
An Infrastructure as a Service for Mobile Ad-hoc

Cloud

 Venkatraman Balasubramanian Ahmed Karmouch

 School of Electrical Engineering and Computer Science School of Electrical Engineering and Computer Science

 University of Ottawa University of Ottawa

 Ottawa,Canada Ottawa, Canada

 vbala038@uottawa.ca akarmouc@uottawa.ca

Abstract— In this era of growing mobile device technology,

the direction of growth is moving towards providing powerful

computational capabilities and expanding memory in the device.

Nevertheless, this growth has objectively put a lot of the device

computational power to an unused state which calls for a better

management of intra-device resources. Over a period of time, it

has been studied that a mobile “edge-cloud” formed by these

devices could be as productive or close to the productivity of the

public cloud in terms of providing a service. However, the ease of

access to this pool of devices is much more arbitrary and based

purely on the needs of the user. This could categorically be

summed as the building block of a cloud built for providing an

infrastructure for various services that can be processed with

volunteer node participation. This representation of cloud

formation to engender a constellation of devices in turn

providing a service is the basis for the concept of Mobile Ad-hoc

Cloud Computing. In this manuscript, an Infrastructure as a

Service paradigm in Mobile Ad-hoc Cloud Computing is

delineated. A novel architecture for discovering a dedicated pool

of devices and the dependencies it should satisfy while formation

of this pool for computation is designed. Moreover, a peer-to-

peer composition algorithm to form this dedicated resource pool

is proposed.

Keywords— Mobile Cloud Computing; Mobile Ad-hoc Cloud;

Infrastructure-as-a-Service;Composition;Mobile-Phone-

Virtualization;

I. INTRODUCTION

In today's accelerated growth of mobile device technology,

there is a need to establish a firm ground for these devices to

stay committed to application computation and completion.

From [12] it can be inferred that the rate of mobile device

usage has increased over the decades. Additionally, the growth

of mobile application such as real-time gaming, face

recognition, and music OCR also gives a similar picture. With

an overall growth rate of 29.8% each year noticed in [2], by

the end of 2017 there would be more than 4.4 billion mobile

application users. Out of these, there are around one in four

mobile applications that are downloaded once and never used

again. These applications are primarily discarded due to the

growing application needs that have gone beyond the mobile

device capabilities. Thus, even if the device is able to process

its OS, the remaining resources are finding it difficult to

process these intensive applications and resort to costly remote

cloud services. Remote cloud services rely on large

978-1-5090-4228-9/17/$31.00 ©2017 Crown

consolidated datacenters that provide compute and storage.

However, these data centers represent a point of centralization

that has serious shortcomings. It can end-up as a single point

of failure in times of disasters or data center's geographical

location is often- times out of limits for the customers using it.

Moreover, public clouds have frequent issues such as

infrastructure cost and high Round trip time (RTT) while

considering time sensitive classes of applications. In [1][3][4]

authors discuss many services and applications which

ascertain using remote clouds as infeasible. These are services

where applications are solely dependent on the time and place

in which the applications need to be executed. Such place-

bound activities are best addressed at the user level. This class

of cloud computing that deals with the formation and

deployment at the user’s level is known as Mobile Ad-hoc

Cloud (MAC). An MAC is a pool of device with high

computational capabilities and is closer to the user. This low-

cost computational environment is deployed over a network

where all nodes cooperatively maintain the network. Hence,

wireless local area networks (WLANs) and Mobile Ad-hoc

networks (MANETs) are predominantly considered [6] where

users can form a wireless network at any place. For example, a

P2P network enabling a computational environment for

mobile nodes could be referred to as Mobile P2P Cloud.

There are many features that differentiate cloud models in

mobile ad hoc networks with public clouds, however, the most

integral out of these are (i) Both consumer and provider nodes

are mobile (ii) Service composition would change

dynamically depending on the available resources (nodes).

Now, consider the case of a music concert where a crowd

has gathered for watching an artist perform. As shown in

Figure 1 nearly all connect to the closest wifi access point. It’s

a common sight in such venues when artists are trying to

enthrall the crowd by making the attendees present therein

sing for them or interact with them through a mobile wave.

Various interactive applications that are used at concerts not

only play back pre-recorded notes but also convert audio to

text or a music OCR(optical character recognition) for notes

or lyrics viewing on the spot at the gig site. Some artists have

also begun to call the use of smartphone application in

concerts as the new applause [15].These applications are not

only compute intensive but are also bound by place and time.

