
978-1-5090-4130-5/16/$31.00 ©2016 IEEE

Situation Awareness in a Smart Home Environment

Shu-Yun Lee and Fuchun Joseph Lin

Department of Computer Science
National Chiao Tung University

Hsinchu, Taiwan
{ happy8155.cs03g | fjlin}@g2.nctu.edu.tw

Abstract — Situation awareness is a must for a smart home to

exhibit its smartness. Normally, this is accomplished by accurately

detecting the activities of a home user and then responding to the

need of the user accordingly. This research utilizes a single

wearable device equipped with an accelerometer and a gyroscope

to detect eight potential activities in the living room of a smart

home environment. First, the models of activities are constructed

based on training data generated from the wearable device. Then,

when a user performs the activity, the newly generated data would

be compared with the established models to identify the type of

current activity. Our method of model construction and activity

detection is based on Decision Tree and Hidden Markov Model

(HMM) with the assistance of location data derived from Beacons.

The unique advantage of our method lies in its low cost as only one

wearable device and a couple of beacons are required for achieving

the desired situation awareness.

Keywords—Wearable Device; Internet of Things; Decision

Tree; Hidden Markov Model

I. INTRODUCTION

With proliferation of IoT technologies, smart devices are
now closely connected to our life. Many of these devices such
as smart phones, wearable devices and tablets greatly improve
the quality of our life. In particular, wearable devices have
become more and more popular in recent years [1]. There are
diverse areas of applications developed for wearable devices [2]
such as communications, entertainment, sport and lifestyle.
Among these, lifestyle is considered as the dearest to our daily
life, especially in a smart home environment.

This research utilizes a single wearable device and three
Beacons to identify a user’s eight daily activities in the living
room of a smart home environment, including watching TV,
reading newspaper, chatting with other family members, lying
down on the sofa for a nap, listening to music, doing yoga,
enjoying massage or just walking around. The user is only
required to wear a wearable device on the right waist (Fig. 1)
with three Beacons installed in the living room. Assuming that
the user would carry his/her own BLE-equipped cellphone all
the time, the unique advantage of our solution is that it requires
neither multiple wearable devices nor any camera to detect a
user’s activity. Through its situation awareness, our system is
capable of reacting to the user’s need with appropriate
environment adjustment in terms of light and music control.

The rest of the paper is organized as follows: Section II
surveys related work. Section III introduces the background
including both hardware and software components required by
our system. Section IV explains our system architecture and its
three design alternatives. Section V describes the algorithms for

activity learning and activity identification. Section VI presents
our experimental results and compares three design alternatives.
Finally, in Section VII we provide our conclusion and future
work.

II. RELATED WORK

We survey related work in activity recognition using
wearable devices. Most methods use more than one wearable
device but produce less accurate results than our approach. Due
to the space limit, only two of them are presented below.

A. Wearable Device and Camera-Based Activity Recognition

Chun et al. [3] proposed a two-step recognition algorithm for
indoor daily activity identification using both motion data and
location data: (1) coarse-grained classification (2) fine-grained
classification. The coarse-grained classification combines the
outputs of two neural networks to classify activities. The fine-
grained classification applies a modified short-time Viterbi
algorithm to solve the hidden states of Hidden Markov Model
(HMM) and classifies activities in further detail. Then, they
combine the motion data and location information to reach the
final result.

B. Multiple Wearable Sensor-Based Real-Time Activity

Recognition

Liang et al. [4] proposed a hierarchical approach for real-
time activity recognition with multiple sensors attached to a user
or embedded in the environment. A high-level activity usually
includes gestures and ambulation. To recognize the activities
hierarchically, they first identify gestures at the sensor node
level then recognize complex activities at the portable device
level. To identify gestures, they use a K-Medoids clustering
method to discover template gestures and Dynamic Time
Wrapping (DTW) to match the templates using Euclidean
distance. After matching, they use the Emerging Pattern based
algorithm to recognize the activities in real time. They did
experiments for 26 activities and most of them were recognized
accurately. However, few of them such as making coffee were
recognized inaccurately (4.3%). The variance of the accuracies
is very large.

Fig. 1. Koala worn on the waist

678

C. Summary

To identify activities, some research would use a single
wearable device and location information while the other would
use multiple sensors. They usually use Hidden Markov Model
(HMM) and Viterbi algorithm to find the hidden states. In
addition to related work we mentioned above, we also survey
other research work in activity identification [5] [6]. The overall
accuracy is above 70%. Most of them are about 85%.

III. BACKGROUD

We explain sensors, processing hardware and mining tools
required by our system in the following paragraphs.

