
The efficient use of Storage Resources in SAN for Storage Tiering and Caching

Abhijith U
Hewlett Packard Enterprise

Bengaluru, India
abhijith.u@hpe.com

Ashish Kumar
Hewlett Packard Enterprise

Bengaluru, India
ashish.kumar@hpe.com

Mohanta Taranisen

Hewlett Packard Enterprise
Bengaluru, India

taranisen.mohanta@hpe.com

Leena Muddi
Hewlett Packard Enterprise

Bengaluru, India
leena.muddi@hpe.com

Abstract— with the rapid growth of the Hyper Convergence (HC)
the use of the Solid State Device (SSDs) as the intelligent Storage
Tiering and caching has increased immensely. It plays an
important role to provide high throughput and performance with
maximum utilization of the SSD storage space considering the life
cycle of SSDs and workload. Efficient Utilization of such resources
is one of the main criterion of the virtualization technology. By
considering the rise of the VDI workload the proposed
implementation of a sequential write detection algorithm, we try
to maximize the utilization of higher tier storage such as SSDs
(Tier 0) by placing the data which fall under the category of
sequential writes into the lower tier disks (Tier 1, 2…n) such as
SAS (serial attached SCSI) / SATA (serial advanced technology
attachment).

Keywords- SAN, Tier, RAID, random write,VDI, sequential write,
storage virtualization.

I. INTRODUCTION
The term storage virtualization refers to separation of the

storage into physical implementation level of storage devices
and logical representation level of storage for use by operating
systems, applications and users [6]. The storage virtualization is
very helpful because we can combine disk capacity from several
arrays into a single virtual volume. One can do replication from
one array to another for disaster recovery or offline backup by
the use of RAID [6, 7] technologies. We can also have the
benefit of data migration from older array to the newly
purchased equipment without interrupting data access for the
user’s application. One other benefit is the monitoring of the
entire system by use of central management console [6].

A Storage Area Network (SAN) is a high availability, high-
performance dedicated storage network that provides access to
consolidated, block level data storage. SAN enhances storage
devices like tape libraries and disk arrays. The main advantage
of SAN is efficient use of Storage Resources by data migration.
There are mechanisms to administer the profiles of the data and
to determine which data is required and how often. In this
manner it is possible to control the distribution of the data on fast
and slow storage devices in order to achieve a high data
throughput for frequently required data. The fast and slow
storage devices are therein called the tiers [2].

Storage Tiering is an emerging technology on the storage
platforms with the rise of flash storage. It is the art of voluntary
movement of data between the storage tiers based on the access

patterns. The data that is accessed frequently (hot data) can
therefore occupy the faster tiers and the infrequently (cold data)
accessed data is placed in the slower tiers. This act of placing
frequently accessed data on high performance storage, and
infrequently accessed data on low cost storage is called Tiering
[3]. This is very similar to swap space and main memory in the
operating system [4, 5]. We call Tier 0 faster tier and Tier 1
slower tier.

Least recently used is the algorithm to decide which data
blocks to drop from the tiers. The Least Recently used
replacement policy selects that data for replacement which has
not been referenced for the longest time. For a long time, LRU
is considered to be the one of the optimum algorithms. The
problem with this approach is the difficulty in implementation.
One approach would be to tag each block with the time of its last
reference. LRU policy does nearly as well as an optimal policy,
but it is difficult to implement and imposes significant overhead
[1, 2]. As a variant of LRU, Least Frequently Used [LFU] can
be implemented wherein there is a count value associated with
the data blocks [1]. LFU involves keeping track of the number
of times a block is referenced in memory. Each time a reference
is made to that block the counter is increased by one. When the
faster tier becomes full the block with the lowest frequency is
evicted. This method too has a disadvantage. Consider that some
block was referenced repeatedly for a short period of time and is
not accessed again for an extended period of time. Due to how
rapidly it was just accessed its counter has increased drastically
even though it will not be used again for a decent amount of
time. This leaves other blocks which may actually be used more
frequently susceptible to purging simply because their frequency
was low [1].