What if devices present therein are able to provide compute

and storage facilities to one another? A pool of idle intra-

device resources put together would more likely provide a

low-cost service in lesser time than a remote cloud. Thus,

every device has the potential to act as a service provider in

mobile ad-hoc clouds. This has been a motivating factor in

harnessing the idle device resources that are not completely

capable of performing intensive computation but display the

ability to collaboratively perform a compute intensive

application execution. Just as a Cloud Service Provider (CSP)

is an entity that is responsible for providing an Infrastructure

as a Service (IaaS) to the consumers, in a mobile environment

each device behaves as an IaaS provider. This paper illustrates

the IaaS paradigm in a mobile ad-hoc cloud environment.

Considering the need for spontaneity, coordination and

storage and computation as the most essential requirements,

this paper makes the following contributions in that direction:

 An architecture to address the IaaS based mobile ad-

hoc cloud requirements is proposed.

 A composition algorithm called, DARC (Distributed

Ad-hoc Resource Composition) is developed.

 An offloading application that performs a

coordinated task execution is used to evaluate the

performance of the composition algorithm.

The rest of this paper is structured to delineate the complete

mobile ad-hoc cloud model with the discussion on related

work in Section II, followed by Section III that discusses the

system overview. In Section IV, the system architecture is

elaborated and in Section V the IaaS algorithm functionalities

are provided with an offloading use case to evaluate the

performance of our algorithm and Section VI concludes the

paper and shows the future potential of this work.

II. RELATED WORK

In [3], authors propose an architecture that provides a

centralized framework by making requests to the server with

an Ad-hoc client that runs on each device processing the task.

Similar to this in [9] all mobile nodes are connected to

cloudlets by WiFi, modeling their architecture based on a

cloudlet’s presence. In contrast to these, our architecture

attempts to establish an autonomous and decentralized

network with a dynamic composition procedure. In [5] authors

demonstrate a similar approach as ours but show a

performance degradation at the time of offloading, in contrast,

our architecture shows better performance as evaluated later in

the paper. [16] is closest to our work, however its purpose was

only to provide insight on security issues in mobile ad-hoc

cloud.

In [7] authors give importance to cryptography (AES

based) for ensuring security following a validation of trust and

photograph based certification with manual key modifications

for trust establishment. It is our belief that a level of security is

achieved with the hashing of files and we consider the

remaining aspects of validation and certification to be adding

to the overall time of the execution. In the proposed

architecture we implicitly achieve security with the key based

resource allocation mechanism.

 [11] discusses an ad-hoc cloud formation protocol that
makes use of separate Cloud proposal broadcast after analyzing
all the replies from the initial broadcast. Our algorithm
(Distributed Ad-hoc Resource Composition –DARC) obviates
the need to analyze all the replies. There are various other DHT
(Distributed Hash Table) protocols like Kademlia[10],
Krowd[12] that are used for content sharing that might not look
pertinent for comparison at first but are similar in structure .
[12] is a modified version of [10] (although authors draw out
performance characteristics (bandwidth and latency) of Krowd
and Kademlia to provide reasons to separate their system from
the DHT family). The initial parts of DARC algorithm bear
resemblance to the autonomy and lightweight discovery of [12]
but have extended the features of DHT (that [12] overlooks) at
the resource allocation level to form the resource pool. Further,
the DARC algorithm prioritizes node-computing capacity
owing to the architectural requirements.

III. SYSTEM OVERVIEW

In this section, the foundations, concepts and the integral

components on which the mobile ad-hoc cloud architecture is

built are discussed.

A. Concepts

Logically, a distributed cloud infrastructure can be pictured as

large dispersed individual computers connected over a

network. These cloud frameworks have characteristics similar

to P2P systems, some of which are observed in the previous

sections. As we are dealing with such a system in a crowd-

sourced mobile environment it is defined as a Mobile P2P

cloud or Mobile Ad-hoc cloud. A Mobile Ad-hoc cloud

harvests resources that are available in the vicinity. As

mentioned previously, the mobile devices are responsible for

playing the role of the cloud IaaS providers. The role of

requesting a cloud service from the providers is of the

consumer. Thus the major actors in any cloud computing

paradigm are the cloud providers and consumers.

