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Abstract Measuring the blood urea nitrogen concentra-

tion is crucial to evaluate dialysis dose (Kt/V) in patients

with renal failure. Although frequent measurement is nee-

ded to avoid inadequate dialysis efficiency, artificial intel-

ligence can repeatedly perform the forecasting tasks and

may be a satisfactory substitute for laboratory tests. Artifi-

cial neural networks represent a promising alternative to

classical statistical and mathematical methods to solve

multidimensional nonlinear problems. It also represents a

promising forecasting application in nephrology. In this

study, multilayer perceptron (MLP) neural network with

fast learning algorithms is used for the accurate prediction

of the post-dialysis blood urea concentration. The capabil-

ities of eight different learning algorithms are studied, and

their performances are compared. These algorithms are

Levenberg–Marquardt, resilient backpropagation, scaled

conjugate gradient, conjugate gradient with Powell–Beale

restarts, Polak–Ribiere conjugate gradient and Fletcher–

Reeves conjugate gradient algorithms, BFGS quasi-New-

ton, and one-step secant. The results indicated that BFGS

quasi-Newton and Levenberg–Marquardt algorithm pro-

duced the best results. Levenberg–Marquardt algorithm

outperformed clearly all the other algorithms in the verifi-

cation phase and was a very robust algorithm in terms of

mean absolute error (MAE), root mean square error

(RMSE), Pearson’s correlation coefficient (R2
p) and con-

cordance coefficient (RC). The percentage of MAE and

RMSE for Levenberg–Marquardt is 0.27 and 0.32 %,

respectively, compared to 0.38 and 0.41 % for BFGS quasi-

Newton and 0.44 and 0.48 % for resilient backpropagation.

MLP-based systems can achieve satisfying results for pre-

dicting post-dialysis blood urea concentration and single-

pool dialysis dose spKt/V without the need of a detailed

description or formulation of the underlying process in

contrast to most of the urea kinetic modeling techniques.

Keywords Multilayer perceptron (MLP) � Optimum

topology � Levenberg–Marquardt (LM) � Conjugate

gradient algorithms � Quasi-Newton algorithms

1 Introduction

The mathematical modeling of dialysis starts with the

development of the kinetic of solutes [137]. Methods for

quantitating dialysis using urea kinetics were already

developing in the San Francisco offices of Frank Gotch and

John Sargent, who had expanded Wolf’s equations and

developed more precise quantitative expressions for single-

pass dialysis after a prospective and multicenter study

[National Cooperative Dialysis Study (NCDS); 65, 90].

The results of the National Cooperative Dialysis Study

(NCDS) showed the relationship between the urea kinetics

and the clinical outcome of patients on hemodialysis [90].

This was the creation of the Kt/V formula and urea kinetic

modeling (UKM) for measuring delivered dose and ade-

quacy of dialysis. The NCDS design was based on the

assumption that blood urea nitrogen (BUN) could be used

as a surrogate for uremic toxins and that the dose of dial-

ysis could be defined by the level of BUN achieved [113].

The calculation of Kt/V is now widely used to quantify HD

treatment [2, 11, 23, 31, 40–44, 63, 75]. Many mathemat-

ical models of hemodialysis have been referred to, starting

from single-pool urea kinetic models (spUKM) [30, 33, 34,
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66, 112, 125, 64] and following with either double-pool

urea kinetic models (dpUKM; [118], [117]) [25] or more

compartments [46] where the uremic toxins are distributed

(urea, creatinine and uric acid). The single-pool model

(denoted as spKt/V) assumes that urea equilibrates instan-

taneously among all body compartments, while double-

pool model behaves as if urea is distributed between two

distinct compartments, intracellular and extracellular. Urea

once removed by dialysis from extracellular space will be

refilled by an osmotic gradient across the cell membrane.

This is a non-instantaneous process. Typically, it takes

30 min to equilibrate 95 % of an initial urea gradient over

the cell membrane if the gradient is not perpetuated by

further dialysis. This effect, usually referred as rebound, is

the measurable trace of the delayed urea mass transfer

across the cell membrane [4, 59, 79, 80, 88, 106, 119, 126,

139]. Double-pool kinetic models are more complex than

spUKM and much more than ‘‘bedside’’ formulae. A trade-

off solution led to the definition of the equilibrated Kt/V

(eKt/V). Kt/V values of less than 1.0 have been associated

with higher rates of morbidity and mortality than values

greater than 1.0 [1, 12, 32, 70, 74, 92]. However, other data

suggest that values greater than 1.0 has been an underes-

timate and that a Kt/V greater than 1.2 or 1.3 is ideal [28].

In 1993, Renal Physicians Association (RPA) developed

practice guidelines for hemodialysis and recommended that

delivered Kt/V should be at least 1.2 for spKt/V, and when

the Kt/V falls below this level, corrective action should be

undertaken [108]. Because many end-stage renal disease

(ESRD) patients do not receive an adequate dose of

hemodialysis, the National Kidney Foundation (NKF)

Dialysis Outcomes Quality Initiative (DOQI) decided to

reevaluate the issue of hemodialysis adequacy. The NKF-

DOQI clinical practice guidelines, published in 1997, have

set the minimum of delivered dialysis dose [100]. Recog-

nizing that some dialysis care teams may prefer to follow

hemodialysis dosing using a double-pool model for Kt/V,

the HD Adequacy Work Group recommends that the

minimum prescribed dose in a double-pool model be

considered to be 1.05 for eKt/V for patients dialyzing three

times per week [101]. Due to this variability of measuring

Kt/V, DOQI guidelines recommended a target dose at least

15 % higher than the listed minimum (1.4 for sp(Kt/V) and

1.15 for eq(Kt/V)) [102].

1.1 Problem statement

However, because of the complexity of the UKM, several

methods and nomograms have been developed for calcu-

lating delivered dialysis dose. The estimation of Kt/V by

various formulae and these shortcut methods always

require pre-dialysis and post-dialysis blood urea nitrogen

(BUN) to calculate the fractional index of urea removal

(Kt/V). The methods of sampling pre- and post-BUN

samples during a dialysis treatment are explained in the

NKF/DOQI Guidelines for Hemodialysis Adequacy [101].

Pre-BUN measurements must be taken before the treatment

begins, and the sample should not be tainted with normal

saline or heparin. The critical measurement is post-BUN

sampling and is usually underestimated because of access

recirculation, cardiac recirculation and urea rebound [37,

38]. It is important to sample after recirculation has been

resolved but before urea rebound has started [102]. Not

waiting long enough leads to the overestimation of Kt/V

value because only dialyzed blood is being sampled;

waiting too long time allows urea rebound to start and

causes underestimation of Kt/V value [87]. Thus, the esti-

mation of the post-dialysis blood urea concentration (Cpost)

has become an important subject of research in nephrology

because of its influence on the calculation of the single-

pool and double-pool dialysis dose (Kt/V). To overcome

these sampling errors, artificial intelligence can repeatedly

perform the forecasting tasks and may be a satisfactory

substitute for laboratory tests. Artificial neural network

(ANN) possesses a variety of alternative features such as

massive parallelism, distributed representation and com-

putation, generalization ability, adaptability and inherent

contextual information processing [68, 73, 93, 98]. The

ANN is an information processing system that roughly

replicates the behavior of a human brain by emulating the

operations and connectivity of biological neurons [131]. In

many fields of clinical medicine, ANN have been used

successfully to solve complex and chaotic problems with-

out the need of mathematical models and a precise

understanding of the mechanisms involved [29, 104, 107,

130, 132]. ANN applications have been used in many areas

of nephrology including pharmacologic studies [27, 124,

134, 135], primary renal diseases [53, 55, 60, 84, 122, 123],

transplantation [54, 77, 120], peritoneal dialysis [128] and

hemodialysis [3, 5, 6, 47–50, 56–58, 62, 67]. In this study,

a multilayer perceptron NN is used to evaluate and com-

pare the validity of ANN as a useful tool to predict post-

dialysis blood urea concentration (Cpost) and single-pool

dialysis dose (spKt/V). The neural network is trained with

the adjusted-error backpropagation algorithm. The back-

propagation training is an iterative gradient algorithm

designed to minimize the root mean square error between

the actual output of a feedforward NN and a desired output.