A. Sensors

Both motion data and location data are required by our
system to identify the user’s activity. The primary device used
for collecting both motion data and location data is a wearable
device called Koala as shown in Fig. 1.

1) Wearable Device
Koala is developed by National Chiao Tung University. It
contains a 3-axis accelerometer and a 3-axis gyroscope, and
uses Bluetooth Low Energy (BLE) as the communication
protocol. Its specification is shown in Fig. 2. Any BLE-
equipped smart phone can establish connection with Koala
and receive approximately 30 sets of acceleration and
gyroscope data per second. Due to the frequency of motion
data, the window size is set at 60 data and the movement is
set at every 15 data. When the window is full, the system
will execute algorithms to identify the user’s current
situation, then move the window to collect next 15 motion
data.

Fig. 2. Specification of Koala

Fig. 3. Scanning Beacons with an Android smart phone

Fig. 4. Hue control flow

2) Beacon
To retrieve the user’s location data, the system uses three
Beacons located at three locations in the living room. The
Beacon broadcasts messages periodically and the message
contains MAC (Media Access Control) address and RSSI
(Received Signal Strength Indicator) value. With the MAC
address, the system can know the Beacon’s location via the
Beacon’s identity as shown in Fig. 3. With the RSSI value,
the system can further decide which Beacon is the closest
one to identify the user’s current location.

B. Processing Hardware

To provide a comfortable environment for the user in a home,
the system would send control signal to the smart light and the
music player to change the environment. We use Philips Hue [5]
to be our smart light. Our system sends control signal to a Hue
bridge through RESTful (REST is Representational State
Transfer) communications. A Hue bridge is connected to the
Ethernet and it can process control signals to control Hue bulbs
separately or in group through ZigBee as shown in Fig. 4. A Hue

bulb can be changed with different brightness and 16 million
colors. With different light and music, the user can enjoy a more
comfortable home environment.

C. Mining Tool

To build the Decision Tree for activity identification, we use
Weka as our mining tool. Weka is the abbreviation of Waikato
Environment for Knowledge Analysis [6]. It supports many
machine learning algorithms including Decision Tree. To build
the model, we collect training data first, calculate their features
(mean, standard deviation and range) and save these features as
a CSV file to be processed by Weka. Then, Weka would
generate the Decision Tree model for activity identification.

IV. SYSTEM ARCHITECTURE

We explain our system architecture and its three design
alternatives in this section.

Two types of devices are used in our architecture: Koala
wearable device and Beacon. The former is used to collect the
user’s motion data while the latter is used for detecting the user’s
location. In addition, a smart phone is utilized to receive the data
from both the Koala and the Beacons. We propose three
architecture alternatives to process the raw data from the Koala
and the Beacons for the purpose of identifying a user’s activity.

The three architecture alternatives are depicted in Figs. 5, 6
and 7, respectively. Their difference lies in where the situation
detection procedures will be carried out. The first architecture in
Fig. 5 carries out all the situation detection procedures on the
smart phone including both feature extraction and situation
detection. The smart phone will then play music on itself and
also send control signals to the Hue to provide the user with a
comfortable environment.

 On the other hand, the second and the third architectures in
Figs. 6 and 7 use a backend Python server for data processing.
The Python server is running on a Raspberry Pi 2 based on
Python 2.7.9. The difference between two architectures lies on
where the feature calculation is performed. The second
architecture would send all the raw data to the backend Python

679

server for processing (Fig. 6) while the third architecture would
calculate the features on the smart phone but send the features to
the Python server for further processing (Fig. 7).

 Then, based on the user’s specific activities different signals
would be sent by Python Server to control the music player on
the smart phone and the Hue in the smart home environment.
We’re to find out which architecture alternative is the best
among the three.

Fig. 5. First architecture with all processing on the smart phone

Fig. 6. Second architecture with all processing on the Python server

Fig. 7. Third architecture with processing distributed on a smart phone and a
Python server

Fig. 8. Beacons distribution

Fig. 9. Classifications of activities

V. ACTIVITY DETECTION ALGORITHMS

We describe the algorithms for activity learning and activity
identification in this section.

A. Location Identification

Location identification is accomplished by Beacons. With
the smart phone, Beacons stuck on the sofa, yoga mat and
massage chair by the tape (Fig. 8) can be scanned and identified

based on their MAC addresses. Also, with the RSSI values from
the Beacons, the distance can be measured between each Beacon
and the smart phone.