Other algorithms can be used to evict the pages from the
fastest tier. The simplest page-replacement algorithm is a first-
in, first-out (FIFO) page replacement algorithm. One
disadvantage of this algorithm is it experiences Belady’s
anomaly [5]. The second chance algorithm is yet other page
replacement algorithm. It is also called CLOCK where each
page is tagged with a reference bit which is set to 1 when the
page is accessed [1, 5]. This algorithm can be implemented as a
circular queue. There is a pointer which indicates the pages to be
replaced next. When a page is needed pointer advances until it
finds a page with reference bit 0. As the pointer is moved
reference bits which are set to 1 is cleared. Once a page with
reference bit 0 is found, a new page will be inserted in that
position with the reference bit set to 0. When all the bits are set

2016 International Conference on Computational Intelligence and Networks

2375-5822/16 $31.00 © 2016 IEEE

DOI 10.1109/CINE.2016.28

118

the page replacement algorithm degenerates to FIFO .The Not
Recently Used (NRU) replacement algorithm is an algorithm
that favors keeping pages in memory that have been recently
used. The pages are divided into four categories: 3. Referenced,
modified; 2. Referenced, not modified; 1. not referenced,
modified; 0. not referenced, not modified. Categories 0 happens
when a categories 3 page has its referenced bit cleared by the
clock interrupt. The NRU algorithm selects a page randomly
from the lowest category for removal. So out of the above four
pages, the NRU algorithm will replace the not referenced, not
modified. The Not Frequently Used (NFU) page replacement
algorithm requires a counter, and each and every page has one
counter associated with it which is initially starts with 0 Thus,
the page with the lowest counter values can be swapped out
when required. The main drawback with NFU is that it keeps
track of the frequency of use of pages without considering the
time span of use of the pages. Thus results in poor performance.
Belady’s Min is one other theoretical approaches which says
discard the pages which will not be used for the longest time in
the future [1, 9]. It is impossible to predict whether these pages
will be needed in the future or not, hence not suitable for any
real time application. Adaptive Replacement Cache (ARC) is an
adaptive page replacement algorithm extends LRU which keeps
track of both frequently used and recently used pages. This
algorithm solves some of the problems of fast tier miss [1, 9].

There is a difference between Caching and Tiering. Tiering
is act of placing frequently accessed data on high performance
storage, and infrequently accessed data on low cost storage
whereas Caching is a duplicate copy of data that is stored in high
speed media (Solid State SSD or PCIe card). Content of cache
changes dynamically from minute to minute. Caching
algorithms are usually used to decide which data blocks to drop
from cache in order to store a newly accessed data block in high
speed media [2]. Tiering can involve more than two types of
storage areas whereas cache is typically two tiered. Tiering can
be manual or automatic. The choice between the two is often
limited by what alternatives are available. If performance is the
goal, then the extra cost of having data plus a copy in cache is
not very relevant. Caching provides the most responsive form
of optimization [8]. The algorithms such as LRU, LFU, FIFO,
CLOCK, NRU mentioned above can be used to evict the pages
from cache.

There would have been severe performance degradation of
I/O’s if there was no Caching or Tiering solutions. There would
not have been distinction between the hot data and cold data and
all data would have occupied the lower tier storage. On the other
hand it is impossible for all to afford all SSD storage as the cost
of the SSD’s are considerably high. In this era of high speed
network, the enterprise storage systems expect storage devices
to provide very high IOPS at minimal cost and faster access (low
latency). So Tiering and caching would prove to be one of the
best cost effective and relatively high performance solution.

II. PROBLEMS SOLVED
Workloads change over time and most of the times are

unpredictable. Hence tiering proves to be one of the best
solutions for such unpredictable workloads. By adding a tier of
solid state drives (SSDs) to accelerate workloads, we can tackle

the performance challenges more cost-effectively than adding a
separate storage pool based entirely on the Flash.

Since the higher tier has limited storage space and there
should be intelligent and efficient way to utilize the storage
space. So the proposed method is to determine the workload
which may not use the storage space immediately and place the
data on the lower tier. The important and hot data will reside on
the higher tier to serve efficiently and effectively.

III. PROPOSED SOLUTION
Lack of intelligent mechanism to detect the sequential I/O’s

can be considered a disadvantage because Sequential I/O’s are
usually big and tend to occupy major part of the faster tier and
are simply involved in the movement of data between the faster
and the slowest tier. Once an I/O can be considered sequential,
we can allocate the space for such I/O’ s from the slowest tier
bypassing the faster tier and saving the space on the faster tiers
for the random I/O’s. The proposed novel work is here to detect
the sequential write workload and allocate the storage space on
the slow/lower tier instead of the higher tier. The sequential
workloads are mostly the video files, big size files and so on.