2 Subjects and methods

The study was carried out at four dialysis centers. Blood

urea nitrogen (BUN) was measured in all serum samples at

a central laboratory. The overall study period was 6 months.

The study subjects consisted of 310 hemodialysis patients
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collected from four dialysis centers that gave their informed

consent to participate. They are 165 male and 145 female

patients, with ages ranging 14–75 years (48.97 ± 12.77,

mean and SD) and dialysis therapy duration ranging 6–

138 months (50.56 ± 34.67). The etiology of renal failure

was chronic glomerulonephritis (65 patients), diabetic

nephropathy (60 patients), vascular nephropathy (55

patients), hypertension (51 patients), interstitial chronic

nephropathy (45 patients), other etiologies (18 patients) and

unknown cause (16 patients). The vascular access was

through a native arteriovenous fistula (285 patients) and a

permanent jugular catheter (25 patients). Patients had

dialysis three times a week, in 3- to 4-h sessions, with a

pump arterial blood flow of 200–350 ml/min and flow of the

dialysis bath of 500–800 ml/min. The dialysate consisted of

the following constituents: sodium 141 mmol/l, potassium

2.0 mmol/l, calcium 1.3 mmol/l, magnesium 0.2 mmol/l,

chloride 108.0 mmol/l, acetate 3.0 mmol/l and bicarbonate

35.0 mmol/l. Special attention was paid to the real dialysis

time, so that time-counters were fitted to all machines for all

sessions, to record effective dialysis duration (excluding

any unwanted interruptions, for example, due to dialysis

hypotensive episodes). All patients were dialyzed with

1.0 m2 polyethersulfone low-flux dialyzer, 1.2 m2 cellu-

lose-synthetic low-flux dialyzer (hemophane), 1.3 m2

polyethersulfone low-flux dialyzer, 1.3 m2 low-flux poly-

sulfone dialyzer, 1.6 m2 low-flux polysulfone dialyzer and

1.3 m2 high-flux polysulfone dialyzer. The dialysis tech-

nique was conventional hemodialysis, no patient being

treated with hemodiafiltration. A Fresenius model 4008B

and 4008S dialysis machine equipped with a volumetric

ultrafiltration control system was used in each dialysis.

Fluid removal was calculated as the difference between the

patients’ weight before dialysis and their target dry weight.

Pre-dialysis body weight, blood pressure, pulse rate and

axillary temperature were measured before ingestion of

food and drink. Pre-dialysis BUN (Cpre) was sampled from

the arterial port before the blood pump was started. Post-

dialysis BUN (Cpost) was obtained from the arterial port at

the end of HD after slowing the blood flow rate (QB) to

50 ml/min, and the blood extraction was made 15 s later

[102].

3 Model description

3.1 Multilayer perceptron

Multilayer perceptron (MLP) is one of the most frequently

used neural network architectures in biomedical applica-

tions, and it belongs to the class of supervised neural net-

works [24]. It performs a humanlike reasoning, learns the

attitude and stores the relationship of the processes on the

basis of a representative data set that already exists. The

attraction of MLP can be explained by the ability of the

network to learn complex relationships between input and

output patterns, which would be difficult to model with

conventional methods. It consists of a network of nodes

arranged in layers. A typical MLP network consists of three

or more layers of processing nodes: an input layer, one or

more hidden layers and an output layer (see Fig. 1). The

input layer distributes the inputs to subsequent layers. Input

nodes have liner activation functions (AFs) and no

thresholds. Each hidden unit node and each output node

have thresholds associated with them in addition to the

weights. The hidden unit nodes have nonlinear AFs, and

the outputs have linear AFs. Hence, each signal feeding

into a node in a subsequent layer has the original input

multiplied by a weight with a threshold added and then is

passed through the AFs that may be linear or nonlinear

(hidden units). Note that unlike other layers, no computa-

tion is involved in the input layer. The principle of the

network is that when data are presented at the input layer,

the network nodes perform calculations in the successive

layers until an output value is obtained at each of the output

nodes. This output signal should be able to indicate the

appropriate class for the input data. As shown in Fig. 1, the

input to the Jth hidden-layer neuron is given by

netj ¼
XNi

i¼1

wjixi � hj 1� j�NH ð1Þ

where netj is the weighted sum of inputs x1, x2, … , xp, hj is

the bias, wji is the connection weight between the input xi

and the hidden neuron j. The output of the jth hidden

neuron is expressed by

yj ¼ f ðnetjÞ: ð2Þ

The logistic (sigmoid) function is a common choice of the

AFs in the hidden layers, as defined in (3).

Fig. 1 Multilayer perceptron (MLP) neural network
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f ðnetjÞ ¼
1

1þ e�snetj
ð3Þ

where s is the slope of the sigmoid function and by

adjusting the value of s to less than unity makes the slope

shallower with the effect that the output will be less clear.

The bias term hj contributes to the left or right shift of the

sigmoid AFs, depending on whether hj takes a positive or

negative value. This function approaches 1, for large

positive values of netj, and 0 for large negative values of

netj [83, 115]. The input to the kth output neuron is

given by

netk ¼
XNH

j¼1

yjwjk ð4Þ

The output of‘ whole neural network is given by:

yk ¼ f ðnetkÞ: ð5Þ

The overall performance of the MLP is measured by the

mean square error (MSE) expressed as

E ¼ 1

N

XNv

p¼1

Ep ¼
1

N

XNv

p¼1

XM

i¼1

tkðiÞ � ykðiÞð Þ2 ð6Þ

where Ep corresponds to the error for the Pth pattern, N is

the number of training patterns, tk is the desired target of

the kth output neuron for the Pth pattern and yk is the

output of the kth output neuron from the trained network.

3.2 Feature selection

The purpose of feature selection can be broadly categorized

into visualization, understanding of data, data cleaning,

redundancy and/or irrelevancy removal, and performance

(e.g., prediction and comprehensibility) enhancement. The

inclusion of irrelevant and redundant features increases the

computational complexity of the classifier/predictor. Con-

sequently, feature selection has been the one area of much

research efforts [21, 69, 133]. Different sets of input

parameters were tested in order to see which of them gave

the best prediction of the post-dialysis urea concentration

(Cpost). Since one of the drawbacks of ANNs is the inter-

pretation of the final model in terms of the importance of

variables, DTREG predictive modeling software was used

to compute the importance of variable [121]. The calcu-

lation is performed using sensitivity analysis where the

values of each variable are randomized and the effect on

the quality of the model is measured. Sensitivity analysis is

based on the measurement of the effect that is observed in

the output yk due to the change that is produced in the input

xi. Thus, the greater the effect observed in the output, the

greater the sensitivity present with respect to the input [97].

Theodore, six important variables are selected as the data

set for ANN-Cpost predictor. They are urea pre-dialysis

(Cpre, mg/dL) at the beginning of the procedure, ultrafil-

tration volume (UFV, dL), pre-dialysis weight (Pre-Wt,

kg), effective blood-side urea clearance (KeUB, dL/min),

desired dialysis time (Td, min) and urea generation rate (G,

mg/min). The generation rate of urea is linked to the pro-

tein nitrogen appearance rate because most protein nitrogen

is excreted as urea. A low pre-dialysis or time-averaged

plasma urea level may be found in patients in whom urea

removal is inadequate but in whom the urea generation rate

is also low (e.g., due to poor protein intake).

3.3 Training methodology and ANN configuration

During training, the weights and biases of the network are

iteratively adjusted to minimize the network performance

function (see 6). Backpropagation (BP) is widely used for

predictive modeling by using the concept of MLP training

and testing [111]. The backpropagation algorithm is a

gradient-descent method to minimize the squared-error

cost function [116]. Assume that for each layer, the error in

the output of the layer is known. If the error of the output is

known, then it is not hard to calculate changes for the

weights, so as to reduce that error. Backpropagation gives a

way to determine the error in the output of a prior layer by

giving the output of a current layer as feedback. The pro-

cess is therefore iterative: starting at the last layer and

calculating the changes in the weight of the last layer.