α

β

µ Θ

minSignalStrength

minThreshold(SignalS
trength)

maxSignal

optimal

maxThreshold

Region A

Region B

Region C

Region D

r1

r

0 degree
direction

Fig.1. A typical concert venue, those coming into the area from

Region D,Region C represent the new attendees who are aware of which

Access points they are connected to where all friends gather.

In a mobile ad-hoc clouds, due to the resource limitations in

a mobile, compute-intensive applications require external

assistance for execution. For instance, the tasks which cannot

be processed locally and require a resource rich environment

would need to be offloaded to the cloud providers. Thus, the

consumer makes the IaaS request. Considering scenarios such

as those with a high density of users (cloud IaaS providers)

these requests submitted by the consumers are exposed to the

IaaS providers.

Once the IaaS request is received, the IaaS provisioning

entity will discover cloud IaaS providers. These are resources

whose ownership is with individuals that are available in the

vicinity. As the major challenge is to turn this diverse

collection of resources into a usable cloud infrastructure a

composition algorithm is proposed. The composition

algorithm performs the key functionalities pertaining to the

services provided to the consumer. The consumers of IaaS

have access to virtual resources available in the devices as

explained below.

The IaaS is deployed over a wireless network formed with

the assistance of an Access point (AP). Many volunteers (who

wish to offer their VMs) may exist in the vicinity that provides

a unique service to the consumer who requests the

infrastructure. The physical resources are known as volunteer

resources because of their ability to offer their VMs. For

example, one user who is at the concert will have many

friends or like-minded people who would be ready to offer

their resources. Out of the many friends, the IaaS would select

only the nearest devices. These friends (volunteers) will

provide their device VM/VMs. In this paper, one request is

either dedicated to a single VM or be a part of many VMs.

In this way, the salient features of cloud computing i.e. on-

demand self-service and service orchestration is realized with

mobile ad-hoc cloud computing.

B. Virtualization and Mobile Ad-hoc Cloud

The architecture relies on the Mobile-Phone-Virtualization

concept. As observed in [13] the hardware virtualization

approach for smartphones (Virtual Phones) have isolation and

light-weight characteristics similar to the Virtual machines.

Therefore, in this paper, we refer to virtual phones (VPs) as

virtual machines (VMs) of the devices. One device might have

multiple background VMs/VPs each offered to different

customers. The light-weight VMs from devices are harnessed

to deploy IaaS. These VMs have adequate storage and

compute capabilities. The process of obtaining a VM and the

dependencies it should satisfy is illustrated in figure 2. It is as

follows:

The first part of the IaaS algorithm is a composition that is

responsible for discovery, selection and P2P formation. On

discovery (1), the volunteer submits the details (2) of the

VMs, node id, and the IP addresses to the IaaS. After this,

routing and management is done with the assistance of the

information (key, value) in storage. Concurrently, considering

the dependencies the metafile is created. It uses the sub-task

information (2a) and the resource information obtained from

(2). The meta-file is retrieved (3a). It is then hashed and the

keys are used for taking the meta-file (3b) to the correct

device. It also has the location of the source file which is used

by the VMs for downloading and processing the job (3c).

After (1,2) , the virtual machines are composed(3) followed

by (3b), the jobs are obtained with a get request from the user

device (3c), processed, executed (4) and the results are sent

back(5) after which the resources are released.

In this way, by making the resources available to the cloud

consumer, the ability to use the mobile ad-hoc cloud to

execute any applications lies with the consumer. This

conforms to the cloud IaaS paradigm.

IV. SYSTEM ARCHITECTURE

In this section, the details of the system framework depicted in

figure 3 are discussed. The architecture has two integral parts

that are responsible for 1.) IaaS request generation 2.) IaaS

composition and provisioning

A. IaaS request generation

In this part, the request is generated. It consists of the

following:

1. Application Layer- These are any user application that

could make use of services in a crowd-sourced environment.

The applications are agnostic to the provisioning mechanism

and the interactions between the layers below.

2. Cloud Consumer Layer –This layer receives the mobile

device application’s offloading requests. The Profiler does the

decomposition of heavy application tasks into light-weight

jobs. It gives the information of execution profiles to the

offloading manager. The complexities of the profiler are

beyond the scope of this paper.

The Task scheduler constructs a first-in first-served queue

that maps the execution profile to the node profiles. The

foremost goal in scheduling the jobs is considering the

network parameters (3G,4G,Wifi or Wifi-direct) at the time of

offloading for the purpose of minimizing the cost. It schedules

the decomposed jobs to compute/storage resources obtained.

