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Abstract Kidney renal failure means that one’s kidney have
unexpectedly stopped functioning, i.e., once chronic disease is
exposed, the presence or degree of kidney dysfunction and its
progression must be assessed, and the underlying syndrome
has to be diagnosed. Although the patient’s history and phys-
ical examination may denote good practice, some key infor-
mation has to be obtained from valuation of the glomerular
filtration rate, and the analysis of serum biomarkers. Indeed,
chronic kidney sickness depicts anomalous kidney function
and/or its makeup, i.e., there is evidence that treatment may
avoid or delay its progression, either by reducing and prevent
the development of some associated complications, namely
hypertension, obesity, diabetes mellitus, and cardiovascular
complications. Acute kidney injury appears abruptly, with a
rapid deterioration of the renal function, but is often reversible
if it is recognized early and treated promptly. In both situa-
tions, i.e., acute kidney injury and chronic kidney disease, an
early intervention can significantly improve the prognosis.

The assessment of these pathologies is therefore mandatory,
although it is hard to do it with traditional methodologies and
existing tools for problem solving. Hence, in this work, we
will focus on the development of a hybrid decision support
system, in terms of its knowledge representation and reason-
ing procedures based on Logic Programming, that will allow
one to consider incomplete, unknown, and even contradictory
information, complemented with an approach to computing
centered on Artificial Neural Networks, in order to weigh
the Degree-of-Confidence that one has on such a happening.
The present study involved 558 patients with an age average
of 51.7 years and the chronic kidney disease was observed in
175 cases. The dataset comprise twenty four variables,
grouped into five main categories. The proposed model
showed a good performance in the diagnosis of chronic kid-
ney disease, since the sensitivity and the specificity exhibited
values range between 93.1 and 94.9 and 91.9–94.2 %,
respectively.
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Introduction

Chronic Kidney Diseases (CKDs) or Chronic Renal Failure
(CKF) describes abnormal kidney function and/or structure.
CKD is a progressive disease with high mortality rate, which
threatens to become a major public health problem, i.e., when
symptoms are severe they can be treated only by dialysis and
transplantation (end-stage of CKD) [1, 2]. It is estimated that
in Portugal more than 800,000 patients experience CKD.
Every year are recorded over 2200 new cases of CKF (there
are at present 15,000 patients in this condition) [3].

CKD was usually caused by a long-term malady, often
associated with Hypertension, Obesity, Diabetes Mellitus
(DM) and/or CardioVascular Diseases (CVD), which slowly
damages the organ and reduces their function over time [4].
Some studies reporting also prevalence in the female patients
comparatively with males with the same age, still it may prog-
ress faster in males [1, 4]. CKD is common, frequently
unrecognised and often exists together with Acute Kidney
Injury (AKI), that appears abruptly, with a rapid deterioration
of the renal function, resulting in inability to maintain fluid,
electrolyte and acid–base balance, including glomerulonephri-
tis, infective, obstructive and reflux nephropathies or untreat-
ed urinary outflow tract obstruction [4–6].

Epidemiologic evidence suggests that CKD is a risk factor
for AKI, due to the prevalence of CKD in patients who have
episodes of AKI [7]. However, the high burden of comorbid-
ities such as age, diabetes, peripheral vascular, cardiovascular,
and liver disease accompanying CKD, and the difficulties of
defining AKI in the setting of CKD, make these observations
difficult to interpret [7, 8]. Other factors should be also con-
sidered for the risk of CKD, as a family history of CKD,
hereditary kidney disorder (e.g., polycystic kidney), neo-
plasms or myelomas or multisystem syndromes with potential
kidney involvement (e.g., Systemic Lupus Erythematous
(SLE)) [4, 9].

Kidney failure is traditionally regarded as the most serious
outcome of chronic kidney disease and symptoms are usually
caused by complications of reduced kidney function. When
symptoms are severe they can be treated only by dialysis or
transplantation, corresponding to the end-stage of renal dis-
ease [6]. CKD prevalence was determined based on persistent
presence of kidney damage (e.g., albuminuria) or the de-
creased kidney function (e.g., low Glomerular Filtration
Rate (GFR), for at least during a period of 3 months) [10].
Earlier stages of CKD can be detected through routine labo-
ratory measurements, as albuminuria, an early and sensitive
marker of kidney damage [10]. The GFR values are

considered as an index of the kidney function, accepted as
the best measure of overall kidney behavior, either in health
or disease [10]. Additionally, serum creatinine or serum urea
levels should be monitored as kidney function [1, 4].
Nevertheless, it is important to note that CKD can progress
silently for a long time, i.e., prevention and diagnosis at an
early stage is imperative to stop the progression of CKD to a
more advanced stage, where dialysis or transplant is the only
substitute available to treatment. Cystatin C is an alternative
filtration marker for estimating GFR (or e(stimated) GFR),
i.e., the use of the combined balance between Creatinine and
Cystatin C to determined eGFR may be useful as a confirma-
tory test for chronic kidney disease [11]. Then again, accurate
assessment of GFR is essential for interpreting the symptoms,
signs, and laboratory abnormalities that may indicate the dis-
ease, or to set drug dosing and evaluating the prognosis. A
reduction in GFR to less than 60 ml per minute per 1.73 m2

(i.e., the body surface area) for 3 months or longer is a diag-
nostic criterion for chronic kidney dysfunction, and is associ-
ated with an increased risk of adverse outcomes, including
death [11].