Then, calculate the error in the output of the prior layer and

repeat. In basic backpropagation learning algorithms, the

synaptic weights W are updated as follows:

Wkþ1 ¼ Wk þ DWk ð7Þ

where k is the iteration in discrete time and DWk is the

current weight adaptation that can be expressed as follows

[73]:

DWk ¼ �g
oek

oWk

ð8Þ

where g is the learning rate, usually its vale is between zero

and one, and oek=oWk is the gradient of the error function

in (6) to be minimized.

However, the major disadvantages of standard BP are its

relatively slow convergence rate and being trapped at the

local minima because it solves (8) iteratively until the error

function reaches the minimum [140]. Backpropagation

using gradient descent often converges very slowly or not

at all. On large-scale problems, its success depends on

user-specified learning rate and momentum parameters.

There is no automatic way to select these parameters, and if

incorrect values are specified, the convergence may be

exceedingly slow, or it may not converge at all. While

backpropagation with gradient descent is still used in many
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neural network programs, it is no longer considered to be

the best or fastest algorithm [121]. Therefore, many pow-

erful optimization algorithms have been devised for faster

convergence than steepest descent direction methods. The

first category of these algorithms is based on heuristic

techniques, which were developed from the performance

analysis of the standard steepest descent algorithm such as

variable learning rate BP and resilient BP [16]. The second

category is based on standard numerical optimization

techniques such as conjugate gradient algorithms [17, 61,

76, 82], quasi-Newton algorithms [14] and Levenberg–

Marquardt [94]. The conjugate gradient algorithms are

usually much faster than variable-learning-rate backprop-

agation algorithm, although the results will vary from one

problem to another. However, conjugate gradient algo-

rithms require a line search at each iteration. This line

search is computationally expensive, because it requires

that the network response to all training inputs be com-

puted several times for each search. Therefore, the scaled

conjugate gradient algorithm (SCG), developed by Moller

[96], was designed to avoid the time-consuming line search

per learning iteration, which makes the algorithm faster

than other second-order algorithms. Newton’s method is an

alternative to the conjugate gradient methods for fast

optimization and convergence [16]. Quasi-Newton method

is recommended for most networks with a small number of

weights (less than a couple of hundred). It is a batch update

algorithm, whereas backpropagation adjusts the network

weights after each case. Quasi-Newton works out the

average gradient of the error surface across all cases before

updating the weights once at the end of the epoch. There is

also no need to select learning or momentum rates for

quasi-Newton, so it can be much easier to use than back-

propagation. Levenberg–Marquardt (LM) training is

considered the most efficient algorithm for training

median-sized artificial neural networks [72]. It is an

intermediate optimization algorithm between the Gauss–

Newton method and gradient-descent algorithm addressing

the shortcomings of each of those techniques. LM uses

gradient descent to improve on an initial guess for its

parameters and transforms to the Gauss–Newton method as

it approaches the minimum value of the cost function.

Once it approaches the minimum, it transforms back to the

gradient-descent algorithm to improve the accuracy [72].

This means that when the current solution is far from the

correct one, the algorithm behaves like a gradient-descent

method, and when the current solution is close to the

correct solution, it becomes a Gauss–Newton method. In

this study, eight fast learning algorithms are tested; which

are scaled conjugate gradient (SCG), conjugate gradient

with Powell–Beale restarts (CGB) [105], Polak–Ribiere

conjugate gradient (CGP) [71], Fletcher–Reeves conjugate

gradient (CGF) algorithm [51, 52], Levenberg–Marquardt

(LM) [94], resilient backpropagation (RP) [109], BFGS

quasi-Newton [14, 39] and one-step secant [15]. These

algorithms are compared based on their generalization and

prediction performances during training and testing phases.

The modeling process starts by obtaining a data set

(input–output data pairs) and dividing it into a training set

and validation data set. Training data constitute a set of

input and output vectors. There are 310 training data used

for training, and to avoid overfitting problems during

predictive modeling process, random subsampling cross-

validation is used, which is also known as Monte Carlo

cross-validation (MCCV) and based on randomly splitting

the data into subsets, whereby the size of the subsets is

defined by the modeler [9, 103, 110, 134]. Therefore, data

are divided randomly into 60, 20 and 20 % for training,

validation and testing purposes, respectively. Random

subsampling cross-validation improved neural network

generalization using early stopping technique. The training

set is used for computing the gradient and updating the

network weights and biases, whereas the validation set was

used to validate and test the ANN model. The validation

error will normally decrease during the initial phase of

training, as does the training set error. However, when the

network begins to overfit the data, the error in the valida-

tion set will typically begin to rise. When the validation

error increases for a specified number of iterations, the

training is stopped, and the weights and biases at the

minimum of the validation error are returned [16]. A

threshold and tolerance value for the error between the

actual and desired output is determined. Then, an error for

each data pair is found. Successful prediction during the

training and test phases was defined as a performance

within a tolerance or less.

To choose the best architecture of MLP neural network,

it was trained and tested for different configurations. In fact

3-layer model (one input, one hidden and one output) is

recommended for MLP. To simplify the study, only three

types of AFs were considered: linear (L), log-sigmoid

(logsig), and tan-sigmoid (tansig). Therefore, different

topologies with six inputs and three layers (6-X-1) were

sequentially trained, using either the logsig or tansig AFs in

the hidden layer with exception of the input layer for which

linear AF was used at all times. It is also recommended that

the output layer has liner AFs because if the last layer of a

multilayer network has sigmoid neurons, then the outputs

of the network are limited to a small range, but if linear

output neurons are used, the network outputs can take on

any value [16]. The number of neurons used in the hidden

layer was varied systematically between 4 and 13 with one

step while monitoring the prediction error. In the 6-X-1

topologies, only two possible combinations were created

and trained, namely L-logsig-L and L-tansig-L. All net-

works were trained in batch mode. The weights of the

Neural Comput & Applic (2013) 23:1019–1034 1023

123

 

 

 



network with the minimum training error were saved as the

final network structure. We subsequently used the testing

data set to evaluate the predictive ability of the trained

network. Each network was trained two different times to

account for different random initialization weights. After

training, the two possible topologies were compared with

each other in terms of performance on the validation set.

3.4 Statistical analysis

Statistical analysis was performed using NCSS 2007 and

MedCalc 12.1.0.0 [95, 99]. The results were shown as the

mean ± standard deviation (SD) of the mean. Confidence

intervals on the discrepancy between different estimates of

the same parameter are calculated as Bland–Altman 95 %

limits of agreement. Comparison of means between the two

groups was made using paired-sample T test. The P level

reported with a t test represents the probability of error

involved in accepting the hypothesis about the existence of

a difference between the means of two groups, and it is the

significance level for the statistical test. The performance

of NN predictors was evaluated and agreement compari-

sons between actual and predicted data was made using

mean absolute error (MAE), mean absolute percentage

error (MAPE), root mean square error (RMSE), normalized

mean square error (NRMSE), Pearson’s correlation coef-

ficient (Rp), concordance statistic (RC) and median alge-

braic difference. If there is no systematic bias, the

concordance statistic is equal to the Pearson’s correlation;

otherwise, the magnitude of the concordance statistic is

smaller, as it reflects both association and systematic bias

between methods. One-way analysis of variance (ANOVA)

is used with the number of hidden-layer neurons as factors

to determine whether changing the NN structure produced

significant changes in network performance (MSE). Sta-

tistical significance is tested for one-way ANOVA by

comparing the F test statistic.

4 Results and discussion

4.1 Testing and validation process of the ANN

Once the model structure and parameters have been iden-

tified, it is necessary to validate the quality of the resulting

model. In principle, the model validation should not only

validate the accuracy of the model but also verify whether

the model can be easily interpreted to give a better

understanding of the modeled process. It is therefore

important to combine data-driven validation, aiming at

checking the accuracy and robustness of the model, with

more subjective validation, concerning the interpretability

of the model. There will usually be a challenge between

flexibility and interpretability, the outcome of which will

depend on their relative importance for a given application.