The Offloading manager accepts the information from the

profiler and coordinates with the task scheduler input to queue

these requests. The decision of whether to offload or not is

made here. Once a decision to offload is taken, an IaaS request

is made to the cloud provider. As the VMs of the devices are

Distributed Physical Devices with Virtual Resources

Composed Virtual Resources

IaaS Request Interface

User

Application

Sub taskSub task

NodeID,IP

Meta-Data

(3
)

(3
b

)

(4
)(5

)

VM

VM

VM

VM
VM

VM

VM

VM

VM VM
VM

VM

VM
VM VM

VM VM

(1

)

(2
)

 (3a)

(3c)

(2
a)

Fig.2. Mobile Ad-hoc Cloud System Overview

received and utilized by this module, the offloading manager

behaves as a consumer.

B. IaaS Provisioning and Composition

In this part, the infrastructure composition is assembled and

made available in usable form to the consumer. It consists of

the following:

1. Service Access Layer –

 At this layer, the IaaS request interface is responsible for

handling the IaaS request. This acts as a conduit between the

cloud consumer and the IaaS provider. This is because the

IaaS request cannot be made directly to the individual

heterogeneous providers. Therefore, it is responsible for

providing a set of service interfaces and resource abstractions

(e.g. Virtual Machines) obtained from the vicinity to the

consumer in a usable form. It is only concerned with the

receiving of service requests and provisioning of services. In

general, this layer could be defined as the uppermost layer in

the IaaS provisioning mechanism.

2. Infrastructure Composition Layer - This layer has the

Infrastructure Composition and Management module

which is the core of the architecture. This module is

responsible for composition and management. It constitutes

the essential functions of the architecture. This includes

discovering resources, forming the physical layer and

populating the ad-hoc virtual pool, the formation of the P2P

network and managing the resources. As these resources are

diverse in nature with different capabilities, a composition

algorithm to unify them is proposed. Additionally, due to the

heterogeneity, co-ordination between the resources is

necessary. Thus, a key based routing mechanism is followed.

This modeling approach allows easier resource management

and spontaneous IaaS provisioning. Moreover, a composition

strategy in IaaS provisioning is essential as the Service layer

does not have the logic required for the unification of the

disparate resources. This layer creates the composed resources

from the ad-hoc virtual resource pool. The generated

composition is the only view for the layers above. Each of

these modules is explained below with their functionalities.

The Resource Discovery module is responsible for an

examination of available resources in the vicinity. That is, it

follows a publish/subscribe mechanism to search for the IaaS

providers. It is the first step towards the deployment of the

IaaS composition. The search involves discovering volunteers

and populating the ad-hoc virtual resource pool. These

volunteers together become part of the volunteer ad-hoc

resource pool (VARP). Once discovered, the volunteers offer

their intra-device virtual machines.

The Resource Selection module optimally selects required

virtual resources from the resource pool that is created. These

are the VMs of the devices which satisfy the IaaS request.

Once selected out of the volunteer pool, these are used as

participants in the composition. Once the participants are

selected, the P2P formation module performs the

composition of the selected device VMs. These VMs have an

interface and a computing capability similar to the underlying

device. This paper only considers compute and storage

services. The composed participant topology (CPT) is formed

by combining multiple virtual resources from the vicinity that

were formerly part of VARP. How the composition of these

virtualized resources takes place is elaborated in the next

section.

The Routing and Management module’s role begins once

the P2P network is formed. It accesses the storage that has the

dependencies specific to a request and integral for the

managing of the resources. For example, as seen in the

previous section, a meta-file is taken into consideration that

acts as a dependency. Once resources are composed, the

requests need to be serviced with the assistance of IaaS

providers that require co-ordination and management. It takes

the decision about the route to take and the devices to be

chosen when using the composed service. Hence, the routing

and management algorithm makes use of a key that eventually

takes the dependencies to the VMs. The IaaS algorithm

comprises of this key based routing described later with an

example.

The Resource Monitoring module’s interaction will

involve frequent exchanges with the VARP, defined in the

algorithm below that will be essential for recognizing failures

and reconfiguring the CPT. Additionally, as CPT is a sub-set

of VARP, it is also possible to adjust the configuration of the

composition by joining new resources in the pool. As this

paper is considering very few to no disruptions it is

impertinent to delve into the node failures at this juncture.

