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Abstract 

Various calculation methods based on the theory of probability and statistics are used for structural analysis and reliability 
assessment. Those methods so-called probabilistic have been becoming very popular recently. Using the probabilistic method, it 
is possible to analyse a safety margin defined in a computational model where at least some input characters are random. New 
method which are being developed now - Direct Optimized Probabilistic Calculation (“DOProC”) is a purely numerical method 
which uses no simulation or approximation techniques. Results of the probabilistic tasks are more accurate and, often, more fast 
to reach. 
© 2016 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

The paper is focused on the probabilistic methods may be used advantageously in engineering, e.g. in civil 
engineering for solving structural analysis problems where a computational model contains random variables. 
Primary probability approaches are presented and developed for the modelling and analysis of uncertainty [41], and 
for evaluating the associated effects on safety and reliability [1]. An important part in structural failure analysis is 
modelling and quantification of various sources of uncertainty. In structural theory of reliability there are analysed 
aleatory uncertainty and epistemic uncertainty [19]. Aleatory uncertainty is related to the randomness of physical 
quantities (strength of material such as variability in yield strength of steel, and others various material parameters, 
such as [33]) and can be modelled as random variables in probabilistic form. Epistemic uncertainty is knowledge-
based and is coming out from imperfection of the calculation model (discrepancy between behaviour of real 
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structure and its computational simplified representation in numerical model [7, 43], e.g. FEM) or limited 
availability of random input data. 

2. Formulation of structural reliability 

Probabilistic calculation model can be defined in probabilistic tasks in general as the function of n random 
variables X1, X2,…, Xn expressed by statistical moments, parametric probability distributions or empirical 
distributions of probability in form of non-parametrically defined bounded histograms. Resulting random variable Z, 
expressed generally as: 

nXXXgZ ,,, 21
,  (1) 

is also random variable. 
The structure must satisfy the condition of reliability, based e.g. on the assumption: 

0ERZER ,  (2) 

where R is resistance of structure, E load effect and Z safety margin. Taking into account all randomness in loads 
[4, 32], manufacturing and assembly imperfections and the environment properties in which designed structure 
performs its function, resistance and load effect are to be considered as statistically dependent or independent 
random variables. 

Common notation of the theoretical time-invariant structural reliability problem - estimated failure probability pf, 
can be defined relative to the criterion of reliability (2) as: 

fD
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where Df is failure area of the safety margin Z(X) < 0 as a function f(X) of joint probability density of random 
variables X = X1, X2, … , Xn . 

Determination of failure probability pf based on the explicit calculation of the integral (3) is very complicated and 
generally unmanageable. For solution of this integral have been developed series of probabilistic methods [31] – see 
below. 

3. Overview of probabilistic computational methods 

The probabilistic computational methods for reliability calculations can be split e.g. into the following groups: 
 

 Simulation based techniques. The simulation techniques have their origin in crude Monte Carlo simulation 
method (MC) [37], which generates a large sample set of limit state evaluations and approximates the true value 
of the probability of failure by identifying the number of samples falling into the failure domain. In order to 
further improve the computational efficiency many variance reduction techniques have been proposed: 

 Stratified sampling techniques. Stratified Sampling and Latin Hypercube Sampling (LHS) [35] represent the 
special type of MC numerical simulation which uses the stratification of the theoretical probability distribution 
function of input random variables. The whole space of each random variable is divided into subsets of equal 
probability from which is generated outcome [39]. 

 Advanced simulation techniques. The sampling process of this kind of simulation techniques focuses in the 
failure region and helps faster convergence to the true failure probability. On this principle was developed several 
methods, e.g.: Importance Sampling [36], Adaptive Sampling [5], Directional Simulation [3, 8], Line Sampling, 
Design Point Sampling, Axis Orthogonal Importance Sampling method, Subset simulation [2], Descriptive 
sampling [40] and Slice Sampling [38]. 
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 Approximation techniques. The principal methods FORM/SORM use analytical approximations in which the 
reliability index  is interpreted as the minimum distance from the origin to the limit state surface in standardized 
normal space and the most likely failure point – „design point”, is searched [17]. In the First-Order Reliability 
Method - FORM, an approximation to the probability of failure is obtained by linearizing the limit-state surface 
(the boundary of the failure domain) [18]. The Second-Order Reliability Method - SORM, improves on this 
approximation by using a parabolic, quadratic or higher order surface fitted at the design point as the integration 
boundary [16]. 