IV. ALGORITHM
The host I/O when comes to the storage system the proposed

algorithm identifies the sequential write. Once we detect the I/O
as the sequential write the allocation will happen on the
slow/lower tiers instead of the higher tier.

We can keep track of certain number of I/O’s to decide
whether the given I/O is sequential. I/O’s are in the form of
range. Range is composed of length and offset.

We maintain 2 queues - singleton queue and main queue to
maintain all I/O’s. Singleton queue is used to keep track of
random I/O’ s and the count value associated with each entry in
this queue is one. Main queue is used to detect sequential I/O’s
and count values associated with each entry in this queue is >=2.
The algorithm is depicted as shown in the Figure 1.

When an I/O comes in Sequential detector first loops in
through the main queue. For each iteration, we choose an item
from the main queue and check whether incoming I/O range is
greater than item’s range. If so we check whether Ranges are
overlapping or touching. If true, we perform the union of the
ranges. This is shown in Figure 2 and Figure 3.

If the incoming I/O is slightly out of order and out-of-order
detection is enabled, we will look forward by some window-
size. If the I/O is not contiguous with current item, but falls into
the peek window, we consider it as sequential (Incoming ->
offset <= item -> offset + item -> length + window_size). Out-
of-order detection is enabled only when item’s count is greater
than or equal three. In this case too we perform the union of the
ranges. This is shown in Figure 4.If this is true then, we
increment the count and change the range accordingly and move
this entry to tail of the main queue.

Else sequential detector loops through the singleton. For
each iteration we choose an item in the queue and verify the
whether (Incoming I/O range > item’s range && areas are
overlapping or touching).If yes then we increment the count and

119

move the match stream to the main queue and I/O range is
merged.

If the incoming I/O is not matched with the stream in the
main or singleton queue, we add the new stream into the
singleton with count=1.

The third I/O in the following stream (item ->count > =3)
can be considered as sequential and hint can be created.

After the hint is created, the allocation of data on the tiers
can be decided. This is depicted in Figure 5. If the hint is set to
true, then we say that the sequential writes are detected and we
can allocate the data on the slower tier. If the hint is false then
we can continue allocating the pages on the faster tier treating
the I/O as random.

 Figure 1: Algorithm of sequential write detection

Figure 2: Touching I/O’s.

 Figure 3: Overlapping I/O’s.

 Figure 4: Slighlty out of order I/O’s with window_size enabled.

Figure 5: Allocation of data on the tiers.

V. RESULTS
As seen from the Figure 6 before the implementation of the

sequential write detection algorithm, all the data occupied the
faster tier, i.e., Tier 0 as can be seen from the Space Consumed
attribute. It shows that the entire 1GB is occupied on Tier 0 and
0GB is occupied on Tier1. The Graph of the sequential write and
random write can be seen in Figure 7 wherein both the random
writes and sequential writes occupied full tier 0 space with no

120

differentiation between sequential and random I/O. The orange
colored line depicts random writes and after passage of time
occupies full capacity of tier 0 space. The black colored line
depicts the data distribution of random writes on tier 1. The
green colored line demonstrates the sequential write workloads
and distribution of data on tier 0. It too occupies 100% space on
Tier 0 with time. The blue line shows the data distribution of
sequential writes on Tier 1 and is not occupied as shown by the
graph of line 0.

Figure 6: The space consumed in the two tiers on sequential write without the

sequential write detection algorithm applied.

After the implementation of the sequential detection
algorithm there were changes wherein only some data occupied
Tier 0 and remaining data occupied tier 1. This can be seen in
the Space Consumed attribute of Figure 8. Tier 0 contains only
8 MB of the data and remaining data of 1016MB is occupied on
Tier 1.

The graph is also plotted as shown in the Figure 9 where it
shows that for the sequential writes, some data occupy tier 0
while remaining data occupy the tier 1 storage. As shown in the
graph the Orange line depicts that random writes, occupy 100%
of the tier 0 storage as usual. The Green line shows the percent
utilization of tier 0 by a sequential writes and it occupies only
small part of tier 0 and remaining data goes to the tier 1 which is
shown by Blue colored line. Thus there is differentiation
between the random writes and Sequential writes and thus
occupies a small part of tier 0 in case of sequential writes and all
the remaining data occupy the tier 1 storage.