3. Resource Abstraction Layer- This layer contains the

mobile phone virtualization [13] components that the cloud

IaaS providers use to provide and access the physical

resources. It represents a collection of virtual resources

collected from the volunteers forming the ad-hoc virtual

resource pool. Here, the devices that offer their VMs/VPs

have the same characteristics to the respective physical Node

IDs in the Ad-hoc Virtual Resource Pool. VMr represents the

reference to the VMs present in the devices. Thus, in general,

it could be said that the ad-hoc virtual resource pool is a

combination of VARP and CPT. The cloud IaaS providers

have control over these abstractions. There could be multiple

such abstractions which the cloud IaaS provider can offer. In

this way, flexibility in service orchestration is achieved.

Fig.3. Mobile Ad-hoc Cloud Architechture

Offloading

Manager Profiler

Ad-hoc Virtual Resource Pool

VMr

Infrastructure Composition & Management

Resource

Discovery

P2P

Formation

Routing &

Management

Resource

Selection

Infrastructure as a Service Request Interface

IaaS Request IaaS Topology

Physical

Resource

Layer

Resource

Abstraction

Layer

Infrastructure

Composition

Layer

Service Access

Layer

Cloud

Consumer

Layer

Application

Execution

EnvironmentOffloading Request Offloading Results

Applications

Task

Scheduler

VMr VMr VMr VMr VMr

Devices

Resource

Monitor

Ia
aS

C
o

n
su

m
er

Ia
aS

In
fr

as
tr

u
ct

u
re

P
ro

v
id

er
s

4. Physical Resource Layer – Physical resource Layer

includes the physical devices obtained from resource

discovery. This is the lowermost layer with hardware

resources such as phones, tablets, and other physical

computing infrastructure elements. These are the entities

providing the virtual abstractions for computation. In other

words, these are the cloud IaaS providers who own the

virtualized resources.

In the next section, we discuss the composition algorithm and

define its major functions with a use case.

V. IAAS ALGORITHMS

These algorithms are essential for IaaS deployment in the

mobile ad-hoc cloud. It’s first stage is Composition followed

by Routing & Management. The advantage of these

algorithms is to extend flexibility and simplicity. It achieves

these characteristics by orchestrating the discovered devices to

satisfy the IaaS request. Additionally, the Routing&

Management algorithm ensures co-ordination among the

composed resources. Therefore, requests can be submitted at

any time, and ad-hoc cloud can be formed on the fly. For

Composition, once the service request is received, a

resourceDiscovery() broadcast is made after which resource

information is obtained. The resources obtained any time later

than send(msg, t) are considered to be evicted. The resource

information of Node ID, IP, and port from listener nodes

(line 5) is used later to form a P2P network(similar to the

joining mechanism in Kademlia), post the selection of

resources and session establishment.A bootstrap construct is

sent to the provider nodes (line 8-10). Once bootstrapped the

VMs/VPs form a P2P network. This is how the resources are

composed. Eventually, request-specific dependency retrieval

is performed and mapped to VMs where the computation can

be processed. This is how Routing and Management

performed. It makes use of a consistent hashing scheme for

generation of the key. Thus, for a given value a corresponding

key will take the dependency to the correct VM, where it is

downloaded. For one request, consider an example of a meta-

file formed with the resource information obtained assimilated

along with the job information. This meta-file is the (that is

stored in the key-value storage) value for keys generated.

(lines 3 to 7). As the keys point to the meta-data values, if

there are two similar keys then they’d be pointing to the same

location from where the dependency needs to be downloaded.

The unique node Ids that are bootstrapped to the consumer

device distinguishes between devices.

Once composed the Routing & Management module armed

with the information from the storage then informs the

composed participants in the VM pool where the actual data

exists.The individual VMs can then begin downloading the

files for execution. Failed nodes can be determined by the

resource monitoring module. However, that aspect will be

addressed in our future work. One major enabling factor for

managing the composition is the composition score given by

(1) Where α is the weight given to the systems total time since

the last failure ,Tdept- Time of departure, Tarr- Time of arrival.

Qj is defined for each service therefore can have a number of

QoS criteria such as delay in delivery, bandwidth, accuracy

etc.

