
An Efficient Distributed Group Key Management Using Hierarchical
Approach with Elliptic Curve Cryptography

Shikha Sharma
PG Scholar

Computer Science Department
NITTTR, Chandigarh, India

shikha.cs10@gmail.com

 C. Rama Krishna
Professor

Computer Science Department
NITTTR, Chandigarh, India

rkc_98@hotmail.com

Abstract: Secure and reliable group communication is an
active area of research. Its popularity is fuelled by the
growing importance of group-oriented and collaborative
properties. The central research challenge is secure and
efficient group key management. In this paper, we propose
an efficient many-to-many group key management protocol
in distributed group communication. This protocol is based
on Elliptic Curve Cryptography and decrease the key length
while providing securities at the same level as that of other
cryptosystems provides. The main issue in secure group
communication is group dynamics and key management. A
scalable secure group communication model ensures that
whenever there is a membership change, a new group key is
computed and distributed to the group members with
minimal communication and computation cost. This paper
explores the use of batching of group membership changes to
reduce the time and key re-distribution operations. The
features of ECC protocol are that, no keys are exchanged
between existing members at join, and only one key, the
group key, is delivered to remaining members at leave. In the
security analysis, our proposed algorithm takes less time
when users join or leave the group in comparison to existing
one. In ECC, there is only 1 key generation and key
encryption overhead at join and leave operation. At join the
communication overhead is key size of a node and at leave
operation is�� ���� � � � 	
������ of a node.
Keywords: Group Communication; Distributed Group Key
Management; Hierarchical Group Key Management

I. INTRODUCTION
 With the rapid growth of technology, the secure
multicasting is an important technology in the group
communication. Previously, for sending the data, we
usually used broadcast or peer-to-peer nodes. Nowadays,
as rapid advances in the group communication, the unicast
and broadcast are not efficient. Although, the benefit of
using secure multicasting is for delivering data safely
from one sender to multiple receivers. However, security
and scalability are two important factors that need to be
considered. Security requirements are of two types:

Forward Secrecy: This provides the future confidentiality
means provides the security from the users who left the
group.
Backward Secrecy: This provides past confidentiality
means provides the security from the new users who join
the group [1].
Group key management protocols are classified into three
main categories:

• Centralized (one-to-many) protocols: A key
server is mainly responsible for generating and
distributing the group key to n group members.
So, we have bottleneck problem.

• Decentralized protocols: The group is divided
into multiple subgroups. Then each subgroup is
managed by a subgroup manager who is
responsible for generating and distributing the
keys for that subgroup. This protocol helps in the
bottleneck problem occurs in centralized
protocols. But, in this we have single point of
failure at subgroup level.

• Distributed (many-to-many) protocols: In this
there is no centralized server. Group members
communicate with each other for generating the
group key. Each member is responsible for
generating the group key.

 One of the above protocols is used for specific
application. There is no base station or no infrastructure of
distributed applications such as MANETs and wireless
sensors. For the confidentiality of the group, group
members are responsible for exchanging the group key
securely when members change. This results in high
overhead. The main goal of distributed group key
management is how to exchange group key securely and
efficiently in the group.
 Several approaches have been proposed to reduce the
size of key in secure group communication in distributed
protocol. Most of these approaches are based on different
types of n-parity Diffie-Hellman key agreement protocol.
The main issue in such approaches is that the asymmetric
key size is larger. Since network overhead is increased.
 We propose a distributed group key management using
hierarchical approach with elliptic curve cryptography for
self organized simple computational group key without
central authority. In this, users themselves distribute keys
effect on size of key, less rekeying computation and
communication cost over existing schemes. In this
protocol, group members are arranged in the hierarchical
manner logically. Two types of keys are used, symmetric
and asymmetric keys. All the intermediate node keys are
symmetric keys assigned to each intermediate node. The
leaf nodes in the key tree are the asymmetric keys of the
corresponding group members. For asymmetric key, we
incorporate elliptic curve cryptosystem. To calculate
intermediate node keys, members use codes assigned to
each intermediate node keys rather than distributed by a

2015 IEEE International Conference on Computational Intelligence & Communication Technology

978-1-4799-6023-1/15 $31.00 © 2015 IEEE

DOI 10.1109/CICT.2015.116

687

sponsor. The key feature of this approach is that by using
ECC we decrease the key length while providing the same
level of security as other cryptosystems.
 This paper is organized as follows. Section II discusses
related works. Section III and IV present our proposal.
Results are discussed in section V. Finally, the conclusion
is given in section VI.