While it is evident that numerous cross-validation methods

exist, the choice of the suitable cross-validation method to

be employed in the ANN is based on a trade-off between

maximizing method accuracy, stability and minimizing the

operation time. In this research, random subsampling cross-

validation method is adopted for ANN because of its

accuracy and possible implementation. Prediction accuracy

is calculated by comparing the difference of predicted and

measured values. If the difference is within tolerance, as in

|Cpost-predicted - Cpost-measured| B e, accurate prediction is

achieved. The tolerance e is defined based on the recom-

mendations of an expert in the hemodialysis field. Predic-

tion accuracy of about 1.5 % is allowed for Cpost prediction

and can be defined as follows:

Accuracy ¼
C

predicted
post � Cmeasured

post

���
���� e

predicted setj j ð9Þ

In the study by Blum [20], Swingler [127], Boger and

Guterman [22], Berry and Linoff [18], different rules for

selecting the number of hidden units are proposed. These

studies concluded that the convenience of adding more

hidden units to a multilayer perceptron to find a better local

minimum do not always apply because of drawbacks

related to random selection of the initial weights of the

ANN. Intuitively, increasing the number of identical

hidden neurons (HN) represents adding more degrees of

freedom to the backpropagation algorithm in a multilayer

perceptron trained with early stopping. One rule of thumb

is that HN should never be more than twice as large as the

input layer [18]. Therefore, the number of hidden neurons

was opted between 4 and 13 to check the optimum

topology for each model. With this assumption, different

trials were performed to find the best ANN in each method

using different AFs. The ANN that achieved the lowest

MSE was selected as the model. Table 1 shows the results

with different hidden node neurons. Bold values are the

minimum MSEs achieved for each learning algorithm and

were selected as the optimum topology. To investigate the

effect of adding hidden neurons, all topologies between 4

and 13 hidden neurons with the two possible combinations

of AFs were initialized with random weights and trained

with early stopping. The results in Table 1 revealed that

adding more hidden neurons does not considerably help

reduce the mean squared error of NN model. If the starting

weights were kept the same, the error would certainly

reduce in trend. However, there is no way to know in

advance which initial set of weights will yield the lowest

error, and as a conclusion, it is possible for a topology with

less hidden units to achieve lower errors than one with

more hidden units, if the starting point is different. This
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proves the conclusions made by Barron [8], DeVore et al.

[45], Lawrence et al. [87], Sarle [114], Tetko et al. [129]

and Weigend [136] regarding the convenience of adding

more HN to MLP for finding a better local minimum,

which does not always apply because of drawbacks related

to random selection of the initial weights of the ANN.

The ANN’s training convergence speeds of eight learning

algorithms are also compared in Table 2. Bold values are the

optimum number of epochs and convergence time in sec.

The optimum topology for each learning algorithm is shown

in Fig. 2. The results in Table 1 indicate that BFGS quasi-

Newton and Levenberg–Marquardt algorithm produced the

best results. They outperformed clearly all the other methods

and were very robust algorithms. For the BFGS quasi-

Newton algorithm, an MSE error of 0.03955 is obtained

using 9 HN, while an MSE error of 0.04905 was obtained

using 11 HN when applying the Levenberg–Marquardt

algorithm. The Levenberg–Marquardt algorithm training

ended with a gradient value of 0.1339 with an optimum

adaptive l value of 0.1, which it acquired at epoch 92. Quasi-

Newton techniques are superior to simple ‘batch’ gradient

descent and lead to significantly better solutions requiring

fewer training epochs. Therefore, they constitute serious

alternatives to gradient-descent methods. In addition, these

methods do not suffer from the problem related to the

specification of the learning rate parameter, which is crucial

for the performance of the gradient-descent method. The

results also indicate that the Marquardt algorithm is very

efficient when training networks that have up to a few hun-

dred weights. Resilient BP algorithm was able to generalize

well and achieved an MSE of 0.08666 using 6 HN. However,

SCG has the smallest convergence speed (epochs = 55 as

shown in Table 2), the optimum number of HN is achieved

with high MSE (1.3277).

Generally, as shown in Table 3, increasing the number of

hidden-layer neurons resulted in decreasing the accuracy of

prediction of post-dialysis urea concentration for both types

of AFs using resilient backpropagation (RP), scaled conju-

gate gradient (SCG), conjugate gradient with Powell–Beale

restarts (CGB) and Polak-Ribiere conjugate gradient (CGP)

quantified by statistically significant changes in MSE and R2

(P \ 0.05). There is also statistically significant decrease in

MSE by increasing the number of hidden-layer neurons

using tansig AF for BFGS quasi-Newton and one-step secant

methods. For other learning algorithms, the interaction

between the number of hidden-layer neurons and the NN

performance was not statistically significant (P [ 0.05).

4.2 Verification of system output

Testing, validation and verification is inevitable part of any

modeling process. These processes help modelers and other

stakeholders build confidence in the appropriateness and

usefulness of the model. Whatever modeling paradigm or

solution technique is being used, the performance measures

extracted from a model will only have some bearing on the

Table 1 Performance metrics of ANN learning method (expressed as MSE) based on the number of hidden node neurons and type of AF

Method HLAF Number of hidden neurons

6-4-1 6-5-1 6-6-1 6-7-1 6-8-1 6-9-1 6-10-1 6-11-1 6-12-1 6-13-1

RP AF1 1.1537 1.9848 0.14742 4.4563 1.5137 8.2459 8.8104 13.1864 10.099 7.104

AF2 1.5865 0.10718 0.08666 1.9219 1.3822 11.9275 4.6989 2.7088 8.6728 14.845

LM AF1 2.0162 0.18659 0.11664 2.1637 0.18206 0.28088 0.07459 0.04905 0.0901 0.16217

AF2 0.35265 1.5525 0.19539 0.20083 0.18254 0.17855 0.07613 0.38169 0.2000 0.25324

SCG AF1 1.8074 2.2535 18.7721 5.2289 5.2756 11.9003 14.411 20.5877 17.202 22.4559

AF2 1.3277 3.3063 1.8823 2.2688 2.3105 7.0617 12.4238 9.9666 4.3495 13.4992

CGB AF1 1.16076 0.7153 1.1438 1.6965 2.2306 3.1112 3.1968 13.6501 10.6135 15.3126

AF2 0.73625 1.4091 4.335 0.98929 2.1787 3.0312 1.599 3.5175 8.8405 20.8702

CGP AF1 3.3188 12.6725 2.6273 5.3287 8.921 7.1729 17.5686 11.9626 28.4648 23.8713

AF2 0.77875 10.1264 1.699 9.6155 1.4256 4.2158 17.6596 13.4107 16.5769 14.894

CGF AF1 4.6197 9.3199 1.8317 4.8644 3.1679 5.0739 8.3746 1.0825 3.7454 7.4189

AF2 5.9678 8.7034 1.8485 1.7745 2.3877 5.2627 12.4727 2.5998 14.9534 7.189

BFG AF1 0.11489 1.0696 0.12365 0.29434 1.0877 0.03955 0.23222 14.3982 0.48536 19.1641

AF2 0.31063 0.52206 0.10186 0.48481 0.17788 0.33133 0.078564 17.8813 22.044 10.5629

OSS AF1 21.0727 7.1308 11.9804 2.2735 8.0358 10.8333 17.0811 15.0792 19.0454 13.7257

AF2 4.1632 1.9442 1.8478 1.916 4.7367 1.5364 14.1921 15.6096 7.9985 13.0616

HLAF hidden-layer activation function, AF1 logsig AF, AF2 tansig AF, RP resilient backpropagation, SCG scaled conjugate gradient, CGB

conjugate gradient with Powell–Beale restarts, CGP Polak–Ribiére conjugate gradient, CGF Fletcher–Powell conjugate gradient, BFG BFGS

quasi-Newton, OSS one-step secant
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real system represented if the model is a good representa-

tion of the system. Of course, what constitutes a good

model is subjective, but from a performance modeling

point of view, our criteria for judging the goodness of

models will be based on how accurately measures extracted

from the model correspond to the measures that would be

obtained from the represented system. Verification is like

debugging; it is intended to ensure that the model does

what it is intended to do. It is important to remember that

validation does not imply verification, nor verification

implies validation. However, in practice, validation is often

blended with verification, especially when measurement

data are available for the system being modeled. If a

comparison of system measurements and model results

suggests that the results produced by the model are close to

those obtained from the system, then the implemented

model is assumed to be both a verified implementation of

the assumptions and a valid representation of the system.