Composition Score = α (𝑇𝑑𝑒𝑝𝑡 − 𝑇𝑎𝑟𝑟) + ∑ (∑ 𝑃𝑖 +
𝑗∈𝐽

𝑖∈𝐼

(𝐷𝑖
𝑅 ∗ 𝑤𝑞𝑢𝑎𝑙))𝑄𝑗 ………… (1)

wqual is given to each QoS factor as a pre-defined value. 𝑃𝑖 is

the Popularity factor of the device who has served ‘k’ number

of requests at time ‘t’. Let R be resources provided with

𝐷𝑖
𝑅 being the device Resources (‘R’ could be the CPU,RAM,

Storage). Logically, the signal strength of a node plays a major

role in deciding its popularity factor. Sstr represents the signal

strength. Where str ε Z { as Z ranges from 1 to z , where ‘z’ is

the nodes in the vicinity of a device}.

𝑃𝑖
𝑡 = ∑ 𝑆𝑠𝑡𝑟 ∗ 𝑃𝑖

𝑡−1
𝑠𝑡𝑟∈𝑍

 ……(2)

Due to space limitations we shall not be going into detail

about composition score in this manuscript.

Now let’s look at a use case to understand the algorithms.

C. Use Case – Offloading Application

To utilize the available resources in the composition, a

consumer must submit a request to get the service. In the use

case, a dummy task is offloaded, however it could be any

IaaS Algorithm

1:Input msg,T,msg1,host,,x,arrival, receive, key,value,ip,port,id

 //Composition initiationresourceDiscovery(msg,T) by

send(msg,t) “broadcast message with task information

with time”

 ninfo ← nodeInformation()

 sendto(msg1,ip) > msg1 “Session establishment message”

//Maintain a database of resources :resourceDict[addr[0]]

2:begin Listener (nid,ip)

//once a ready offloaded files are queued and bootstrapping

follows; btI← bootstrapI(id,initiator)

queue.poll () with parameters N, arrival and message received

update() updating the array resourceDict[]

3:send(msg,t) >msg “ resource information within time t)

//for each meta-file a hashed: initiator.set(key,value) is

followed; function hashMetafile(st,f) is initialized

4: while True:

5: data,addr←ninfo

6: end while

7: begin Session()

// Routing and Coordination inside composition is made

initProtocol←InitializeDARC()

8: Exchange session acknowledgement

// For offloading use-case this protocol is initialized calling

bootstrap();initiator behaves as server <-initiator.bootstrap

[(ip,port)].

9: for all t > T do >t is the time of nodes arriving earliest, x is

the late replies.

10: calc = t+x

11: { N,arrival,receive}←queue.poll()

12: updateInitiator()

13: send(msg,t) > with acknowledgement message

14: end for

15: end

16:end

executable application. An option to request IaaS service

through the IaaS request interface is realized.We evaluate the

performance of the IaaS algorithms with the offloading of an

application. The entire code is written in python. Consider a

constant IP for a session. Two environments that support

python well- Network Emulator for Mobile Universe

(NEMU[8]) and Mininet[14] are used for emulation. Two of

these environments are considered to evaluate the features of

NEMU and compare its realism with Mininet. In NEMU

environment, all nodes (VMs) of differing sizes are used. P2P

network emulation within an environment height and width of

1000x1000 with small step changes every 5 seconds is used

for modeling an ad-hoc network. VM images modeled

between 256 MB to 512 MB with 1 CPU, that act as 12 nodes

embedded onto NEMU environment.

For this paper, just one AP is considered to avoid the case of

congestion in local networks. The procedure starts from the

initiator (host/offloader), first discovering the devices and

composing the VMs using composition algorithm. The

experiment starts by offloading to 2 nodes, then to 4 nodes

gradually, offloading is done to 12 nodes to check for

performance with an increase in the number of nodes. As

increasing by a single node was not producing any visible

difference in performance, nodes are increased by a factor of

2. These nodes behave as providers (volunteers/offloadees).

The composition of P2P network and its routing &

management is done with the IaaS algorithms. The sequence

of the function call is shown in Fig 5.We evaluate the

composition algorithm after the initiator discovers the VMs

through IPs established for a session. We model dummy tasks

as small files of 100 kb. A number of iterations were

performed only a few are shown for brevity. The graph is

normalized to local execution (value 100). The time is

measured during the get-result request phase because getting

back the serviced results would alone ensure completeness of

the process.