Risk factors of CKD included obesity, lipid diseases and
anemia. Obesity may increase glomerular size and glomerular
function abnormalities, which is often accompanied by rapid
loss of renal function [12]. Additionally, obese patients (clas-
sification based on the Body Mass Index (BMI)) usually de-
velop proteinuria and chronic renal failure after unilateral ne-
phrectomy [13]. Anemia is a common complication in pa-
tients with CKD and its treatment has been based on a large
body of evidence, suggesting that patients with the lowest
hemoglobin values have worse outcomes than those with
higher hemoglobin ones [14]. Otherwise, cigarette smoking
is associated with accelerated progression of renal disease in
patients with diabetic and non-diabetic nephropathy, along
with an increased risk of cardiovascular difficulties [15].

Chronic kidney diseases constitute a public health problem,
considering the increased prevalence of the kidney failure and
early stages of chronic kidney disease [16]. The inappropriate
use of drugs in patients with renal disease may be harmful and
may have deleterious effects. Moreover, the decreased renal
function is a well-known source for variability in drug re-
sponse [17]. In the most recent years several decision support
systems have been applied to various specific problems of
renal disease, such as the prescriptions of pharmaceutical
drugs in patients with reduced renal function [18, 19], the
dosage adjustment for patients with renal disease [20].
Shemeikka et al. [19] developed a clinical decision support
system to support prescriptions of pharmaceutical drugs in
patients with reduced renal function. These authors state that
the system has potential to improve kidney-related drug pre-
scribing. Under this setting, Terrel et al. [20] developed a
decision support system for medication dosing based on the
estimation of patient’s creatinine clearance level. This system
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contributed to reduce significantly the excessive dosage of
target medications.Wei et al. [21] used datamining techniques
to investigate renal disease and to analyze the differences
among various administrative areas in order to further draw
up a disease distribution map. Authors reported that the major
disease forms for residents under the age of 60 were hyper-
tension, hyperglycemia and hyperlipidemia. Di Noia et al.
[22] presented a software tool based on artificial neural net-
works to classify patients’ health status potentially leading to
end-stage kidney disease that could help physicians to in-
crease the quality of medical decisions. These authors used
ten predictors (i.e., in addition to gender, age at last follow-up,
age at renal biopsy, age of onset, type of onset, histological
grade, the input variables include serum creatinine, severity of
chronic kidney disease, proteinuria, and hypertensive state,
concerning the time of renal biopsy). The network was
trained, tested and a validated using a dataset composed by
587 instances and have the topology 10–6–1. The model ac-
curacy, sensitivity and positive predictive value were 91.37,
70.76 and 75.15 % respectively. Akgundogdu et al. [23] de-
veloped a decision support system in order to diagnose renal
failure. These authors used seven parameters (i.e., urea, creat-
inine, uric acid, potassium, calcium, phosphorus, and patient’s
age). The sample comprised 112 patients, 64 with a positive
diagnosis and the remaining with a negative one. It was used
an Adaptive Neuro-Fuzzy Inference (ANFI) system with five
layers and three rules, being the rules determined by the sub-
tractive clustering method. Support Vector Machine (SVM)
and Artificial Neural Networks (ANNs) were also used,
aiming to evaluate the performance of the ANFI model.

The main drawbacks of approaches referred to above are
related with the fact that they are not subject to a formal proof,
and do not handle incomplete data, information or knowledge.
Indeed, the early diagnosis of CKD predisposing should be
correlated with many variables and requires a multidisciplin-
ary approach. Consequently, it is difficult to assess the CKD
predisposing since it needs to consider different conditions
with intricate relations among them, where the available data
may be incomplete, contradictory and/or unknown. In order to
overcome these drawbacks, the present work reports the
founding of a computational framework that uses knowledge
representation and reasoning techniques to set the structure of
the information and the associate inference mechanisms. We
will centre on a Logic Programming (LP) method to knowl-
edge representation and reasoning [24, 25], that is object of a
formal proof, and look at a soft computing approach to knowl-
edge processing based on ANNs [26].

Knowledge Representation and Reasoning

On the one hand, it is consensual that in some decisions that
one may take, some information is not always exact in the

sense that we handle estimated values, probabilistic measures,
or degrees of uncertainty. On the other hand, knowledge and
belief are generally incomplete, contradictory, or even error
sensitive, being desirable to use formal tools to deal with the
problems that arise from the use of partial, contradictory, am-
biguous, imperfect, nebulous, or missing information [24, 25,
27]. Some general models have been presented where uncer-
tainty is associated to the application of Probability Theory
[28], Fuzzy Set Theory [29], Similarities [30, 31]. Other ap-
proaches for knowledge representation and reasoning have
been proposed using the Logic Programming (LP) paradigm,
namely in the area of Model Theory [32–34] and Proof
Theory [24, 25].