Verification of the proposed system is divided into two

phases to examine the output behavior of the model.

Table 2 Comparison of convergence speeds [epochs (time in sec)] of different learning methods for ANN

Learning method HLAF Number of hidden neurons

6-4-1 6-5-1 6-6-1 6-7-1 6-8-1 6-9-1 6-10-1 6-11-1 6-12-1 6-13-1

RB AF1 10 (0s) 17 (0s) 43 (0s) 9 (0s) 190 (1s) 119 (1s) 29 (0s) 22 (0s) 52 (0s) 54 (0s)

AF2 5 (0s) 44 (0s) 108 (1s) 218 (2s) 164 (1s) 24 (0s) 93 (0s) 163 (0s) 140 (1s) 36 (0s)

LM AF1 21 (0s) 13 (0s) 22 (0s) 8 (0s) 106 (1s) 82 (1s) 22 (0s) 86 (1s) 51 (1s) 42 (0s)

AF2 168 (2s) 19 (0s) 53 (0s) 49 (0s) 38 (0s) 36 (0s) 61 (1s) 17 (0s) 26 (0s) 12 (0s)

SCG AF1 110 (1s) 51 (0s) 47 (0s) 43 (0s) 86 (1s) 41 (0s) 24 (0s) 18 (0s) 21 (0s) 28 (0s)

AF2 55 (0s) 33 (0s) 81 (1s) 77 (1s) 92 (1s) 36 (0s) 23 (0s) 27 (0s) 73 (1s) 18 (0s)

CGB AF1 53 (2s) 74 (2s) 54 (1s) 93 (3s) 44 (1s) 72 (2s) 26 (0s) 33 (1s) 37 (1s) 17 (0s)

AF2 53 (1s) 43 (1s) 36 (1s) 87 (2s) 40 (1s) 79 (2s) 91 (2s) 21 (0s) 40 (1s) 27 (0s)

CGP AF1 99 (2s) 27 (0s) 72 (2s) 33 (1s) 44 (1s) 27 (0s) 26 (1s) 15 (0s) 20 (0s) 11 (0s)

AF2 61 (1s) 19 (0s) 77 (2s) 24 (0s) 111 (2s) 26 (0s) 24 (0s) 11 (0s) 18 (0s) 32 (0s)

CGF AF1 61 (1s) 13 (0s) 50 (1s) 48 (1s) 39 (1s) 44 (1s) 39 (1s) 67 (2s) 54 (1s) 32 (0s)

AF2 25 (0s) 21 (0s) 87 (2s) 78 (2s) 111 (3s) 40 (1s) 22 (0s) 71 (2s) 23 (0s) 46 (1s)

BFG AF1 163 (3s) 34 (1s) 62 (1s) 61 (1s) 34 (1s) 67 (2s) 56 (2s) 51 (1s) 44 (1s) 28 (0s)

AF2 59 (1s) 57 (1s) 104 (2s) 61 (1s) 105 (3s) 114 (3s) 113 (3s) 139 (4s) 826 (28s) 141 (7s)

OSS AF1 26 (0s) 32 (1s) 35 (1s) 49 (1s) 26 (0s) 42/0.01 16 (0s) 27 (1s) 14 (0s) 25 (0s)

AF2 40 (1s) 82 (2s) 61 (1s) 88 (2s) 35 (1s) 148/(4s) 16 (0s) 17 (0s) 55 (1s) 35 (1s)

HLAF hidden-layer activation function, AF1 logsig AF, AF2 tansig AF, RP resilient backpropagation, SCG scaled conjugate gradient, CGB

conjugate gradient with Powell–Beale restarts, CGP Polak–Ribiére conjugate gradient, CGF Fletcher–Powell conjugate gradient, BFG BFGS

quasi-Newton, OSS one-step secant

Fig. 2 Optimum topology for

NN learning algorithms
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• The first phase is a comparison between measured

Cpost, calculated one by spUKM and predicted values

using the best topologies of eight NN models.

• The second phase is a comparison between spKt/V

calculated by the NN models and other traditional

methods.

4.2.1 Comparison of measured post-dialysis urea

concentration, calculated value by spUKM

and predicted values using the best topologies of NN

models

In order to verify the accuracy of the proposed system, the

estimated post-dialysis urea concentration by the model

was compared with the measured value and the calculated

one by single-pool variable volume (SPVV) urea kinetic

model as proposed by Gotch and Sargent [65] to determine

how frequently these methods would lead to a different

prescription management. Post-dialysis urea concentration

can be calculated by SPVV using the following formula

[63]:

C ðtÞ ¼Co

Vo�Qf t

V0

� �K�Qf
Qf

þ G

K�Qf

1� Vo�Qf t

V0

� �K�Qf
Qf

2
4

3
5

ð10Þ

In Table 4, the predicted Cpost by ANN models and the

calculated values by SPVV urea kinetic model are compared

to the reference measured sample. The result of the table

clearly demonstrates the superiority of ANN models

over UKM. The mean value of measured post-dialysis

urea concentration sample (Cpost-measured) was 49.2774 ±

12.4092 mg/dL (median = 49 mg/dL) with a coefficient of

variation (CV) of 25.2 %. The estimated value of Cpost by

SPVV-UKM was 54.5935 ± 14.1303 mg/dL. The mean

value of ANNRP, ANNLM, ANNSCG, ANNCGB, ANNCGP,

ANNCGF, ANNBFGS and ANNOSS are 49.2703 ± 12.3906

mg/dL (median = 49.1364 mg/dL), 49.2699 ± 12.4175

mg/dL (median = 49.1428 mg/dL), 49.2455 ± 12.3569 mg/dL

(median = 48.8908 mg/dL), 49.2986 ± 12.338 mg/dL

(median = 49.1254 mg/dL), 49.2920 ± 12.2014 mg/dL

(median = 48.8287 mg/dL), 49.1963 ± 12.3866 mg/dL

(median = 49.0743 mg/dL), 49.2995 ± 12.3942 mg/dL

(median = 49.1554 mg/dL) and 49.31421 ± 12.3337

(median = 49.3978).

Statistically significant difference was found between

measured Cpost and Cpost-SPVV-UKM (P \ 0.0001), but no

statistically significant differences were found between

measured Cpost and ANN models (P [ 0.05). The SPVV-

UKM overestimated the post-dialysis urea concentration

(median difference D = -5), leading to an underestima-

tion of spKt/V. The SPVV-UKM method resulted in a rel-

atively large absolute error of Cpost than ANN models

(5.6839). In terms of accuracy, the results revealed that

Levenberg–Marquardt, BFGS quasi-Newton algorithm and

resilient backpropagation are the acceptable accurate NN

algorithms. The accuracy of other NN learning algorithms

is out of acceptable clinical range as shown in Table 4.

However, BFGS quasi-Newton algorithm achieved the

smallest MSE in the training phase; Levenberg–Marquardt

algorithm outperformed clearly all the other algorithms in

the verification phase and was a very robust algorithm

in terms of MAE, RMSE, R2
p and concordance coefficient.

The percentage of MAE and RMSE for Levenberg–

Marquardt is 0.27 and 0.32 %, respectively, compared to

0.38 and 0.41 % for BFGS quasi-Newton and 0.44 and

0.48 % for resilient backpropagation. Therefore, Levenberg–

Marquardt NN model was selected in subsequent analysis for

single-pool dialysis dose estimation. The results also show

that one-step secant algorithm is the slowest network, and it

has the worst results in the verification phase.