D. Performance Evaluation

The performance results are shown in figure 7a. Both

NEMU(Figure 6a) and Mininet (Figure 6b) show

approximately the same realism. We compare our work with

[5]. The results show that as the number of nodes goes on

increasing for a particular task, the increase in performance

stagnates after a point. It suggests that as overheads go on

increasing (network overheads, lookups, and creation of P2P

network, device overheads etc.) performance attains a stage

where there is no increase or decrease but maintains the same

level for the same task. However, while offloading to 10 nodes

i.e. going from 8 to 10, a change in slope of the graph is

observed. This delineates the addition of overheads to the

execution of tasks, which in turn causes the deterioration. In

Mininet (in Fig 6b.) we model an environment like [5]. The

number of nodes is gradually increased same as before where

dummy tasks are offloaded. Based on the work done by

Canepa et al. [5] it can be learned that for small files using

servers like Hadoop would degrade performance.

It also provides an insight to the resource usage. Pooling of

resources, when not needed, results in performance

degradation. Thus, resource usage should be based on the

task’s need. Assuming the preparation and offloading time in

[5] together as the workload offloading time in our case, we

observed a better performance in our system. The Hadoop

server performance in [5] could be mapped to the degradation

α

β

µ Θ

minSignalStrength

minThreshold(SignalStrength)

maxSignal

optimal

Region A

Region B

Region C

Region D

r1

r

0 degree
direction

Region E

(x , y)

Fig.4a. Special Case of a regular shaped network area

S.No. Parameter Value

1. Area 1000x1000 sq.units

2. Channel capacity 2 Mbps

3. Transmission Range 250m

4. MAC Protocol IEEE 802.11

5. Packet Size Upto 100Kb (6

different traces)

6. Algorithm Distributed Adhoc
Resource

Composition(DARC)

7. Node Speed 0-30m/s

Table 1. Evaluation parameters

ComposerVolunteers

UDP

broadcast

request

UDP

broadcast

request

Ready for initiation

Late reply

Resource Discovery(msg,T)

Initiate Distributed

Ad-hoc Resource

Composition(DARC)

Bootstrap()

Eviction

notice()
Free from

bootstrapping

Offloading

Begins

ValueExtraction()
Sending Results

Eviction post

Reassembly

Eviction

notice()

Offloading()

Replies within

T=t

Replies within

T=t+x

Session()

ACK()
Session

Establishment

Volunteer & Participants

Volunteer Ad-hoc

Resource

Pool(VARP)

Composed

Participant

Topology (CPT)

Retrieval

Fig.5. Sequence diagram of the Distributed Ad-hoc Resource-

Composition algorithm

Fig.6a&6b. NEMU&MININET -Local Execution vs Mobile Offloading

(normalized to local execution)

0

50

100

150

200

2 4 6 8 10 12

Execution

Workload

(Preparation

and offload)

0

50

100

150

200

2 4 6 8 10 12

Execution

Workload(Pre

paration and

offload)

in performance observed after 10 nodes. In an ad-hoc

environment, extra resources could be used by some other

customers, also blocking more than the requisite resources

means wastage of resources. There were failures while

offloading that caused over 20% packet drops (Fig 6.c). For

one, during Offloader’s device error the initiating host starts

the process of offloading and does not set (“key”, value) a

value (meta-file). That is the provider bootstraps or the

provider peer which is ready for processing the tasks keeps

waiting but doesn’t find a value. Secondly, when Device shuts

down post offloading - In this scenario, the providers who are

bootstrapped in the P2P network but do not respond once the

host device has stopped. Lastly, during Late Replies the

provider could be part of another consumer’s ad-hoc cloud.

However, once offloading begins then there will be another

look up initiated for processing the task, if at all the host

device is not able to process the sub-task locally. Figure 7b

shows how the saturation occurs for one task. This is the case

when one task that does not require 6 nodes, is amassing

resources which eventually leads to saturation of performance.

As observed in 7a this saturation will lead to degradation over

time.

VI. CONCLUSION AND FUTURE WORK
In this paper, we developed a mobile ad-hoc cloud

computing architecture that deploys an IaaS request based on
an end user’s application in a crowd-sourced environment. The
idle-intra device resources of nearby users can be benefitting if
put together in a collaborative manner. This has been realized

in this work. The primary aim to tap the resources and
assemble it in a usable form for a consumer has been managed
and successfully shown with the IaaS algorithms. There are
certain drawbacks in the system that affected the offloading
process. Firstly, the mobility between the devices needs to be
managed i.e. devices entering and leaving the topology at will.
Secondly, for every device making a broadcast, the devices that
are available are the ones connected to the same AP in the
same region, there is no knowledge of the location of resources
in the other APs. Thirdly, as seen in Case 3, resource discovery
needs to be done taking QoS metrics into consideration. The
conflict of one provider becoming a consumer at the same time
is not illustrated in this paper. Although, most of these
drawbacks can be easily overcome by re-broadcasting a request
at the consumer side, we plan to develop a more efficient
solution for mobility along with developing the scheduler
algorithms.