In this work it is followed the proof theoretical approach in
terms of an extension to the LP language to knowledge repre-
sentation and reasoning. An Extended Logic Program (ELP)
is a finite set of clauses in the form:

{
p←p,, pn, mot q1,, not qm
? (p1,, pn, not q1,, not qm) (n, m≥0)
exceptionp1
exceptionpj (j≤m, n)
} :: scoringvalue

where B?^ is a domain atom denoting falsity, the pi, qj, and p
are classical ground literals, i.e., either positive atoms or atoms
preceded by the classical negation sign ¬ [24]. Under this
formalism, every program is associated with a set of
abducibles [33, 34] given here in the form of exceptions to
the extensions of the predicates that make the program. The
term scoringvalue stands for the relative weight of the extension
of a specific predicate with respect to the extensions of the
peers ones that make the overall program.

In order to evaluate the knowledge that stems from a logic
program an evaluation of the Quality-of-Information (QoI)
was set in dynamic environments aiming at decision-making
purposes [35, 36]. The objective is to build a quantification
process of QoI and an assessment of the argument values of a
given predicate with relation to their domains (here under-
stood asDegree-of-Confidence (DoC), which stands for one’s
belief that its unknown values fits into the arguments ranges,
taking into account their domains). TheQoIwith respect to the
extension of a predicatei will be given by a truth-value in the
interval [0, 1].

The universe of discourse can be engendered according to
the information given in the logic programs that endorse the
information about the problem under consideration, according
to productions of the type:

extensions−of −predicatei

¼ ∪1≤ j≤mclause j x1;⋯; xnð Þ∷QoI i∷DoCi ð1Þ

where ⋃ and m stand, respectively, for set union and the car-
dinality of the extension of predicatei. On the other hand,
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DoCi denotes one’s confidence on the attribute’s values of a
particular term of the extension of predicatei, whose evalua-
tion is given in [37].

A Case Study

As a case study, consider a database given in terms of the
extensions of the relations (or tables) depicted in Fig. 1, which
stand for a situation where one has to manage information
about kidney diseases detection. The tables include features
obtained by both objective and subjective methods, i.e., the
physicians will fill the tables that link to the Chronic Kidney
Disease one while executing the health check. The clinics may
populate some issues, others may be perceived by additional
exams. Under this scenario some incomplete and/or unknown
data is also available. For instance, in the Patients Information
table, the GFR value in case 1 is unknown, while the Primary
Risk Factors ranges in the interval [0, 1].

In the Family Story column of Patients’ Information table,
in Associated Kidney Diseases and in Primary and Secondary
Risk Factors tables 0 (zero) and 1 (one) denote, respectively,
no and yes. In Renal Biomarker table 0 (zero), 1 (one) and 2
(two) denote, respectively, normal, high and very high values,
while in theGender column ofChronic Kidney Diseases table
0 (zero) and 1 (one) stand, respectively, for female and male.
The BMI column in Chronic Kidney Diseases table is popu-
lated with 0 (zero), 1 (one) or 2 (two) according to patient’
Body Mass Index (BMI), evaluated using the equation

BMI ¼ BodyMass=Height2. Thus, 0 (zero) denotes BMI<
25; 1 (one) stands for a BMI ranging in interval [25, 30[;
and 2 (two) denotes a BMI≥30. The GFR column in
Patients Information table presents the value of the glomerular
filtration rate in cm3/min/1.73 m2 of body surface area.

The values presented in the RB, AKD, PRF and SRF col-
umns of Chronic Kidney Disease table are the sum of the
correspondent tables, ranging between [0, 4], [0, 4], [0, 2]
and [0, 7], respectively.

Now, applying the rewritten algorithm presented in [37], to
all the tables that make the Extension of the Relational Model
for Chronic Kidney Disease Diagnosis (Fig. 1), excluding of
such a process the Chronic Kidney Disease one, and looking
to theDoCs values obtained in this manner, it is possible to set
the arguments of the predicate referred to below, that also
denotes the objective function with respect to the problem
under analyze.

ckd : Age;Gender;BodyMassIndex; FamilyStory;GFR;ReanlBiomarkers;

AssocietedKidneyDiseases;PrimaryRisk Factors; SecondaryRisk Factors→ 0; 1f g

where 0 (zero) and 1 (one) denote, respectively, the truth
values false and true. Indeed, the arguments of this predicate
where set by a process of sensibility analysis, where the argu-
ments chosenwhere those that present the higherDoCs values,
i.e., the ones that have a greater influence on the output of the
objective function referred to above. Their terms also make
the training and test sets of the Artificial Neural Network
(ANN) given in Fig. 2.

Patients’ Information Renal Biomarkers (RB)

# Age Gender
Body 

Mass (Kg)

Height 

(m)

Family 

Story
GFR #

Serum 

Creatinine

Serum 

Urea

Serum 

Cystacin C
Albuminuria

1 59 M 89 1.73 0 1 0 0 0 1

558 52 F 79 1.61 83 558 1 1 1

Primary Risk Factors (PRF) Chronic Kidney Disease (CKD)
# Hypertension DM # Age Gender BMI Family Story GFR RB AKD PRF SRF

1 0 1 59 1 1 0 1 0 [0, 1] 0

558 0 0 558 52 0 2 83 3 [0, 2] 0 [1, 2]

Associated Kidney Diseases (AKD)

# Glomerulonephritis Nephropathies
Urinary Outflow 

Obstruction

Polycystic 

Kidneys

1 0 0 0 0

558 0 0

Secondary Risk Factors (SRF)

