately or in group through ZigBee as shown in Fig. 4. A Hue 

bulb can be changed with different brightness and 16 million 
colors. With different light and music, the user can enjoy a more 
comfortable home environment. 

C. Mining Tool 

To build the Decision Tree for activity identification, we use 
Weka as our mining tool. Weka is the abbreviation of Waikato 
Environment for Knowledge Analysis [6]. It supports many 
machine learning algorithms including Decision Tree. To build 
the model, we collect training data first, calculate their features 
(mean, standard deviation and range) and save these features as 
a CSV file to be processed by Weka. Then, Weka would 
generate the Decision Tree model for activity identification. 

IV. SYSTEM ARCHITECTURE 

We explain our system architecture and its three design 
alternatives in this section. 

Two types of devices are used in our architecture: Koala 
wearable device and Beacon. The former is used to collect the 
user’s motion data while the latter is used for detecting the user’s 
location. In addition, a smart phone is utilized to receive the data 
from both the Koala and the Beacons. We propose three 
architecture alternatives to process the raw data from the Koala 
and the Beacons for the purpose of identifying a user’s activity.  

The three architecture alternatives are depicted in Figs. 5, 6 
and 7, respectively. Their difference lies in where the situation 
detection procedures will be carried out. The first architecture in 
Fig. 5 carries out all the situation detection procedures on the 
smart phone including both feature extraction and situation 
detection. The smart phone will then play music on itself and 
also send control signals to the Hue to provide the user with a 
comfortable environment. 

  On the other hand, the second and the third architectures in 
Figs. 6 and 7 use a backend Python server for data processing. 
The Python server is running on a Raspberry Pi 2 based on 
Python 2.7.9. The difference between two architectures lies on 
where the feature calculation is performed. The second 
architecture would send all the raw data to the backend Python 
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server for processing (Fig. 6) while the third architecture would 
calculate the features on the smart phone but send the features to 
the Python server for further processing (Fig. 7). 

 Then, based on the user’s specific activities different signals 
would be sent by Python Server to control the music player on 
the smart phone and the Hue in the smart home environment. 
We’re to find out which architecture alternative is the best 
among the three. 

 

Fig. 5. First architecture with all processing on the smart phone 
 

 

Fig. 6. Second architecture with all processing on the Python server 
 

 

Fig. 7. Third architecture with processing distributed on a smart phone and a 
Python server 

 

 

Fig. 8. Beacons distribution 

 

 

Fig. 9. Classifications of activities 

V. ACTIVITY DETECTION ALGORITHMS 

We describe the algorithms for activity learning and activity 
identification in this section. 

A. Location Identification 

Location identification is accomplished by Beacons. With 
the smart phone, Beacons stuck on the sofa, yoga mat and 
massage chair by the tape (Fig. 8) can be scanned and identified 

based on their MAC addresses. Also, with the RSSI values from 
the Beacons, the distance can be measured between each Beacon 
and the smart phone. 

The smart phone keeps scanning Beacons and receiving 
RSSI values. We compare the RSSI values from three Beacons. 
The maximum RSSI value indicates where the user is located. 
On the other hand, if all RSSI values are smaller than or equal to 
-65, this indicates that the user is nowhere near sofa, yoga mat 
or massage chair but walking around. 

B. Activity Identification 

Both motion data and location data (Fig. 9) are required to 
identify a user’s activity. For motion data, both Decision Tree 
and Hidden Markov Model (HMM) algorithms [7] are used for 
activity analysis and identification. Before applying these 
algorithms, a mining tool and several mathematical methods are 
used to construct the models. 

1) Decision Tree 
We collect training data for each activity and use Excel 
to calculate the features of raw data. The features 
calculated includes mean, standard deviation and range. 
The raw data contains 3-axis acceleration, 3-axis 
gyroscope and total acceleration data. Therefore, we 
would generate 21 features. 

accel_yMean

accel_xStd gyro_xMean

gyro_xMean

Sitting Standing

Sitting Sitting Lying

<=-0.402716 >-0.402716

<=0.173 >0.173

<=8.696 >8.696

<=-13.332 >-13.332

 

Fig. 10. Decision Tree for sitting, lying and standing 

 

accel_yMean

accel_xMeanChatting

Watching Reading

<=-0.653352 >-0.653352

<=-0.209668 >-0.209668

 

Fig. 11. Decision Tree for chatting, watching and reading 

 

accel_xMean

Sleeping Listening

<=-0.891109 >-0.891109

 

Fig. 12. Decision Tree for sleeping and listening 
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After features generation, Weka is employed to build a 
Decision Tree model (as illustrated in Fig. 10) to identify 
three classifications of activities including sitting, lying 
and standing which cover 6 activities on the left of Fig. 
9. 