VI. CONCLUSION
 In the storage industry there are constant efforts to optimize
storage space to provide high performance which is a value add
to the business by saving the cost and utilizing the resources
effectively. Other benefits of the above solution is improved
performance for important applications by distributing data
carefully on the tiers. The proposed solution can be used to
make efficient use of the storage resources and especially
resources such as SSD’s which are very critical for high
performance. Figure 8 and Figure 9 capture the algorithm’s
results. With the above results we can bifurcate I/O’s into
sequential and random and there by optimize the SSD’s space
for random writes.

Figure 7: The distribution of data in the two tiers graphically.

Figure 8: The space consumed in the two tiers after applying the algorithm.

Figure 9: Graphical representation of distribution of data in the two tiers

121

REFERENCES

[1] Amit S. Chavan, Kartik R. Nayak, Keval D. Vora, Manish D. Purohit and
Pramila M. Chawan, “A Comparison of Page Replacement Algorithms”,
International Journal of Engineering and Technology, Vol.3, No.2, April
2011.

[2] Nimrod Mgiddo Dharmendra S. Modha, “Outperforming LRU with an
Adaptive Replacement Cache Algorithm”, IBM Almaden Research
Center.

[3] Bhatta Jagdish, Saud Arjun Singh, “Recency and Prior Probability (RPP)
based Page Replacement Policy to Cope with Weak Locality Workloads
having Probabilistic Pattern”, International Journal of Computer
Applications (0975 – 8887) Volume 59– No.15, December 2012.

[4] William Stallings , “Operating Systems: Internals and Design Principles”
7th Edition.

[5] Silberschatz, Galvin and Gagne, “Operating System concepts” , Eight
Edition.

[6] Ulf Troppens, Rainer Erkens and Wolfgang Muller, John Wiley & Sons ,
“Storage Networks Explained” , 2003.

[7] SANs Richard Barker and Paul Massiglia, “Storage Area Network
Essentials: A Complete Guide to understanding and Implementing” ,John
Wiley India, 2002

[8] Ari, Gottwals, M. ; Henze, D , “SANBoost: automated SAN-level caching
in storage area network”, ISBN: 0-7695-2114-2, 17-18 May 2004.

[9] Hasan M H Owda , Munam Ali Shah, Abuelgasim Ibrahim Musa,
Manzoor Ilahi Tamimy ,“A Comparison of Page Replacement Algorithms

in Linux Memory Management”, International Journal of Computer and
Information Technology (ISSN: 2279 – 0764) Volume 03 – Issue 03, May
2014.

[10] N. Meigiddo, and D. S. Modha, “ARC: A Self-Tuning, Low overhead
Replacement Cache”, IEEE Transactions on Computers, pp. 58-65, 2004.

[11] Pancham, Deepak Chaudhary, Ruchin Gupta, “Comparison of Cache
Page Replacement Techniques to Enhance Cache Memory Performance”,
International Journal of Computer Applications (0975 – 8887) Volume
98– No.19, July 2014.

[12] Tucson , “Relative Competitive Analysis of Cache Replacement Policies”
LCTES’08, Jan Reineke Daniel Grund, June 12–13, 2008, Arizona, USA.
Copyrightc 2008 ACM.

[13] Andrew S Tanenbaum ,”Modern Operating Systerm third edition”.
[14] S. Albers, S. Arora, and S. Khanna, “Page replacement for general

caching problems,” Proceedings of the 10th Annual ACM–SIAM
Symposium on Discrete Algorithms, pp. 31–40, 1999.

[15] S. Jiang, and X. Zhang, “LIRS: An Efficient Policy to improve Buffer
Cache Performance”,IEEE Transcations on Computers, pp. 939-952,
2005.

[16] Nayaka B Govindaraja , Majeed Zameer , Taranisen Mohanta, “Policy
Driven Dynamic LUN Space Optimization based on the Utilization”,
Proc. of Int. Conf. on Advances in Communication, Network, and
Computing 2013.

122