Measurement biases of 0.0075, -0.0221 and 0.0071

were observed for ANNLM, ANNBFGS and ANNRP, respec-

tively. The limits of agreement using Bland and Altman

agreement analysis [19] indicate a possible error of ?0.43

to -0.41 mg/dL when using Cpost_ANNLM instead of the

measured Cpost, which is acceptable from a routine point of

view as shown in Fig. 3. When Cpost-ANNBFGS is used

instead of the measured Cpost, error would fall between

Table 3 Effect of changing the

number of hidden neurons on

NN performance with different

learning algorithms

* Statistically significant

(P \ 0.05)

Learning method AF1 AF2

R2 F ratio P value R2 F ratio P value

RP 0.6500 14.8580 0.0048* 0.5507 9.8057 0.0140*

LM 0.28 3.1453 0.1141 0.176 1.7082 0.2275

SCG 0.6117 12.6003 0.0075* 0.5896 11.4952 0.0095*

CGB 0.7436 23.1983 0.0013* 0.4801 7.3878 0.0263*

CGP 0.6306 13.6557 0.0061* 0.5167 8.5533 0.0192*

CGF 0.0012 0.0097 0.9241 0.3732 1.2949 0.2881

BFG 0.3882 5.0751 0.0543 0.5160 8.5297 0.0193*

OSS 0.0643 0.5495 0.4797 0.5403 9.4040 0.0154*
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?0.51 and -0.55 mg/dL as shown in Fig. 4, which falls

into acceptable margins for routine estimation. As shown in

Fig. 5, a possible error of ?0.62 to -0.61 mg/dL was

obtained when using Cpost_ANNRP instead of the measured

Cpost.

4.2.2 Comparison of estimated spKt/V by ANNLM and other

traditional methods

Several different methods are in use for calculating SPKt/V,

giving results that vary significantly. To obtain meaningful

comparisons, single-pool dialysis dose Kt/V was calculated

according to the best selected NN models (ANNLM) and

also according to Lowrie and Teehan [91], Jindal et al.

[81], Keshaviah et al. [86], Barth [10], Calzavara et al.

[26], Daugirdas [35], Basile et al. [13], Ijely and Raja [78],

Table 4 Comparisons of Cpost predicted by ANN models and calculated by SPVV-UKM with the reference measured sample

Agreement comparison Comparisons with the reference measured Cpost sample

SPVV-UKM ANNRP ANNLM ANNSCG ANNCGB ANNCGP ANNCGF ANNBFGS ANNOSS

Mean bias -5.3161 0.0071 0.0075 0.0789 -0.0212 -0.0146 0.0812 -0.0221 -0.0368

MAE 5.6839 0.2106 0.1274 0.9854 0.7768 0.7786 0.8543 0.1822 0.9398

MAPE 0.1171 0.0044 0.0027 0.0215 0.0172 0.0176 0.0185 0.0038 0.0200

RMSE 6.4119 0.3142 0.2131 1.4059 1.0653 1.0998 1.0985 0.2715 1.2659

NRMSE 0.0972 0.0048 0.0032 0.0213 0.0161 0.0167 0.0166 0.0041 0.0192

P value of t test \0.0001 0.9943 0.9939 0.9744 0.9830 0.9882 0.9351 0.9823 0.9705

Median difference -5 -0.1364 -0.1428 0.1092 -0.1254 0.1713 -0.0743 -0.1554 -0.3978

Pearson’s R2
p

0.9442 0.9994 0.9997 0.9843 0.9926 0.9923 0.9922 0.9995 0.9896

Concordance Rc 0.8920 0.9997 0.9999 0.9935 0.9963 0.9960 0.9961 0.9998 0.9947

Accuracy (%)a 10.3276 0.4389 0.2690 2.1633 1.7148 1.7265 1.8537 0.3782 2.002

a For the current study, accurate model must be less than or equal to 1.5 % as defined by (9)

Fig. 3 Bland–Altman plot showing the mean of (Cpost-measured and

Cpost_ANNLM) compared with the difference between means

Fig. 4 Bland–Altman plot showing the mean of (Cpost-measured

and Cpost-ANNBFGS) compared with the difference between means

Fig. 5 Bland–Altman plot showing the mean of (Cpost-measured and

Cpost-ANFDIAC) compared with the difference between means
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Daugirdas [36], Kerr et al. [85] and Azar [7] models.

Table 5 summarizes the simplified models used for

comparison.

The single-pool Kt/V estimated by ANNLM can be cal-

culated using Daugirdas [36] formula by replacing the ratio

R by the following ratio:

RANN ¼
Cpost�ANNLM

Cpre

: ð11Þ

The descriptions of the spKt/V results obtained from the

ANNLM and from the simplified models are shown in

Table 6. Mean, standard deviation, variance, median,

minimum and maximum ranges of all methods are sum-

marized in this Table. The different spKt/V calculations

were compared with Kt/V calculated using Cpost_ANNLM,

which was considered to be the reference method. Single-

pool Kt/V estimated by ANNLM was 1.3710 ± 0.1786

and had been compared with (1) spKt/VLowrie, 1.1486 ±

0.1458; (2) spKt/VJindal, 1.5177 ± 0.1982; (3) spKt/VKeshav-

iah, 1.3347 ± 0.1694; (4) spKt/VBarth, 1.4462 ± 0.1536; (5)

spKt/VCalzavara, 1.0331 ± 0.1094; (6) spKt/VBasile, 1.2787 ±

0.1139; (7) spKt/VIjely, 1.2230 ± 0.08917; (8) spKt/VDaugirdas1,

1.4134 ± 0.2046; (9) spKt/VDaugirdas2, 1.3708 ± 0.1789;

(10) spKt/VKerr, 1.3736 ± 0.2081 and (11) spKt/VAzar,

1.2739 ± 0.1560.

The differences between calculated spKt/V by traditional

methods and spKt/VANNLM values comparisons are shown in

Table 7. The estimated spKt/VANNLM values were statisti-

cally different (P \ 0.01) from the calculated spKt/V values

from other models, except for those spKt/V values calculated

according to the Daugirdas second-generation formula

(P = 0.9855, t = 0.0182) and Kerr (P = 0.8683, t =

-0.1659). The biggest absolute difference from spKt/

VANNLM mean values was obtained using Calzavara’s,

Lowrie’s, Jindal’s and Ijely’s models [delta of 0.3379,

0.2224, -0.1467 and 0.1481, respectively (P \ 0.05)]. The

least absolute difference from spKt/VANNLM mean values

was found to be 2.65 % using Keshaviah’s model (delta of

0.0363).

The Bland and Altman agreement analysis shows that

one can expect a minimum difference from spKt/VANNLM

values of ?0.01 to -0.01 using Daugirdas second-gener-

ation method as shown in Fig. 6 and ?0.14 to -0.14 using

Kerr’s model as shown in Fig. 7. The mean value of spKt/

VANNLM was almost 0.019 % higher than spKt/V values

calculated according to the Daugirdas second-generation

formula, and this difference was not statistically

significant.

As shown in Fig. 7, the mean value of spKt/VANNLM was

almost 0.188 % lower than spKt/V values calculated

according to the Kerr’s model, and this difference was also

not statistically significant.

5 Conclusion

To attain the best solution in a specific problem, several

NN learning algorithms must be tested. The choice of the

ANN topology is critical for delineating, and it is clear that

there is not an algorithm that outperforms all the other NN

algorithms in all problems. Each algorithm should be

executed several times with different weights’ initializa-

tion, and the best ANN can be chosen. For an optimal

assessment of network-based prediction, further validation

would be required in the form of a prospective comparison

with clinical practice and conventional statistical analysis.

Therefore, a comparison analysis for the generalization

capability of ANN using eight different learning algorithms

in training has been studied. All tested artificial neural

network (ANN) were feedforward networks with nonlinear

AFs in the hidden layer and a linear output layer that

predicted the target value. This research was done after

collecting a total of 310 medical records from four dialysis

centers during 6 months. This study demonstrated the

feasibility of predicting the post-dialysis blood urea

Table 5 Different models for simplified calculation of spKt/V values

Model Formula

Lowrie and

Teehan [89]
Kt=V ¼ ln Cpre

�
Cpost

� �

Jindal et al.

[81]
Kt=V ¼ 0:04 Cpre�Cpostð Þ

Cpost
� 100

� 	
� 1:2

Keshaviah

et al. [84]
Kt=V ¼ 1:62 ln Cpre

�
Cpost

� �

Barth [10]
Kt=V ¼ 0:031 Cpre�Cpostð Þ

Cpost
� 100

� 	
� 0:66

Calzavara et al.