After the first step, we can identify walking as it is the 
only one classified as standing. We then use the Decision 
Tree in Fig. 11 to further classify sitting into chatting, 
watching and reading. In the last step, the Decision Tree 
in Fig. 12 is used to further classify lying into sleeping 
and listening. The activities of enjoying massage and 
doing yoga can be determined just by location data. As a 
result, we can classify all activities. 

When the raw data is coming in, the application can 
calculate the features every 60 data with the window’s 
movement at every 15 data. Then, the application that 
implements the Decision Tree of Figs. 10-12 can identify 
the user’s activities. 

After this procedure, we determine the user’s location by 
the data from Beacons. If the user is on the massage chair, 
we recognize the activity as enjoying massage. If the user 
is on the yoga mat, we classify the activity as doing yoga. 
If the user is far from Beacons, it means the user is 
walking around. If the user is on the sofa, it means the 
activity is one of five we would identify by Decision Tree.  

Though we can identify all the user’s activities by the 
above procedures, the accuracies of some activities 
identification are lower than 90% if Decision Tree is used 
alone for identification. Table 1 shows that when 
Decision Tree is used alone to identify six activities 
(watching, reading, chatting, sleeping, listening and 
walking), the average accuracy of lying is higher than 
90% but the accuracies of sitting and standing are lower 
than 90%. 

For the low accuracy of standing identification in Table 
1, we use location data to improve its identification 
accuracy. Then for the low accuracy of sitting 
identification in Table 1, we use Hidden Markov Model 
(HMM) to improve its identification accuracy. 

2) Hidden Markov Model 
Hidden Markov Model (HMM) [7] uses the observable 
states to inference the hidden states. We use Decision 
Tree to perceive the observable states and Hidden 
Markov Model to inference the hidden states and 
generate the identification result. 

HMM requires three probabilities: initial probability, 
observation probability and transition probability. Before 
a user starts his/her activities in a living room, he/she has 
to walk into the living room first. Therefore, the initial 
probability is set as Table 2. 

Table 1. Accuracy of using Decision Tree only 

 

 

Table 2. Initial probability matrix 

 

Table 3. Observation probability matrix 

 

Table 4. Transition probability matrix 
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Formula 1. Probability of each state 

x � argmax�∈���	
 
Formula 2. Formula of finding the most probable state 

Observation probability (Table 3) P�y|i
 means the 
probability of Current State = i and Observation State = y. Transition probability (Table 4) means the probability 
of transition from the original state to the next state. Both 
the observation probability matrix and the transition 
probability matrix are generated by the experimental 
results using Decision Tree. With HMM, we can find the 
most probable state. To solve the HMM, we need to use 
the Viterbi algorithm [9]. 

3) Viterbi Algorithm 
The Viterbi algorithm is used to solve our Hidden 
Markov Model (HMM). The Viterbi algorithm is a 
dynamic programming algorithm for finding the most 
probable sequence in HMM. Since we only need to know 
a current state, we modify the original Viterbi algorithm 
to suit our purpose. 

Via Formula 1, we can calculate the probability of each 
state.  

i		belongs to set S, the set of activities.  

P�y|i
 means the probability of Current State = i and 
Observation State = y.  

πi is the probability of Initial State = i.  
a	x,i signifies the transition probability from State x to 
State i.  
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If it’s the first time to calculate Vi, we use the upper part 
of Formula 1. If it’s not the first time, we use the lower 
part of Formula 1. Vx in the lower part means the result 
from last time. 

After calculating the probability of each state, we use 
Formula 2 to find the most probable state. Formula 2 
signifies Vx is the maximum probability among all Vi 
where i means each activity. As a result, we can identify 
the user’s current activity. 

C. Smart Appliance Control 

 After all model construction and activity recognition, we can 
know the user’s current activity. In response to different 
activities, different music and Hue control as indicated in Table 
5 will be provided. For example, a moderate light will be 
provided for watching TV. For reading newspaper, the user will 
be given brighter illumination. When the user is chatting with 
other family members, we change Hue to a warm mood. If we 
detect the user is lying down on the sofa to take a nap, we dim 
the light. We provide a colorful environment to make the user 
enjoy listening to music. When the user is walking around, we 
just make the light on. If the user is doing yoga, we make him/her 
feel like in a forest to relax his/her mind. If the user is enjoying 
massage, we play the soft music and a relaxing light. For a 
different situation, the system would respond with a different yet 
the most comfortable environment for the user. 

VI. EXPERIMENTAL RESULTS 

 We test whether using Hidden Markov Model (HMM) and 
Viterbi algorithm can reach a higher accuracy than only using 
Decision Tree. We also compare the performance of three design 
alternatives discussed in Section 3. This section shows our 
experimental results. 

A. Accuracy Comparison between with and without Viterbi 

Algorithm under different architectures 

To compare the accuracy between with and without Viterbi 
algorithm, we use three different processing architectures. 