 Response Surface methodologies. The Response Surface Method (RSM) is efficient and widely applicable 
method in structural reliability analysis [20], which is based on the moving least square method and design 
experiments. In this method, typically first-order or second-order polynomials are chosen to approximate the real 
limit state function. 

 Perturbation techniques. Algorithms based on perturbation estimates form one of stochastic approximation 
algorithms [42] and used e.g. in Stochastic Finite Element Method (SFEM). 

 Artificial Neural Network. The Artificial Neural Network (ANN) algorithms introduced as universal function 
approximations are also increasingly used for structural reliability assessment. 
The following mentioned newly developed probabilistic method can’t classify into any mentioned category. 

4. Direct determined probabilistic calculation – DOProC method 

The proposed method: Direct Optimized Probabilistic Calculation – DOProC, solves the integral (3) pure 
numerical way that is based on basis of probability theory and does not require any simulation or approximation 
technique. This is highly effective way of probabilistic calculation in terms of computation time and accuracy of the 
solution for many probabilistic tasks. The novelty of the proposed method lies in an optimized numerical integration. 
In summary was published e.g. in [10, 11]. 

4.1. Theoretical Background 

Similar to many other probabilistic methods the random input quantities such as the load, geometry, material 
properties or imperfections can be in DOProC defined using non-parametric (empirical) distribution of probability 
expressed by means of bounded histograms. It is also possible to use parametric distributions [6], typically based on 
observations, often of long-term data [9, 44]. 

In probabilistic tasks are input random variables often statistically dependent - for example cross-section 
properties, or strength and stiffness characteristics of the materials. In the calculations carried out by DOProC 
method can be statistically dependent input random variable expressed by the so-called multidimensional histograms 
(double, triple) [14], which can be used also for the calculation of so/called numerical correlation index for the 
characterization of the dependence not only for the linear relationship between two variables, but also for nonlinear 
dependence, or even for more than two random variables [15]. 

The basic computation algorithm of DOProC is based on general terms and procedures used in probabilistic 
theories. Let the histogram B be an arbitrary function f of histograms Aj where j ranges from 1 to n. Then: 

nj AAAAAfB ,...,...,,, 321
 .  (4) 

Each histogram Aj consists of ij interval, where ij ranges from 1 to Nj. Each interval is limited with value 
aj(i-1) from below and with value aj(i) from above. This means, that for the interval ij = 1, the values will be as 
follows: 

11,0 jjj aaa  ,  (5) 

where 
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and 
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In ij interval of the histogram of the independence random variable Aj, the following formula is valid: 
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Values aj,ij in that interval are defined usually as mean value: 
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Similar relations are valid for the histogram of the random variable B. If there are NB intervals, the values of the 
histogram in the interval iB are in range from b(iB-1) to b(iB) with the representative mean value biB. They can be 
expressed as follows: 

kinijiiik nj
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,  (10) 

where k is the serial number of the combination of intervals of independent random variables Aj, which ranges from 
1 to kmax: 

nj NNNNNk 321max
 .  (11) 

If the values a1,i1, a2,i2, a3,i3, ..., aj,ij, ..., an,in are statistically independent, the probability of occurrence of the value 
bk for the combination of k intervals of the histograms of independent random variables Aj is the product of 
probabilities of all potential occurrence of values aj,ij, which are included in the expression (10): 

kinijiiik nj
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. (12) 

Each value bk will have the probability p(bk) and will be included into the corresponding interval biB. All of values 
bk which have to been included into the interval biB will correspond the probability: 

k
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Also have to be valid: 
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Performing these numerical operations of the probabilistic calculation with two random variables A1 and Aj 
expressed by histograms is shown in scheme on the Fig. 1. 
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Fig. 1. Principle of the performing the numerical operations with the histograms of two statistically independent random variables. 