II. RELATED WORK
 In hierarchical approaches, the members of group are
mapped with the leaves of a logical binary key tree. Each
member maintains all the keys along the path from his/her
leaf to the root, hereinafter called the path set. The root
key is the group key. At join/leave, all the keys in the path
set need to be changed to new ones. Based on the key
management approach, the number of key generations,
key encryptions and key delivery differs. Typically, each
member maintains O(log n) keys which shows the height
of the key tree where n is the number of members.
 Large amounts of work has been done to establish a
group key for secure distributed group communication,
many approaches have been proposed [2-11]. As stated
before, most of these approaches [2-4] are based on
different types of n-party Diffie-Hellman key agreement
protocol. The main purpose of these approaches is to
reduce the overhead of group key management. The fact
with all of them is that the evaluation measures of these
approaches are not distinct. For example, they do not
consider key generation, key encryption separately in their
works. In this section we discuss five types of typical
approaches [2-6] in terms of efficiency in communication,
computation and scalability.
 Distributed/Contributory group key agreement is
basically different variations of n-party Diffie-Hellman
key agreement/exchange. The main drawback using this
key exchange mechanism is that the group members need
synchronization to iteratively form parental keys from
their two children’s keys. Once one member is slow or
one rekeying, the packet will be delayed and the key
agreement process will be postponed or even mis-
operates. Furthermore, there are dependencies among
node keys (i.e., a blinded node key is dependent on the
secret node key and a parental key on its two child’s
keys). In result, if one key is compromised then
dependencies will break all ancestral keys. Due to this, we
suffer from man-in-the-middle attack problem, so we can
apply authentication capability to each group member,
which is also implemented by public key cryptosystems
[2].
 Tree based Group Diffie-Hellman (TGDH) [3]
approach extends the usage of two-party Diffie-Hellman
key agreement protocol to a group. TGDH also introduces
the concept of hierarchy key tree to manage group
members. Each member assigned to the leaf of the key
tree, which maintains the key tree. Starting with the leaf
nodes, each intermediate node represents a key shared by
its two child node keys that are computed with single
Diffie-Hellman key agreement protocol. This approach
has reduced the modular exponentiation from O(n) to
O(logn) during initial establishment and after each
membership change, join/leave. However, the cost of

modular exponentiation leads the protocol to delay
because the protocol needs initiation after each
membership change.
 Distributed Group Key Distribution (DGKD) [4] uses
the concept of sponsor and co-distributors. A sponsor
initiates the key generation and rekeying process at
join/leave. The sponsor is chosen based on the ID size.
The selected sponsor is responsible to change the keys
along the path as well as distribute them to co-distributors
and to the new member. A co-distributor is the sponsor of
a branch on other path. The drawback of this approach is
that all affected intermediate keys in the path have to be
generated by the sponsor node. Moreover, this approach
uses asymmetric cryptosystem for sending the necessary
keys from sponsor to co-distributors which is slower than
symmetric cryptosystem.
 Efficient Distributed Group Key Agreement Scheme
(EDKAS) [5] is very similar to One Way Function Trees
(OFT) [12] in the sense of key structure. For each node, a
secret key and its corresponding blinded key is associated.
The blinded keys are computed by applying a given one-
way function. Each member generates a unique secret key
for itself by a secure pseudo random number generator
(PRNG). The key of an intermediate node is computed by
the blinded keys of two child nodes using ���� �

�������� ������ where f is a mixing function and g is a
given one-way hash function. Each member maintains
his/her own secret key and all the blinded keys of the
nodes that are sibling of the nodes from the path set. The
drawbacks of this protocol are expensive maintenance of
secure channels between members and expensive
communication cost as well as its message size cost.
 Diffie-Hellman and Symmetric Algorithm (DHSA) [6]
uses hierarchical key tree to manage the keys logically. In
this protocol, the combination of Diffie-Hellman key
agreement and symmetric key is used. Diffie-Hellman key
agreement is introduced to the leaf nodes of the key tree
where the members are assigned and symmetric key is
introduced to intermediate nodes. The drawbacks of this
protocol are that key size is very large and modulo
operation takes long time in computation and it makes the
computation slow.
 Our proposal, an efficient distributed group key
management using hierarchical approach with Elliptic
Curve Cryptography is used for key exchange between
leaf nodes. Elliptic curve cryptography [13] provides
greater security with small key size and scalar
multiplication and performing scalar multiplication takes
less time in comparison with the modulus and exponent
operation performed in previous existing DHSA method.
So use of ECC protocol will provide more suitable and
efficient technique for key management. The main
advantage of ECC is that it has to be computationally fast
[16-17] in order to reduce the power consumption of key
management process to insure maximum battery life of
devices and using ECC for key agreement work faster
than using Diffie Hellman Key Agreement. In ECC,
intermediate node keys are calculated by group members
rather than distributed by a sponsor member.

688

III. DESIGN PRINCIPLES

 Now, we present our proposed approach, ECC, for
distributed secure group communication. This approach is
to reduce re-keying overhead at join/leave.
ECC mainly focuses on member collaboration for key
calculation instead of key delivery by sponsor or co-
distributor. For this purpose, we introduce three basic
features of ECC:
(1) The leaf key in the key tree is the public key of the

corresponding group member, and all intermediate
node keys are symmetric keys.

(2) The public key of each member along with binary
code of the corresponding parent node is stored in a
list shared by group members. This list will be
updated on each membership change and
periodically.

(3) All group members have the same capability and are
equally trusted and responsible.

The public key of each member is generated by Elliptic
Curve Cryptography for key agreement. Elliptic curve
with parameters a, b and q, where q is a prime number or
an integer of the form 2m and G point on elliptic curve
whose order is larger than n, the public key is obtained by
� 	 �. This public key is used to share a common key
with other members in the group. For example, �� can
share a key with �� by calculating �� 	 �� 	 �.

ECC introduces two types of codes in its key tree:
(1) Binary Code: This code will be used for member
position discovery.
(2) Decimal Code: This Code will be used for
intermediate node key calculation.

Fig. 1 illustrates a key tree with 8 members,���� �� � �� ,
and its corresponding binary code. The binary code of first
level of each intermediate node from the bottom of the
key tree, and the corresponding two members’ public key
are stored in a list. Each member uses this list to find the
public key of any member whom he/she wishes to
establish a connection. As stated before, this list is
updated whenever there is a membership change and is
broadcasted to other members by multicast. Usually, the
sibling member of affected branch is responsible to send
the updated information to other members.
Table I shows the management of binary code and its
associated members public key in the list. As shown in
this table, the public keys of u1 and u2 are n1×G, n2×G
respectively, and their associated parent binary code is
000. Since there is no sibling member for u3, the list just
shows its public key, n3×G, and the associated parent
binary code, 00.

 As stated before, the other code type in ECC is decimal
code. This code is used just for intermediate node keys
calculation, and is assigned to each intermediate node in
the key tree. Each intermediate node key is updated by
applying one-way hash function to the bitwise XOR of
that intermediate node code and the group key by the
formula given below:
�!"�#$%&'%(�)$%*#+(% � ���!",&+-. / 012!�#$%&'%(�)$%*#+(%�
Moreover, each intermediated node code is calculated by
the formula formula below:
012!34�5(*#+(% � �012!.)&%#$*#+(% 6 78�219�2:�:;�.
Fig. 2 illustrates the node code management in the key
tree with 8 members, ���� �� � �� . For example, when an
intermediate node code is 04 and the generated random
number is 6, the code assigned to that new node will be
046.
Finally, the number of digits in a code shows the number
of nodes in the path set. In Table I the intermediate node
key computation for members ���� �� � �� is illustrated.
For example, K1,4 is calculated as ���< / =>� .
In ECC, the group key at join is sent to new member being
encrypted by the shared key with his/her sibling member.
However, the current members can calculate it by
applying one-way hash function to previous one. When �
is a given one way hash function, and �< is the previous
group key, the new group key �<