The smart phone keeps scanning Beacons and receiving
RSSI values. We compare the RSSI values from three Beacons.
The maximum RSSI value indicates where the user is located.
On the other hand, if all RSSI values are smaller than or equal to
-65, this indicates that the user is nowhere near sofa, yoga mat
or massage chair but walking around.

B. Activity Identification

Both motion data and location data (Fig. 9) are required to
identify a user’s activity. For motion data, both Decision Tree
and Hidden Markov Model (HMM) algorithms [7] are used for
activity analysis and identification. Before applying these
algorithms, a mining tool and several mathematical methods are
used to construct the models.

1) Decision Tree
We collect training data for each activity and use Excel
to calculate the features of raw data. The features
calculated includes mean, standard deviation and range.
The raw data contains 3-axis acceleration, 3-axis
gyroscope and total acceleration data. Therefore, we
would generate 21 features.

accel_yMean

accel_xStd gyro_xMean

gyro_xMean

Sitting Standing

Sitting Sitting Lying

<=-0.402716 >-0.402716

<=0.173 >0.173

<=8.696 >8.696

<=-13.332 >-13.332

Fig. 10. Decision Tree for sitting, lying and standing

accel_yMean

accel_xMeanChatting

Watching Reading

<=-0.653352 >-0.653352

<=-0.209668 >-0.209668

Fig. 11. Decision Tree for chatting, watching and reading

accel_xMean

Sleeping Listening

<=-0.891109 >-0.891109

Fig. 12. Decision Tree for sleeping and listening

680

After features generation, Weka is employed to build a
Decision Tree model (as illustrated in Fig. 10) to identify
three classifications of activities including sitting, lying
and standing which cover 6 activities on the left of Fig.
9.

After the first step, we can identify walking as it is the
only one classified as standing. We then use the Decision
Tree in Fig. 11 to further classify sitting into chatting,
watching and reading. In the last step, the Decision Tree
in Fig. 12 is used to further classify lying into sleeping
and listening. The activities of enjoying massage and
doing yoga can be determined just by location data. As a
result, we can classify all activities.

When the raw data is coming in, the application can
calculate the features every 60 data with the window’s
movement at every 15 data. Then, the application that
implements the Decision Tree of Figs. 10-12 can identify
the user’s activities.

After this procedure, we determine the user’s location by
the data from Beacons. If the user is on the massage chair,
we recognize the activity as enjoying massage. If the user
is on the yoga mat, we classify the activity as doing yoga.
If the user is far from Beacons, it means the user is
walking around. If the user is on the sofa, it means the
activity is one of five we would identify by Decision Tree.

Though we can identify all the user’s activities by the
above procedures, the accuracies of some activities
identification are lower than 90% if Decision Tree is used
alone for identification. Table 1 shows that when
Decision Tree is used alone to identify six activities
(watching, reading, chatting, sleeping, listening and
walking), the average accuracy of lying is higher than
90% but the accuracies of sitting and standing are lower
than 90%.

For the low accuracy of standing identification in Table
1, we use location data to improve its identification
accuracy. Then for the low accuracy of sitting
identification in Table 1, we use Hidden Markov Model
(HMM) to improve its identification accuracy.

2) Hidden Markov Model
Hidden Markov Model (HMM) [7] uses the observable
states to inference the hidden states. We use Decision
Tree to perceive the observable states and Hidden
Markov Model to inference the hidden states and
generate the identification result.

HMM requires three probabilities: initial probability,
observation probability and transition probability. Before
a user starts his/her activities in a living room, he/she has
to walk into the living room first. Therefore, the initial
probability is set as Table 2.

Table 1. Accuracy of using Decision Tree only

Table 2. Initial probability matrix

Table 3. Observation probability matrix

Table 4. Transition probability matrix

�� � ����|	
 ∗ �� , 	�		�′�	���	�	���	�	��	��	���������	������∈�����|	
 ∗ ��,� ∗ �� , ���� , 	 ∈ !

Formula 1. Probability of each state

x � argmax�∈���	

Formula 2. Formula of finding the most probable state

Observation probability (Table 3) P�y|i
 means the
probability of Current State = i and Observation State = y. Transition probability (Table 4) means the probability
of transition from the original state to the next state. Both
the observation probability matrix and the transition
probability matrix are generated by the experimental
results using Decision Tree. With HMM, we can find the
most probable state. To solve the HMM, we need to use
the Viterbi algorithm [9].

3) Viterbi Algorithm
The Viterbi algorithm is used to solve our Hidden
Markov Model (HMM). The Viterbi algorithm is a
dynamic programming algorithm for finding the most
probable sequence in HMM. Since we only need to know
a current state, we modify the original Viterbi algorithm
to suit our purpose.