# Dyslipidaemia CVD SLE Anaemia
Neoplasms/ 

/Myelomas

Long-term use of 

Anti-inflammatory

Tobacco 

Habits

1 0 0 0 0 0 0 0

558 1 0 0 0 0 0

Fig. 1 An extension of the
relational model for chronic
kidney disease diagnosis
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Now, let us consider the first patient present in Fig. 1, that
presents the feature vector (Age=59,Gender=1,BMI=1,FS=
0,GFR=⊥, RB=1, AKD=0, PRF=[0, 1], SRF=0), to which it
is applied the rewritten algorithm presented in [37]. One may
have:

Begin,
The predicate’s extensions that make the

Universe-of-Discourse are set according
Chronic Kidney Disease table of Fig. 1←

{
ckd (Age, Gender, BMI, FS, GFR, RB, AKD, PRF,

SRF)
← not ckd (Age, Gender, BMI, FS, GFR, RB,

AKD, PRF, SRF)
ckd (59, 1, 1, 0, ⊥, 1, 0, [0,1], 0)∷ 1 ∷ DoC

c k d
59;1;1;0; ⊥;1;0; 0;1½ �;0ð Þ
attribute0s values

∷ 1 ∷ DoC

32;92½ � 0;1½ � 0;2½ � 0;1½ � 25;98½ � 0;4½ � 0;4½ � 0;2½ � 0;7½ �
attribute0s domains
} ∷ 1
The attribute’s values ranges are rewrit-

ten ←

{
ckd (Age, Gender, BMI, FS, GFR, RB, AKD, PRF,

SRF)
← not ckd (Age, Gender, BMI, FS, GFR, RB,

AKD, PRF, SRF)

ckd
59;59½ �; 1;1½ �; 1;1½ �; 0;0½ �; 25;98½ �; 1;1½ �; 0;0½ �; 0;1½ �; 0;0½ �ð Þ

attribute0s values ranges
∷1∷DoC
32;92½ � 0;1½ � 0;2½ � 0;1½ � 25;98½ � 0;4½ � 0;4½ � 0;2½ � 0;7½ �
attribute0s domains

ckd (} ∷ 1
The attribute’s boundaries are set to the

interval [0,1] ←

{
ckd (Age, Gender, BMI, FS, GFR, RB, AKD, PRF,

SRF)
← not ckd (Age, Gender, BMI, FS, GFR, RB,

AKD, PRF, SRF)

ckd 0:45;0:45½ �; 1;1½ �; 0:5;0:5½ �; 0;0½ �; 0;1½ �; 0:25;0:25½ �; 0;0½ �; 0;05½ �; 0;0½ �ð Þ
attribute0s values ranges once normalized

∷1∷DoC
0;1½ � 0;1½ � 0;1½ � 0;1½ � 0;1½ � 0;1½ � 0;1½ � 0;1½ � 0;1½ �
attribute0s domains once normalized

} ∷ 1
The DoC’s values are evaluated ←

{
ckd (Age, Gender, BMI, FS, GFR, RB, AKD, PRF,

SRF)
← not ckd (Age, Gender, BMI, FS, GFR, RB,

AKD, PRF, SRF)

ckd
1;1;1;1;0;1;1;0:87;1

attribute0s confidence values

� �
:: 1 :: 0:87

0:45;0:45½ �; 1;1½ �; 0:5;0:5½ �; 0;0½ �; 0;1½ �; 0:25;0:25½ �; 0;0½ �; 0;05½ �; 0;0½ �ð Þ
attribute0s values ranges once normalized

∷1∷DoC
0;1½ � 0;1½ � 0;1½ � 0;1½ � 0;1½ � 0;1½ � 0;1½ � 0;1½ � 0;1½ �
attribute0s domains once normalized

} ∷ 1
End.
where its terms make the training and test sets of the

Artificial Neural Network (ANN) given in Fig. 2.

Artificial Neural Networks

The previously presented model of chronic kidney disease
works well and demonstrate how all the information comes
together to form a diagnosis. In this section, it is set a soft
computing approach to model the universe of discourse of
any patient suffering from chronic kidney disease, based on
ANNs, which are used to structure data and capture complex
relationships between inputs and outputs [38–40].

One of the main contributions of this work is related with
the ability to deal with incomplete data/information. Besides
to a classifier that enables the early detection of CKD predis-
posing, the approach intends also obtain theDoC associated to
this diagnosis. Thus, is necessary apply an algorithm that al-
lows more than one output variable. The choice fell on ANNs
due to their dynamics characteristics like adaptability, robust-
ness and flexibility. ANNs simulate the structure of the human
brain, being populated by multiple layers of neurons, with a

0. 874
DoC

chronic kidney
disease 

0

Pre-processing

Layer
Input 

Layer

Hidden 

Layer

Output  

Layer

0.45

0.45

1
Age

1

1

0

0
GFR

1

0.5

0

0.87
PRF

1

BiasBias

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Fig. 2 The ANN topology
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valuable set of activation functions. As an example, let us
consider the case listed above, where one may have a situation
in which the diagnosis of chronic kidney disease is needed. In
Fig. 2 it is shown how the normalized values of the interval
boundaries and their DoCs and QoIs values (i.e., the tuple
(minimum, maximum, DoC, QoI)) work as inputs to the
ANN. Exemplifying with the arguments Age, GFR and PRF
of the ckd predicate, one may have (0.45, 0.45, 1, 1); (0, 1, 0,
1); and (0, 0.5, 0.87, 1). The output depicts a chronic kidney
disease diagnostic, plus the confidence that one has on such a
happening.