[26]
Kt=V ¼ 2 Cpre�Cpostð Þ

CpreþCpostð Þ

� 	

Daugirdas first

generation

[35]

Kt=V ¼ � ln R� 0:008� t � UF=Wtð Þ

Basile et al.

[13]
Kt=V ¼ 0:023 Cpre�Cpostð Þ

Cpost
� 100

� 	
� 0:284

Ijely and Raja

[77]
Kt=V ¼ 0:018 Cpre�Cpostð Þ

Cpost
� 100

� 	

Daugirdas

second

generation

[36]

Kt=V ¼ � ln R� 0:008� tð Þ þ 4� 3:5� Rð Þ � UF=Wt

Kerr et al. [83]
Kt=V ¼ 0:042 Cpre�Cpostð Þ

Cpost
� 100

� 	
� 1:48

Azar [7] Kt=V ¼ �0:081þ 1:082 ln Cpre

� �
� 1:053 ln Cpost

� �

Cpre pre-dialysis blood urea concentration, Cpost post-dialysis blood

urea concentration, R Cpost/Cpre, t dialysis duration (hours), UF

ultrafiltration volume per dialysis (L), W post-dialysis body mass of

the patient (kg)
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concentration (Cpost) using Levenberg–Marquardt NN

learning algorithm with an RMSE of 0.2131 mg/dL and an

overall predictive accuracy of 0.2690 %. These results

were obtained with a 6-11-1 network topology with linear

AFs in the input layer, log-sigmoid AFs in the hidden layer

and linear AFs in the output layer. In general, all the

algorithms were able to generalize and provide a good fit of

the data set, but in terms of accuracy, the results revealed

Table 6 spKt/V results obtained

with ANNLM model and other

traditional methods

SD standard deviation

Model Mean SD Variance Median Min Max

ANNLM 1.3710 0.1786 0.0319 1.3845 0.7129 1.7214

Lowrie and Teehan [89] 1.1486 0.1458 0.02125 1.1618 0.6627 1.4083

Jindal et al. [81] 1.5177 0.1982 0.03926 1.5483 0.7381 1.8217

Keshaviah et al. [84] 1.3347 0.1694 0.02869 1.3500 0.7700 1.6364

Barth [10] 1.4462 0.1536 0.02358 1.4699 0.8421 1.6818

Calzavara et al. [26] 1.0331 0.1094 0.01198 1.0466 0.6395 1.2140

Basile et al. [13] 1.2787 0.1139 0.01298 1.2963 0.8304 1.4535

Ijely and Raja [77] 1.2230 0.08917 0.007951 1.2367 0.8722 1.3598

Daugirdas first generation [35] 1.4134 0.2046 0.04186 1.4205 0.7164 1.8791

Daugirdas second generation [36] 1.3708 0.1789 0.03202 1.3819 0.7168 1.7234

Kerr et al. [83] 1.3736 0.2081 0.04329 1.4057 0.5551 1.6928

Azar [7] 1.2739 0.1560 0.02433 1.2910 0.7495 1.5531

Table 7 Differences between

spKt/V obtained with ANNLM

and other traditional models

SE standard error, 95 % CI

95 % confidence interval of the

differences

Model Mean difference SE of difference 95 % CI

Lowrie and Teehan [91] 0.2224 ± 0.06246 0.0131 0.2154 0.2294

Jindal et al. [81] -0.1467 ± 0.0660 0.0152 -0.1541 -0.1393

Keshaviah et al. [86] 0.0363 ± 0.0580 0.0139 0.0298 0.0428

Barth [10] -0.0752 ± 0.0609 0.0134 -0.0820 -0.0684

Calzavara et al. [26] 0.3379 ± 0.0830 0.0119 0.3287 0.3472

Basile et al. [13] 0.0923 ± 0.0804 0.0120 0.0834 0.1013

Ijely and Raja [78] 0.1481 ± 0.09892 0.0113 0.1370 0.1591

Daugirdas first generation [35] -0.04241 ± 0.0329 0.0154 -0.0461 -0.0387

Daugirdas second generation [36] 0.00026 ± 0.00522 0.0143 0.00032 0.00084

Kerr et al. [85] -0.00258 ± 0.0710 0.0156 -0.0105 0.0054

Azar [7] 0.09714 ± 0.05756 0.0135 0.0907 0.1036

Fig. 6 Bland–Altman plot showing the mean of spKt/VANNLM and

spKt/VDaugirdas second generation compared with the difference between

means

Fig. 7 Bland–Altman plot showing the mean of spKt/VANNLM and

spKt/VKerr compared with the difference between means
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that Levenberg–Marquardt, BFGS quasi-Newton algorithm

and resilient backpropagation are the acceptable accurate

NN algorithms because their predicted values fell into

acceptable margins for routine estimation. LM algorithm

can provide better generalization performance compared to

the other algorithms. It is robust and fast. The OSS learning

algorithm did not attain good results, required lots of

computing power and was very slow. The accuracy of the

ANN was prospectively compared with other traditional

methods for predicting single-pool dialysis dose (spKt/V).

The results are highly promising, and a comparative anal-

ysis suggested that NN approach outperformed other tra-

ditional models. Although neural networks never replace

the human experts, they can helpful for decision making,

prediction, classifying and screening and also can be used

by domain experts to cross-check their diagnosis. Further

work is required to develop these concepts for other dial-

ysis variables in order to minimize blood sampling tech-

niques and translate them into rigorous outcome-based

adequacy targets suitable for clinical usage and searching

of the optimum dialysis treatment patterns for each indi-

vidual needs of the patient. The comparative analysis can

also be applied in other medical applications in order to

select the best learning neural network algorithm.

Acknowledgments I would like to highly appreciate and gratefully

acknowledge Phillip H. Sherrod, software developer and consultant

on predictive modeling, for his support and consultation during

modeling process. The author thanks all medical staff at the

nephrology Department in Ahmad Maher Teaching Hospital, Cairo,

Egypt, for their invaluable support during the course of this study.

References

1. Acchiardo SR, Hatten KW, Ruvinsky MJ, Dyson B, Fuller J,

Moore LW (1992) Inadequate dialysis increases gross mortality

rate. ASAIO J 38(3):M282–M285

2. Ahrenholz P, Taborsky P, Bohling M et al (2011) Determination

of dialysis dose: a clinical comparison of methods. Blood Purif

32(4):271–277

3. Akl AI, Sobh MA, Enab YM, Tattersall J (2001) Artificial

intelligence: a new approach for prescription and monitoring of

hemodialysis therapy. Am J Kidney Dis 38(6):1277–1283

4. Alloatti S, Molino A, Manes M, Bosticardo GM (1998) Urea

rebound and effectively delivered dialysis dose. Nephrol Dial

Transplant 13(Suppl 6):25–30

5. Azar AT, Wahba KM (2011) Artificial neural network for pre-

diction of equilibrated dialysis dose without intradialytic sam-

ple. Saudi J Kidney Dis Transpl 22(4):705–711

6. Azar AT, Balas VE, Olariu T (2010) Artificial neural network

for accurate prediction of post-dialysis urea rebound. doi:

10.1109/SOFA.2010.5565606

7. Azar AT (2008) Estimation of accurate and new method for

hemodialysis dose calculation. Clin Med Insights Urol Issue

1:15–21

8. Barron AR (1993) Universal approximation bounds for super-

positions of a sigmoid function. IEEE Trans Inf Theory 39(3):

930–945

9. Baroni M, Clementi S, Cruciani G, Costantino G, Rignanelli D,

Oberrauch E (1992) Predictive ability of regression models: part

II. Selection of the best predictive PLS model. J Chemom

6(6):347–356

10. Barth RH (1988) Direct calculation of Kt/V: a simplified approach

to monitoring of haemodialysis. Nephron 50(3):191–195

11. Basile C, Vernaglione L, Lomonte C et al (2010) A new index of

hemodialysis adequacy: clearance 9 dialysis time/bioelectrical

resistance. J Nephrol 23(5):575–586

12. Basile C, Vernaglione L, Lomonte C et al (2010) Comparison of

alternative methods for scaling dialysis dose. Nephrol Dial

Transplant 25(4):1232–1239

13. Basile C, Casino F, Lopez T (1990) Percent reduction in blood

urea concentration during dialysis estimates Kt/V in a simple

and accurate way. Am J Kidney Dis 15(1):40–45

14. Battiti R, Masulli F (1990) BFGS optimization for faster and

automated supervised learning, INCC 90 Paris, international

neural network conference, pp 757–760

15. Battiti R (1992) First and second order methods for learning:

between steepest descent and Newton’s method. Neural Comput

4(2):141–166

16. Beale MH, Hagan MT, Demuth HB (2011) Neural network

toolboxTM 7 user’s guide. The MathWorks, Inc., Natick

17. Beale EML (1972) A derivation of conjugate gradients. In:

Lootsma FA (ed) Numerical methods for nonlinear optimiza-

tion. Academic Press, London

18. Berry MJA, Linoff G (1997) Data mining techniques. Wiley,

New York

19. Bland JM, Altman DG (1986) Statistical methods for assessing

agreement between two methods of clinical measurement.