Via Formula 1, we can calculate the probability of each
state.

i		belongs to set S, the set of activities.

P�y|i
 means the probability of Current State = i and
Observation State = y.

πi is the probability of Initial State = i.
a	x,i signifies the transition probability from State x to
State i.

681

If it’s the first time to calculate Vi, we use the upper part
of Formula 1. If it’s not the first time, we use the lower
part of Formula 1. Vx in the lower part means the result
from last time.

After calculating the probability of each state, we use
Formula 2 to find the most probable state. Formula 2
signifies Vx is the maximum probability among all Vi
where i means each activity. As a result, we can identify
the user’s current activity.

C. Smart Appliance Control

 After all model construction and activity recognition, we can
know the user’s current activity. In response to different
activities, different music and Hue control as indicated in Table
5 will be provided. For example, a moderate light will be
provided for watching TV. For reading newspaper, the user will
be given brighter illumination. When the user is chatting with
other family members, we change Hue to a warm mood. If we
detect the user is lying down on the sofa to take a nap, we dim
the light. We provide a colorful environment to make the user
enjoy listening to music. When the user is walking around, we
just make the light on. If the user is doing yoga, we make him/her
feel like in a forest to relax his/her mind. If the user is enjoying
massage, we play the soft music and a relaxing light. For a
different situation, the system would respond with a different yet
the most comfortable environment for the user.

VI. EXPERIMENTAL RESULTS

 We test whether using Hidden Markov Model (HMM) and
Viterbi algorithm can reach a higher accuracy than only using
Decision Tree. We also compare the performance of three design
alternatives discussed in Section 3. This section shows our
experimental results.

A. Accuracy Comparison between with and without Viterbi

Algorithm under different architectures

To compare the accuracy between with and without Viterbi
algorithm, we use three different processing architectures.

Architecture 1. All processing done on the smart phone

Architecture 2. All processing done on a Python server

Architecture 3. Processing distributed on both the smart
phone and the Python server

Fig. 13 shows the result of using Architecture 1. Most
activity identification can reach a higher accuracy with Viterbi
algorithm. The only exception is sleeping (79.22%) when
comparing to those not using Viterbi algorithm (84.11%). This
is because during sleeping the Koala’s position may be changed
to interfere our detection algorithm. However in average, we
can still reach a higher activity identification accuracy (92.13%)
using Viterbi algorithm than not using it (83.62%).

Table 5. Mapping of activities and a smart home environment

In Architecture 2, the smart phone would send to the Python
server (1) 15 sets of raw data from the Koala and (2) the user’s
location data scanning from Beacons. The Python server
processes those data to identify the user’s activity. The accuracy
results are shown in Fig. 14. Using Viterbi algorithm can reach
a higher accuracy for five of the cases. However, the average
accuracy of using Viterbi algorithm (90.99%) is lower than only
using Decision Tree (94.79%). This is likely caused by the
unstable position of the Koala on user’s waist.

In Architecture 3, the smart phone calculates the features
first and then sends the features and location data to the Python
server for processing. The result is shown in Fig. 15. A half of
the cases reaches higher accuracies with Viterbi algorithm than
without Viterbi algorithm. Another half of them using Viterbi
algorithm are less accurate than not using it (94.40% vs. 94.57%,
95.05% vs. 100%, 95.35% vs. 98.95% and 92.59% vs. 96.58%).

Fig. 13. Accuracy of Architecture 1

Fig. 14. Accuracy of Architecture 2

Fig. 15. Accuracy of Architecture 3

682

Table 6. Experimental accuracies

Table 7. Time cost of different cases (Unit: second)

But the differences are very small (0.17%, 4.95%, 3.6% and
3.99%), so the results are still acceptable. Overall, the average
accuracy (93.81%) of using Viterbi algorithm is still higher than
using Decision Tree only (83.83%). Table 6 summarizes our
experimental results of three architectures. We can see the
average accuracy of using Viterbi algorithm is higher than only
using Decision Tree. We thus can conclude that using Hidden
Markov Model (HMM) and Viterbi algorithm are more suitable
for activity identification than only using Decision Tree. The
overall results show that the architecture plays little role in the
accuracies of the results.

B. Performance comparison under different architctures

Due to transmission time difference caused by different
network environment, only computational time on different
architectures is used for performance comparison. Our
experimental results are shown in Table 7. The first value in
parentheses is the computational time on a smart phone and the
second one is the computational time on the Python server. The
value before parentheses is the sum of both.