The number of intervals ij in each histogram of the random variables Aj can be similar as the number of iB 
intervals in the histogram of the resulting random variable B. The number of intervals is very important for the total 
number of needed numerical operations and required computing time. On top of this, the accuracy of the calculation 
depends considerably on the number of intervals. If there are too many random quantities, the tasks require too much 
time even if advanced computational facilities are available. Therefore, efforts have been made to optimize 
calculations in order to reduce the number of operations, while retaining reliable calculation results: 

 The grouping of input and output variables. This procedure can be used e.g. in situations where the random 
variable input or output variables can be expressed using one joint histogram. This leads to a large reduction of 
computational operations. 

 Parallelization. The calculation algorithm of DOProC method is advantageous for use on computers with two or 
more CPUs or their cores. The basic computational algorithm of DOProC - Eq. (10) and (12), can be divided the 
number of computational operations up to as many parts as there are available execution units, and after partial 
calculations can be put together from partial results into the histogram of resulting variable, e.g. histogram of 
safety margin Z. 

 Interval optimizing. The purpose of this computational procedure is to reduce the intervals of each variable 
involved in the calculation. Input random variables don’t affect the outcome of the probabilistic calculation as 
well - are differently sensitive. For input variables that affect the outcome probability less, therefore the number 
of classes can be reduced. Custom probabilistic calculation is then carried out with the minimum number of 
intervals for each input random variables. 

 Zone optimizing. The intervals of each individual histogram are clearly defined during the calculation using one 
to three types of zones, depending on influence on resulting probability of failure (contribute always, may or may 
not contribute, contribute never). The calculation then will be limited only on intervals of input random variables 
which clearly don’t contribute the resulting value of failure probability. 

 Trend optimizing. This optimization of probabilistic calculation follows the zonal optimizing. This optimization 
of probabilistic calculation determines the trends of changes in the histograms of input variables when defining 
individual zones. 
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Such procedures can be combined, thereby achieving an even stronger acceleration of the calculation. Mentioned 
computational procedures have been described comprehensively in [10, 11]. 

4.2. Application 

The algorithm of DOProC method has been implemented in several software codes [28], and has been used in 
many cases in probabilistic tasks and reliability assessments [23]. For the application of the DOProC method [30] 
can be used software titled ProbCalc [12, 27]. In ProbCalc is relatively easy to implement analytical and numerical 
transformation probabilistic model of solved tasks. The ProbCalc is extensively useful in solving of probabilistic 
tasks of engineering practice, especially on probabilistic reliability assessment according to the current standards 
[34], see Fig. 2. 

 

Fig. 2. Desktop of ProbCalc software: Resulting histogram of safety margin and resulting reliability assessment according Eurocodes. 

Special software applications HistAn2D and HistAn3D were developed for creation of the double (Fig. 3) and 
triple histograms which describe the statistical dependence between two or three random variables (for instance, for 
strength properties or construction parameters of construction materials, see [14, 15]). 

In [22, 25, 26] was published in detail the methodology for probabilistic assessment of structures exposed to 
fatigue, focusing on the determination of acceptable size of fatigue crack and definition of the regular inspection 
system. This relatively advanced probabilistic task was solved using ProbCalc, but also using new application under 
development titled FCProbCalc [21, 29], which allows in a user friendly environment to calculate the probability of 
fatigue crack progression. 

The comprehensively methodology for probabilistic design and reliability assessment of anchor reinforcement in 
long mining and underground works was also utilized [13, 24]. It was also established a program Anchor, with 
which is possible to realize the probabilistic calculation very flexibly. 

5. Summary 

This paper discussed probabilistic methods for the estimation of structural failure analysis with focus on new 
method under development – the Direct Optimized Probabilistic Calculation (“DOProC”). The highlight of the 
DOProC lies in an efficient and accurate optimized numerical integration useful to many probabilistic tasks and 
failure analysis. The algorithm has been implemented in software codes, which seem to be very effective 
probabilistic computational tools. 
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Fig. 3.  A double histogram created in HistAn2D shows statistics dependence of two random variables (left)  
and behavior of two statistically independent random quantities 
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Appendix A. An example appendix 

A lite version of the ProbCalc and the other software applications based on the DOProC method can be 
downloaded at http://www.fast.vsb.cz/popv. 
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