REFERENCES

[1] O. Babaoglu and M. Marzolla, “Peer-to-Peer Cloud Computing,”

pp. 1–9, 2011.

[2] mobiforge.global-mobile-statistics-2013-section-e-mobile-apps-
app-stores-pricing-and-failure-rates, 2013

[3] G. a. McGilvary, A. Barker, and M. Atkinson, “Ad Hoc Cloud

Computing,” 2015 IEEE 8th Int. Conf. Cloud Comput., pp. 1063–
1068, 2015.

[4] A. Chandra and J. Weissman, “Nebulas : Using Distributed

Voluntary Resources to Build Clouds,” Proc. 2009 Conf. Hot Top.
cloud Comput., vol. San Diego, no. San Diego, CA, June 2009., p.

2, 2009.

[5] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider
for mobile devices,” Proc. 1st ACM Work. Mob. Cloud Comput.

Serv. Soc. Networks Beyond MCS 10, vol. 16, no. 2010, p.

[6] S. A. Abid, M. Othman, and N. Shah, “A Survey on DHT-Based
Routing for Large-Scale Mobile Ad Hoc Networks,” ACM Comput.

Surv., vol. 47, no. 2, pp. 1–46, 2014.

[7] R. Lacuesta, J. Lloret, S. Sendra, and L. Peñalver, “Spontaneous ad
hoc mobile cloud computing network,” Sci. World J., vol. 2014,

2014.

[8] V. Autefage, D. Magoni, and J. Murphy, “Virtualization Toolset for
Emulating Mobile Devices and Networks,” IEEE/ACM Int.

MobileSoft, 2016.

[9] M. Al-Rousan, E. Al-Shara, and Y. Jararweh, “AMCC: Ad-hoc
based mobile cloud computing modeling,” Procedia Comput. Sci.,

vol. 56, no. 1, pp. 580–585, 2015.

[10] D. Maymounkov, Petar ; Maziéres, “Kademlia: A Peer-to-peer
Information System Based on the XOR Metric,” Proceeding IPTPS

’01 Revis. Pap. from First Int. Work. Peer-to-Peer Syst., pp. 53–65,

Nov. 2002.
[11] B. Zaghdoudi, H. K. Ben Ayed, and I. Riabi, “Ad hoc cloud as a

service: A protocol for setting up an ad hoc cloud over MANETs,”

Procedia Comput. Sci., vol. 56, no. 1, pp. 573–579, 2015.
[12] U. Drolia, N. Mickulicz, R. Gandhi, and P. Narasimhan, “Krowd: A

Key-Value Store for Crowded Venues,” in Proceedings of the 10th

International Workshop on Mobility in the Evolving Internet
Architecture, 2015, pp. 20–25.

[13] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, “Cells- A
Virtual Mobile Smartphone Architecture,” Proc. Twenty-Third

ACM Symp. Oper. Syst. Princ. - SOSP ’11, p. 173, 2011.
[14] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid

prototyping for software-defined networks,” Work. Hot Top.

Networks, pp. 1–6, 2010

[15] Wave your Phone in the Air: How Technology is Changing Live
Music-Craig Rosen Online[Available] yahoo.com/tech/the-lights-

go-down-your-pulse-races-in-194316495.html, 2015
[16] D. M. Shila, W. Shen, and Y. Cheng Online [Available],

“AMCloud : Towards a Secure Autonomic Mobile Ad Hoc Cloud

Computing System.”,2016

Fig.6c. Packet drop at the Consumer

Fig.7a&7b- Performance of Mininet and Nemu providers &

Saturation after 5 nodes

0

20

40

60

80

100

120

140

2 4 6 8 10 12

P
er

fo
rm

an
ce

Provider Nodes

Mininet

NEMU

Workload

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6

P
er

fo
rm

a
ce

Number of nodes

Mininet Execution

NEMU Execution