In the case of using Viterbi Algorithm, Architecture 3 where
processing is distributed on a smart phone and a server is able
to reach the highest efficiency (0.557 sec) than the other two
(0.636 sec and 0.575 sec). This is because a Python server
always performs better than a smart phone. In addition,
transmitting features is always more efficient than transmitting
large raw data.

In the case of using Decision Tree, Architecture 3 also has
the best performance (0.578 sec) than the other two (0.588
second 0.608 sec). We infer the same reason as that in the case
of Viterbi Algorithm.

Though Architecture 3 is able to reach the best average
performance (0.5675 sec) among all three architectures, this
comparison doesn’t take the transmission time into
consideration. As Architectures 2 and 3 always involve a server
with potentially very long transmission time, it is possible that
in the real environment Architecture 1 may still end up to be the
most efficient design.

If we compare the performance between using Viterbi
algorithm and Decision Tree, Table 7 shows that the average
performance of using Viterbi algorithm is better in
Architectures 2 and 3 but worse than in Architecture 1. This is
likely caused by the fact that it is less efficient to perform
Viterbi algorithm on a smart phone than on a server.

VII. CONCLUSIONS AND FUTURE WORK

 In this research, we use the user’s motion data from a Koala
wearable device and the location data from three Beacons to
identify the user’s situation in a smart home environment:
watching TV, reading newspaper, chatting with other family
members, lying down on the sofa for a nap, listening to music,
doing yoga, enjoying massage and walking around. For a
different situation, the system would respond with a distinct
environment to the user by controlling the music player and
smart lighting.

Between HMM/Viterbi algorithm and Decision Tree
algorithm, we conclude through our experimental result that
using HMM and Viterbi algorithm would be more accurate and
have better performance than using Decision Tree alone. Also,
among three different architectures of implementation, when
taking transmission time into consideration, Architecture 1
where all processing is done on the smart phone is likely to be
the best choice among all three alternatives.

Via identifying a user’s activity, our smart home system can
create a suitable and comfortable environment for the user
through controlling the music player and smart lighting. Several
areas still exist for future research such as developing multi-
person activity identification, expanding the scope of service
area and controlling more smart appliances in the home.

ACKNOWLEDGMENT

The project reported in this paper is sponsored by Ministry
of Science and Technology (MOST) of Taiwan Government
under Project Number MOST 104-3115-E-009-002.

References

[1] G. Gross, "The wearable market saw a big boom in '15," 23 02 2016.
[Online]. Available: http://www.computerworld.com/article/3036756/w
earables/the-wearable-market-saw-a-big-boom-in-15.html. [Accessed
05 2016].

[2] S. Romeo, "MORPHING TECHNOLOGY AND AESTHETICS FOR
THE FUTURE OF WEARABLE DEVICES," 27 02 2014. [Online].
Available: http://www.telit2market.com/3392/morphing-technology-aes
thetics-future-wearable-devices/. [Accessed 05 2016].

[3] C. Zhu, W. Sheng, "Motion- and location-based online human daily
activity recognition," Pervasive and Mobile Computing, pp. 256-269,
2010.

[4] L. Wang, T. Gu, X. Tao, J. Lu, "A hierarchical approach to real-time
activity recognition in body sensor networks," Pervasive and Mobile
Computing, pp. 115-130, 2010.

[5] C. Zhu and W. Sheng, "Realtime Recognition of Complex Human Daily
Activities Using Human Motion and Location Data," IEEE
TRANSACTIONS ON BIOMEDICAL ENGINEERING, pp. 2422-2430, 9
2012.

[6] S. Forsström and V. Kardeby, "Estimating Contextual Situations using
Indicators from Smartphone Sensor Values," 2014 IEEE International
Conference on Internet of Things, pp. 243-250, 2014.

[7] "Philips Hue," Philips, [Online]. Available: http://www2.meethue.com/.
[Accessed 6 2016].

[8] "Weka (machine learning)," 04 2016. [Online]. Available: https://en.wi
kipedia.org/wiki/Weka_(machine_learning). [Accessed 05 2016].

[9] "Markov Model," [Online]. Available: http://www.csie.ntnu.edu.tw/~u9
1029/HiddenMarkovModel.html. [Accessed 4 2016].

[10] "Viterbi algorithm," [Online]. Available: https://en.wikipedia.org/wiki/
Viterbi_algorithm. [Accessed 15 4 2016].

[11] I. Witten, E. Frank, M. Hall, Data Mining: Practical Machine Learning
Tools and Techniques, Elsevier Science Ltd, 2011.

683