Lancet 8:307–310

20. Blum A (1992) Neural networks in C??. Wiley, New York

21. Blum A, Langley P (1997) Selection of relevant features and

examples in machine learning. Artif Intell 97(1–2):245–271

22. Boger Z, Guterman H (1997) Knowledge extraction from arti-

ficial neural network models, IEEE systems, man, and cyber-

netics conference, Orlando, FL

23. Breitsameter G, Figueiredo AE, Kochhann DS (2012) Calcula-

tion of Kt/V in haemodialysis: a comparison between the for-

mulas. J Bras Nefrol 34(1):22–26

24. Bridle JS (1989) Probabilistic interpretation of feedforward

classification network outputs, with relationships to statistical

pattern recognition. In: Fougelman-Soulie F (ed) Neurocom-

puting: algorithms, architectures and applications. Springer,

Berlin, pp 227–236

25. Burgelman M, Vanholder R, Fostier H, Ringoir S (1997) Esti-

mation of parameters in a two-pool urea kinetic model for he-

modialysis. Med Eng Phys 19(1):69–76

26. Calzavara P, Vianello A, da Porto A, Gatti PL, Bertolone G,

Caenaro G, Dalla Rosa C (1988) Comparison between three

mathematical models Of Kt/V. Int J Artif Organs 11(2):107–110

27. Camps-Valls G, Porta-Oltra B, Soria-Olivas E, Martin-Guerrero

JD, Serrano-Lopez AJ, Perez-Ruixo JJ, Jimenez-Torres NV

(2003) Prediction of cyclosporine dosage in patients after kidney

transplantation using neural networks. IEEE Trans Biomed Eng

50(4):442–448

28. Collins AJ, Ma JZ, Umen A, Keshaviah P (1994) Urea index and

other predictors of hemodialysis patient survival. Am J Kidney

Dis 23(2):272–282

29. Cross SS, Harrison RF, Kennedy RL (1995) Introduction to

neural networks. Lancet 346(8982):1075–1079

30. Daugirdas JT, Leypoldt JK, Akonur A et al. (2012) Improved

equation for estimating single-pool Kt/V at higher dialysis fre-

quencies. Nephrol Dial Transplant (in print). doi:10.1093/ndt/

gfs115

Neural Comput & Applic (2013) 23:1019–1034 1031

123

 

 

 

http://dx.doi.org/10.1109/SOFA.2010.5565606
http://dx.doi.org/10.1093/ndt/gfs115
http://dx.doi.org/10.1093/ndt/gfs115


31. Daugirdas JT (2011) Is there a minimal amount of time a patient

should be dialyzed regardless of measured KT/V? Semin Dial

24(4):423–425

32. Daugirdas JT, Greene T, Depner TA, Levin NW, Chertow GM

(2011) Modeled urea distribution volume and mortality in the

HEMO study. Clin J Am Soc Nephrol 6(5):1129–1138

33. Daugirdas JT, Greene T, Chertow GM, Depner TA (2010) Can

rescaling dose of dialysis to body surface area in the HEMO

study explain the different responses to dose in women versus

men? Clin J Am Soc Nephrol 5(9):1628–1636

34. Daugirdas JT, Depner TA, Greene T et al (2010) Standard Kt/

Vurea: a method of calculation that includes effects of fluid

removal and residual kidney clearance. Kidney Int 77(7):

637–644

35. Daugirdas JT (1989) The post: pre dialysis plasma urea nitrogen

ratio to estimate Kt/V and nPCR: validation. Int J Artif Organs

12(7):420–427

36. Daugirdas JT (1993) Second generation logarithmic estimates of

single-pool variable volume Kt/V: an analysis of error. J Am

Soc Nephrol 4(5):1205–1213

37. Daugirdas JT, Schneditz D, Leehey DJ (1996) Effect of access

recirculation on the modeled urea distribution volume. Am J

Kidney Dis 27(4):512–518

38. Daugirdas JT, Greene T, Depner TA, Leypoldt J, Gotch F,

Schulman G, Star R (2004) Factors that affect postdialysis

rebound in serum urea concentration, including the rate of

dialysis: results from the HEMO Study. J Am Soc Nephrol

15(1):194–203

39. Dennis JE, Schnabel RB (1983) Numerical methods for

unconstrained optimization and nonlinear equations. Prentice-

Hall, Englewood Cliffs

40. Depner TA (1990) Prescribing hemodialysis: a guide to urea

modeling, 2nd edn. Springer, Berlin

41. Depner TA (1994) Assessing adequacy of hemodialysis urea

modeling. Kidney Int 45(5):1522–1535

42. Depner TA (1996) Quantifying hemodialysis. Am J Nephrol

16(1):17–28

43. Depner TA (1999) History of dialysis quantitation. Semin Dial

12(1):S14–S19

44. Depner TA (2005) Hemodialysis adequacy: basic essentials and

practical points for the nephrologist in training. Hemodial Int

9(3):241–254

45. DeVore RA, Howard R, Micchelli CA (1989) Optimal nonlinear

approximation. Manuscripta Math 63(4):469–478

46. Fernandez de Canete J, Del Saz Huang P (2010) First-principles

modeling of fluid and solute exchange in the human during normal

and hemodialysis conditions. Comput Biol Med 40(9):740–750

47. Fernandez EA, Valtuille R, Willshaw P, Perazzo CA (2001)

Using artificial intelligence to predict the equilibrated post-

dialysis blood urea concentration. Blood Purif 19(3):271–285

48. Fernandez EA, Valtuille R, Willshaw P, Perazzo CA (2003)

Dialysate-side urea kinetics. Neural network predicts dialysis

dose during dialysis. Med Biol Eng Comput 41(4):392–396

49. Fernandez EA, Valtuille R, Presedo J, Willshaw P (2005)

Comparison of different methods for hemodialysis evaluation by

means of ROC curves: from artificial intelligence to current

methods. Clin Nephrol 64(3):205–213

50. Fernandez EA, Valtuille R, Rodriguez Presedo J, Willshaw P

(2005) Comparison of standard and artificial neural network

estimators of hemodialysis adequacy. Artif Organs 29(2):

159–165

51. Fletcher R, Reeves CM (1964) Function minimization by con-

jugate gradients. Comput J 7(2):149–154

52. Fletcher R (2000) Practical methods of optimization, 2nd edn.

Wiley, New York

53. Furness PN, Kazi J, Levesley J, Taub N, Nicholson M (1999) A

neural network approach to the diagnosis of early acute allograft

rejection. Transplant Proc 31(8):3151

54. Furness PN, Levesley J, Luo Z, Taub N, Kazi JI, Bates WD,

Nicholson ML (1999) A neural network approach to the biopsy

diagnosis of early acute renal transplant rejection. Histopathol-

ogy 35(5):461–467

55. Gabutti L, Ferrari N, Mombelli G, Marone C (2004) Does

cystatin C improve the precision of Cockcroft and Gault’s cre-

atinine clearance estimation? J Nephrol 17(5):673–678

56. Gabutti L, Burnier M, Mombelli G, Malé F, Pellegrini L, Ma-
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