In this study 558 cases were considered with an age aver-
age of 51.7 years, ranging from 32 to 92 years old. CKD was
observed in 175 cases, i.e., in 31.4 % of the cases. The dataset
holds information about the factors considered critical in the
prediction of chronic kidney disease. Twenty four variables
were selected allowing one to have a multivariable dataset
with 558 records. These variables were grouped into five main
categories, i.e., Patients’ Information, Renal Biomarkers,
Associated Kidney Diseases and Primary and Secondary
Risk Factors (Fig. 1). Thus, the number of variables used as
input of the ANNmodel was reduced to nine (Table 1), i.e., the
predicate’s arguments were workout according to a process of
sensibility analysis, based on their DoCs values. A technique
used to determine how different values of an independent
variable will impact a particular dependent variable under a
given set of assumptions.

To ensure statistical significance of the attained results, 25
(twenty five) experiments were applied in all tests. In each
simulation, the available data was randomly divided into two
mutually exclusive partitions, i.e., the training set with two
thirds of the available data, used during the modeling phase,
and the test set with the remaining cases, used after training in
order to evaluate the model performance and to validate it.
The back propagation algorithm was applied in the learning
process of the ANN. The activation function used in the pre-
processing layer was the identity one. In the other layers was
used the sigmoid activation function.

A common tool to evaluate the results presented by the
classification models is the coincidencematrix, a matrix of size
L×L, where L denotes the number of possible classes. This
matrix is created bymatching the predicted and target values. L
was set to 2 (two) in the present case. Table 2 presents the
coincidence matrix (the values denote the average of the 25
experiments). A perusal of Table 2 shows that the model accu-
racy was 94.4 % for the training set (355 correctly classified in
376) and 92.3 % for test set (168 correctly classified in 182).

Based on coincidence matrix it is possible to compute sen-
sitivity, specificity, Positive Predictive Value (PPV) and
Negative Predictive Value (NPV) of the classifier:

sensitivity ¼ TP= TP þ FNð Þ ð2Þ
specificity ¼ TN= TN þ FPð Þ ð3Þ
PPV ¼ TP= TN þ FPð Þ ð4Þ
NPV ¼ TN= TN þ FNð Þ ð5Þ
where TP, FN, TN and FP stand, respectively, for true positive,
false negative, true negative and false positive. Briefly, sensi-
tivity and specificity are statistical measures of the perfor-
mance of a binary classifier, while sensitivity measures the
proportion of true positives that are correctly identified as
such. Specificity measures the proportion of true negatives
that are correctly identified. Moreover, it is necessary to know
the probability of the classifier that give the correct diagnosis.
Thus, it is also calculated both PPV and NPV, while PPV
stands for the Proportion of cases with Positive Values that
were correctly diagnosed, NPV denotes the Proportion of
cases with Negative Values that were successfully labeled.

The corresponding sensitivity, specificity, PPV and NPV
values are displayed in Table 3 for training and test sets. A

Table 1 Variables description

Variable Description Data type

Age Patient’s age; Numeric

Gender Patient’s gender; Nominal

BMI Patient’s body mass index; Nominal

Family story Presence of the disease in any relative Nominal

GFR Presents the value of the glomerular
filtration rate in cm3/min/1.73 m2 of
body surface area;

Numeric

Renal
biomarkers

Includes information related with renal
biomarkers, like serum creatinine, serum
urea, serum cystacin C or albuminuria;

Nominal

Associated
kidney
diseases

Includes the issues related with associated
kidney diseases, like the presence of
glomerulonephritis, nephropathies,
urinary outflow obstruction or
polycystic kidneys;

Nominal

Primary risk
factors

Presents information related with primary
risk factors like hypertension or diabetes
mellitus; and

Nominal

Secondary risk
factors

Presents information related with secondary
risk factors like dyslipidaemias,
cardiovascular diseases, systemic lupus
erythematous, anaemia, neoplasms/
myelomas, long term use of anti-
inflammatory drugs or tobacco habits.

Nominal

Table 2 The coincidence matrix for ANN model

Target Predictive

Training set Test set

True (1) False (0) True (1) False (0)

True (1) 111 6 54 4

False (0) 15 244 10 114
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perusal of Table 3 shows that the sensitivity ranges from 93.1
to 94.9 %, while the specificity ranges from 91.9 to 94.2 %.
The sensitivity of the proposed model is higher than the re-
ported in literature [22]. PPV ranges from 84.4 to 88.1 %,
while NPV ranges from 96.6 to 97.6 %. For comparison, the
reportedPPV values ranges between 75.2 and 92.8% [22, 23].
Moreover, the Receiver Operating Characteristic (ROC)
curves for the training and test sets are shown in Fig. 3. The
areas under ROC curves are higher than 0.9 for both cases,
denoting that the model exhibits a good performance in early
recognition of CKD.

Serum urea and creatinine are key biomarkers to assess the
integrity of renal function, however, they have poor predictive
ability for renal disease since they are quite variable with the
patient’s characteristics, once urea is largely dependent on the
individual diet and creatinine is mutable with the musclemass.
Early diagnosis on the basis of presence of albuminuria or
reduced estimated glomerular filtration rate could permit early
intervention to reduce the risks of cardiovascular events, kid-
ney failure, and death that are associated with CKD.
Nevertheless, the screening for the kidney disorder is most
efficient when targeted at high-risk groups, including elderly
people and those with concomitant illness or a family history
of chronic kidney disease.