Architecture 1. All processing done on the smart phone 

Architecture 2. All processing done on a Python server 

Architecture 3. Processing distributed on both the smart 
phone and the Python server 

Fig. 13 shows the result of using Architecture 1. Most 
activity identification can reach a higher accuracy with Viterbi 
algorithm. The only exception is sleeping (79.22%) when 
comparing to those not using Viterbi algorithm (84.11%). This 
is because during sleeping the Koala’s position may be changed 
to interfere our detection algorithm. However in average, we 
can still reach a higher activity identification accuracy (92.13%) 
using Viterbi algorithm than not using it (83.62%). 

Table 5. Mapping of activities and a smart home environment 

 

In Architecture 2, the smart phone would send to the Python 
server (1) 15 sets of raw data from the Koala and (2) the user’s 
location data scanning from Beacons. The Python server 
processes those data to identify the user’s activity. The accuracy 
results are shown in Fig. 14. Using Viterbi algorithm can reach 
a higher accuracy for five of the cases. However, the average 
accuracy of using Viterbi algorithm (90.99%) is lower than only 
using Decision Tree (94.79%). This is likely caused by the 
unstable position of the Koala on user’s waist. 

In Architecture 3, the smart phone calculates the features 
first and then sends the features and location data to the Python 
server for processing. The result is shown in Fig. 15. A half of 
the cases reaches higher accuracies with Viterbi algorithm than 
without Viterbi algorithm. Another half of them using Viterbi 
algorithm are less accurate than not using it (94.40% vs. 94.57%, 
95.05% vs. 100%, 95.35% vs. 98.95% and 92.59% vs. 96.58%). 

 

Fig. 13. Accuracy of Architecture 1 

 

 

Fig. 14. Accuracy of Architecture 2 

 

 

Fig. 15. Accuracy of Architecture 3 
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Table 6. Experimental accuracies 

 

Table 7. Time cost of different cases (Unit: second) 

 

But the differences are very small (0.17%, 4.95%, 3.6% and 
3.99%), so the results are still acceptable. Overall, the average 
accuracy (93.81%) of using Viterbi algorithm is still higher than 
using Decision Tree only (83.83%). Table 6 summarizes our 
experimental results of three architectures. We can see the 
average accuracy of using Viterbi algorithm is higher than only 
using Decision Tree. We thus can conclude that using Hidden 
Markov Model (HMM) and Viterbi algorithm are more suitable 
for activity identification than only using Decision Tree. The 
overall results show that the architecture plays little role in the 
accuracies of the results. 

B. Performance comparison under different architctures 

Due to transmission time difference caused by different 
network environment, only computational time on different 
architectures is used for performance comparison. Our 
experimental results are shown in Table 7. The first value in 
parentheses is the computational time on a smart phone and the 
second one is the computational time on the Python server. The 
value before parentheses is the sum of both. 

In the case of using Viterbi Algorithm, Architecture 3 where 
processing is distributed on a smart phone and a server is able 
to reach the highest efficiency (0.557 sec) than the other two 
(0.636 sec and 0.575 sec). This is because a Python server 
always performs better than a smart phone. In addition, 
transmitting features is always more efficient than transmitting 
large raw data. 

In the case of using Decision Tree, Architecture 3 also has 
the best performance (0.578 sec) than the other two (0.588 
second 0.608 sec). We infer the same reason as that in the case 
of Viterbi Algorithm. 

Though Architecture 3 is able to reach the best average 
performance (0.5675 sec) among all three architectures, this 
comparison doesn’t take the transmission time into 
consideration. As Architectures 2 and 3 always involve a server 
with potentially very long transmission time, it is possible that 
in the real environment Architecture 1 may still end up to be the 
most efficient design.  

If we compare the performance between using Viterbi 
algorithm and Decision Tree, Table 7 shows that the average 
performance of using Viterbi algorithm is better in 
Architectures 2 and 3 but worse than in Architecture 1. This is 
likely caused by the fact that it is less efficient to perform 
Viterbi algorithm on a smart phone than on a server. 

VII. CONCLUSIONS AND FUTURE WORK 

 In this research, we use the user’s motion data from a Koala 
wearable device and the location data from three Beacons to 
identify the user’s situation in a smart home environment: 
watching TV, reading newspaper, chatting with other family 
members, lying down on the sofa for a nap, listening to music, 
doing yoga, enjoying massage and walking around. For a 
different situation, the system would respond with a distinct 
environment to the user by controlling the music player and 
smart lighting. 

Between HMM/Viterbi algorithm and Decision Tree 
algorithm, we conclude through our experimental result that 
using HMM and Viterbi algorithm would be more accurate and 
have better performance than using Decision Tree alone. Also, 
among three different architectures of implementation, when 
taking transmission time into consideration, Architecture 1 
where all processing is done on the smart phone is likely to be 
the best choice among all three alternatives. 

Via identifying a user’s activity, our smart home system can 
create a suitable and comfortable environment for the user 
through controlling the music player and smart lighting. Several 
areas still exist for future research such as developing multi-
person activity identification, expanding the scope of service 
area and controlling more smart appliances in the home.  
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