The present model allows to integrate the results of the
renal biochemical markers with other factors such as, family
story of renal disease, presence of associated kidney diseases
and integrate them with the main kidney sickness risk factors,
allowing to be assertive in the diagnosis of CKD. This model

showed a high sensibility, enabling the diagnosis of kidney
disease comparing with the patients that really presented this
pathology as well classifying properly the absence of renal
pathology (i.e., specificity), therefore it can be a major contri-
bution to the early recognition and prevention of chronic kid-
ney disease.

Conclusions and Future Work

Kidney renal failure is often reversible if it is recognized early
and treated promptly. The incidence of AKI and CKD is
reaching epidemic proportions. In both situations, early inter-
vention can significantly improve the prognosis. Once the life-
threatening conditions are addressed, the healthcare institution
information systems should turn to gathering a complete pa-
tient history and performing a detailed examination of such
records, like signs/symptoms, allergies, medications, past
medical history, last oral intake and events preceding the call
for help. However, to set an early diagnosis of the CKD pre-
disposing is a hard and complex task, which needs to consider
many different factors, where some of them are not represent-
ed by fully objective data. Being an area filled with incom-
plete and unknown data, information or knowledge it may be
tackled by Artificial Intelligence based methodologies and
techniques for problem solving. Indeed, this work presents
the founding of a computational framework that uses powerful
knowledge representation and reasoning techniques to set the
structure of the information and the associate inference mech-
anisms. A method that brings a new approach that can revo-
lutionize prediction tools in all its variants, making it more
complete than the existing methodologies and tools available.
The knowledge representation and reasoning techniques pre-
sented above are very versatile and capable of covering every
possible instance by considering incomplete, contradictory,
and even unknown data.

Table 3 Sensitivity, specificity, Positive Predictive Value (PPV) and
Negative Predictive Value (NPV) for the ANN model

Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Training set 94.9 94.2 88.1 97.6

Test set 93.1 91.9 84.4 96.6
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Fig. 3 The ROC curves for
training set (―) and for test set
(− −)
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The model presented in this study showed a good perfor-
mance in the detection of chronic kidney disease predisposing,
since their sensitivity and specificity exhibited values higher
than 90 %. These findings were corroborated by the area un-
der ROC curves (>0.9). The main contribution of this work
relies on the fact that at the end, the extensions of the predi-
cates that make the universe of discourse are given in terms of
DoCs values that stand for one’s confidence that the predicates
arguments values fit into their observable ranges, taking into
account their domains. It also encapsulates in itself a new
vision of Multi-value Logics, once a proof of a theorem in a
conventional way, is evaluated to the interval [0, 1]. The
ANNs were selected due to their dynamics characteristics like
adaptability, robustness and flexibility. Future work may rec-
ommend that the same problem must be approached using
others computational formalisms like Genetic Programming
[25], Case Based Reasoning [41] or Particle Swarm [42], just
to name a few.

References

1. Levey, A. S., and Coresh, J., Chronic kidney disease. Lancet 379:
165–180, 2012.

2. Eckardt, K. U., Berns, J. S., Rocco, M. V., and Kasiske, B. L.,
Definition and classification of CKD: The debate should be about
patient prognosis—a position statement fromKDOQI and KDIGO.
Am J Kidney Dis 53:915–920, 2009.

3. Chronic Kidney Disease Platform (2015) http://gid.min-saude.pt/
irc.php?lang=en. Accessed 27 April 2015

4. Jha, V., Garcia-Garcia, G., Isek, K., Li, Z., Naicker, S., Plattner,
B., Saran, R., Wang, A. Y. M., and Yang, C. W., Chronic kidney
disease: Global dimension and perspectives. Lancet 382:260–
272, 2013.

5. Kidney Disease: Improving Global Outcomes (KDIGO) CKD
Work Group: KDIGO 2012, Clinical practice guideline for the
evaluation and management of chronic kidney disease. Kidney Int
Suppl 3:1–150, 2013.

6. Levey, A. S., Atkins, R., and Coresh, J., Chronic kidney disease as a
global public health problem: Approaches and initiatives—a posi-
tion statement from Kidney Disease Improving Global Outcomes.
Kidney Int 72:247–59, 2007.

7. Singh, P., Rifkin, D. E., and Blantz, R. C., Chronic kidney disease:
An inherent risk factor for acute kidney injury? (Mini-Review).
Clin J Am Soc Nephrol 5:1690–1695, 2010.

8. Bydash, J. R., and Ishani, A., Acute kidney injury and chronic
kidney disease: A work in progress. Clin J Am Soc Nephrol 6:
2555–2557, 2011.

9. James, M. T., Hemmelgarn, B. R., and Tonelli, M., Early recogni-
tion and prevention of chronic kidney disease. Lancet 375:1296–
1309, 2010.

10. Hemmelgarn, B. R., Manns, B. J., Lloyd, A., James, M. T.,
Klarenbach, S., Quin, R. R., Wiebe, N., Tonelli, M., and for the
Alberta Kidney Disease Network, Relation between kidney func-
tion, proteinuria, and adverse outcomes. J AmMed Assoc 303:423–
429, 2010.

11. Inker, L. A., Schmid, C. H., Tighiouart, H., Eckfeldt, J. H.,
Feldman, H. I., Greene, T., Kusek, J. W., Manzi, J., Van Lente, F.,
Zhang, Y. L., Coresh, J., and Levey, A. S., Estimating glomerular

filtration rate from serum creatinine and Cystatin C. N Engl J Med
367:20–99, 2012.

12. Praga, M., Hernandez, E., Herrero, J. C., Morales, E., Revilla, Y.,
Diaz-Gonzalez, R., and Rodicio, J. L., Influence of obesity on the
appearance of Proteinuria and renal insufficiency after unilateral
Nephrectomy. Kidney Int 58:2111–2118, 2000.

13. National Institute for Health and Care Excellence (2015) Lipid
modification: cardiovascular risk assessment and the modification
of blood lipids for the primary and secondary prevention of cardio-
vascular disease. NICE clinical guideline 181. http://www.nice.org.
uk/guidance/cg181/resources/guidance-lipid-modification-
cardiovascular-risk-assessment-and-the-modification-of-blood-
l ip ids-for- the-pr imary-and-secondary-prevent ion-of -
cardiovascular-disease-pdf. Accessed 23 April 2015

14. Locatelli, F., Aljama, P., Bárány, P., Canaud, B., Carrera, F.,
Eckardt, K. U., Horl, W. H., Macdougal, I. C., Macleod, A.,
Wiecek, A., and Cameron, S., Revised European best practice
guidelines for the management of anaemia in patients with chronic
renal failure. Nephrol Dial Transplant 19(supplement 2):ii44–ii47,
2004.

15. Gansevoort, R. T., Correa-Rotter, R., Hemmelgarn, B. R., Jafar, T.
H., Heerspink, H. J. L., Mann, J. F., Matsushita, K., andWen, C. P.,
Chronic kidney disease and cardiovascular risk: Epidemiology,
mechanisms, and prevention. Lancet 382:339–352, 2013.

16. Yach, D., Hawkes, C., Gould, C. L., and Hofman, K. J., The global
burden of chronic diseases: overcoming impediments to prevention
and control. JAMA 291:2616–2622, 2004.

17. Blix, H. S., Viktil, K. K., Moger, T. A., and Reikvam, A., Use of
renal risk drugs in hospitalized patients with impaired renal func-
tion—an underestimated problem? Nephrol Dial Transplant 21:
3164–3171, 2006.

18. Tawadrous, D., Shariff, S. Z., Haynes, R. B., Iansavichus, A. V.,
Jain, A. K., and Garg, A. X., Use of clinical decision support sys-
tems for kidney-related drug prescribing: A systematic review.Am J
Kidney Dis 58:903–914, 2011.

19. Shemeikkaa, T., Bastholm-Rahmnerb, P., Elinderd, C.-G., Végc,
A., Tornqvista, E., Corneliusa, B., and Korkmaza, S., A health
record integrated clinical decision support system to support pre-
scriptions of pharmaceutical drugs in patients with reduced renal
function: Design, development and proof of concept. Int J Med
Inform 84:387–395, 2015.

20. Terrell, K. M., Perkins, A. J., Hui, S. L., Callahan, C. M., Dexter, P.
R., and Miller, D. K., Computerized decision support for medica-
tion dosing in renal insufficiency: A randomized, controlled trial.
Ann Emerg Med 56:623–629, 2010.

21. Wei, C.-K., Su, S., and Yang, M.-C., Application of data mining on
the development of a disease distribution map of screened commu-
nity residents of Taipei County in Taiwan. J Med Syst 36:2021–
2027, 2012.

22. Di Noia, T., Ostuni, V. C., Pesce, F., Binetti, G., Naso, D., Schena,
F. P., and Di Sciascio, E., An end stage kidney disease predictor
based on an artificial neural networks ensemble. Expert Syst Appl
40:4438–4445, 2013.

23. Akgundogdu, A., Kurt, S., Kilic, N., Ucan, O. N., and Akalin, N.,
Diagnosis of renal failure disease using adaptive neuro-fuzzy infer-
ence. Syst J Med Syst 34:1003–1009, 2010.

24. Neves, J., A logic interpreter to handle time and negation in logic
databases. In: Muller, R. L., and Pottmyer, J. J. (Eds.), Proceedings
of the annual conference of the ACM on the fifth generation
challenge. Association for Computing Machinery, New York, pp.
50–54, 1984.

25. Neves, J., Machado, J., Analide, C., Abelha, A., and Brito, L., The
halt condition in genetic programming. In: Neves, J., Santos, M. F.,
and Machado, J. (Eds.), Progress in artificial intelligence, LNAI,
vol. 4874. Springer, Berlin, pp. 160–169, 2007.

131 Page 8 of 9 J Med Syst (2015) 39: 131

 

 

 

http://gid.min-saude.pt/irc.php?lang=en
http://gid.min-saude.pt/irc.php?lang=en
http://www.nice.org.uk/guidance/cg181/resources/guidance-lipid-modification-cardiovascular-risk-assessment-and-the-modification-of-blood-lipids-for-the-primary-and-secondary-prevention-of-cardiovascular-disease-pdf
http://www.nice.org.uk/guidance/cg181/resources/guidance-lipid-modification-cardiovascular-risk-assessment-and-the-modification-of-blood-lipids-for-the-primary-and-secondary-prevention-of-cardiovascular-disease-pdf
http://www.nice.org.uk/guidance/cg181/resources/guidance-lipid-modification-cardiovascular-risk-assessment-and-the-modification-of-blood-lipids-for-the-primary-and-secondary-prevention-of-cardiovascular-disease-pdf
http://www.nice.org.uk/guidance/cg181/resources/guidance-lipid-modification-cardiovascular-risk-assessment-and-the-modification-of-blood-lipids-for-the-primary-and-secondary-prevention-of-cardiovascular-disease-pdf
http://www.nice.org.uk/guidance/cg181/resources/guidance-lipid-modification-cardiovascular-risk-assessment-and-the-modification-of-blood-lipids-for-the-primary-and-secondary-prevention-of-cardiovascular-disease-pdf


26. Cortez, P., Rocha, M., and Neves, J., Evolving time series forecast-
ing ARMA models. J Heuristics 10:415–429, 2004.

27. Hong, T., Hart, K., Soh, L.-K., and Samal, A., Using spatial data
support for reducing uncertainty in geospatial applications.
GeoInformatica 18:63–92, 2014.

28. Li, R., Bhanu, B., Ravishankar, C., Kurth, M., and Ni, J., Uncertain
spatial data handling: Modeling, indexing and query. Comput
Geosci 33:42–61, 2007.

29. Schneider, M., Uncertainty management for spatial data in data-
bases: Fuzzy spatial data types. In: Guting, R. H., Dimitris
Papadias, D., and Lochovsky, F. (Eds.), Advances in Spatial
Databases, LNCS, vol. 1651. Springer, Berlin, pp. 330–351, 1999.

30. Freire, L., Roche, A., and Mangin, J.-F., What is the best similarity
measure for motion correction in fMRI time series? IEEE Trans
Med Imaging 21:470–484, 2002.

31. Liao, T., Clustering of time series data?—a survey. Pattern Recog
38:1857–1874, 2005.

32. Gelfond, M., and Lifschitz, V., The stable model semantics for logic
programming. In: Kowalski, R., and Bowen, K. (Eds.), Logic
Programming – Proceedings of the Fifth International
Conference and Symposium, pp. 1070–1080, 1988.

33. Kakas, A., Kowalski, R., and Toni, F., The role of abduction in logic
programming. In: Gabbay, D., Hogger, C., and Robinson, I. (Eds.),
Handbook of Logic in Artificial Intelligence and Logic
Programming, vol. 5. Oxford University Press, Oxford, pp. 235–
324, 1998.

34. Pereira, L. M., and Anh, H. T., Evolution prospection. In:
Nakamatsu, K. (Ed.), New Advances in Intelligent Decision
Technologies—Results of the First KES International Symposium
IDT 2009, Studies in Computational Intelligence, vol. 199.
Springer, Berlin, pp. 51–64, 2009.

35. Lucas, P., Quality checking of medical guidelines through logical
abduction. In: Coenen, F., Preece, A., and Mackintosh, A. (Eds.),
Research and Developments in Intelligent Systems XX. Springer,
London, pp. 309–321, 2004.

36. Machado, J., Abelha, A., Novais, P., and Neves, J., Quality of
service in healthcare units. Int J Comput Aided Eng Technol 2:
436–449, 2010.

37. Neves, J., Martins, M. R., Vicente, H., Neves, J., Abelha, A., and
Machado, J., An assessment of chronic kidney diseases. In: Rocha,
Á., Correia, A. M., Costanzo, S., and Reis, L. P. (Eds.), New
Contributions in Information Systems and Technologies—1,
Advances in Intelligent Systems and Computing, vol. 353.
Springer International Publishing, Cham, pp. 179–191, 2015.

38. Vicente, H., Dias, S., Fernandes, A., Abelha, A., Machado, J., and
Neves, J., Prediction of the quality of public water supply using
artificial neural networks. J Water Supply Res Technol AQUA 61:
446–459, 2012.

39. Vicente, H., Couto, C., Machado, J., Abelha, A., and Neves, J.,
Prediction of Water Quality Parameters in a Reservoir using
Artificial Neural Networks. Int J Des Nat Ecodynamics 7:309–
318, 2012.

40. Vicente, H., Roseiro, J., Arteiro, J., Neves, J., and Caldeira, A. T.,
Prediction of bioactive compound activity against wood contami-
nant fungi using artificial neural networks. Can J Forest Res 43:
985–992, 2013.

41. Carneiro, D., Novais, P., Andrade, F., Zeleznikow, J., and Neves,
J., Using case-based reasoning and principled negotiation to pro-
vide decision support for dispute resolution. Knowl Inf Syst 36:
789–826, 2013.

42. Mendes, R., Kennedy, J., and Neves, J., The fully informed particle
swarm: Simpler, maybe better. IEEE Trans Evol Comput 8:204–
210, 2004.

J Med Syst (2015) 39: 131 Page 9 of 9 131

 

 

 


	A Soft Computing Approach to Kidney Diseases Evaluation
	Abstract
	Introduction
	Knowledge Representation and Reasoning
	A Case Study
	Artificial Neural Networks
	Conclusions and Future Work
	References