? is calculated as follows.
�<

? � ���<�
���@ � ���< / =>� �A�� � ���< / =B�
���C � ���<D=>E� �A�F � ���< / =BG�
�H�@ � ���< / =>I� �J�� � ���< / =BK�

Table I. List of Binary Code and Associated Members Public Key

Parent Binary Code Member Public key
000 n1×G, n2×G
00 n3×G
010 n5×G, n6×G
011 n7×G, n8×G

689

IV. DETAILED DESIGN

 To explain the detailed approach, consider our simple
example with 8 members illustrated in Fig.1 and Fig. 2 for
join operation, and Fig. 3 for leave operation. Members
decide a large prime number p and its primitive element g
for each group. Initially, this value is selected at initial
mode of key tree establishment. These values are publicly
known in the group.
 When a new member wants to join a group, he/she
sends a hello message to discover the group members.
Members, who receive the signal of this member, look up
the list to know which member does not have a sibling
member. A member who does not have a sibling member
in his/her branch replies to this signal. But when each
member has his/her corresponding sibling member in
his/her branch, the member with lowest parent binary ID
replies to that member. He/she exchanges the public key
generated by Elliptic Curve key agreement. Here, a
member who replies is responsible to authenticate a new
member. We assume that each group member is equipped
with some authentication capability [6].
 Once authentication operation is completed, the public
key of new member and his/her corresponding parent
binary code are stored in the list, and the updated
information is multicasted to existing members. Next, the
current members as well as the new one can calculate the
affected intermediate node keys by applying a given one-
way hash function to bitwise XOR of new group key and
the intermediate node code.

(1) Join Operation of a Node

 Fig. 1 illustrates a multicast group of 7 members,
���� �C� �H� �A� �F� �J� �� as current members when a new
member u4 joins the group (Fig. 2). Re-keying procedure
at join for this example in ECC is as below.

(1) u4 broadcasts a hello message for member
discovery.

(2) u3 who does not have a sibling node, replies this
member.

(3) u3 shares a key with u4 by ECC key agreement.
 This key is n3×n4×G.

(4) u3 downgrades his/her position from 00 to 001,
updates the member discovery key by replacing
the new parent binary code and new member’s
public key (Table II).

(5) u3 calculates the new intermediate node code for
his parent.
Code_K3,4 = (04 || 6)= 046.

(6) u3 generates new group key as below:
�<

? � ���<�
(7) u3 sends �<

? and the new node code to u4 being
encrypted by the shared key between them.

�H

-#�3)L$
MNNNNO ��<

� � =>I��H 	 �@ 	 �
(8) Existing members, ���� �C� �H� �A� �F� �J� �� ,

renew the group key as described in the step(6)
(9) Then, the members in the affected path set

calculate the affected intermediate node keys by
applying one-way hash function to bitwise XOR
of intermediate node codes and the new group
key.

�H� �@P �H�@ � ���<
?D=>I�

��� �� Q � �@P ���@ � ���<
?D=>�

Table II. List of Parent Binary Code and Associated Members Public

Key

Parent Binary Code Member Public key
000 n1×G, n2×G
001 n3×G, n4×G
010 n5×G, n6×G

011 n7×G, n8×G

 As you notice that just one key is delivered to new
member. This is an important feature for distributed group
communication in wireless network. Since members are
mobile, in addition to dynamic join/leave, simultaneous
join may occur in such networks. In order to solve such
problem, the overload of join operation must be
minimized. The features of ECC provide this task with
just one key delivery.

(2) Leave Operation of a Node

 When a member leaves a multicast group, his/her node
is deleted from the key tree. The sibling member on that
branch moves to his/her parent node position. And the
sibling node is also responsible to delete the leaving node
public key from the list, and to transmit updated
information of the list to other members. After each leave,
the group key and some intermediate node keys need to be
updated. At leave operation, the key tree has divided into
some parts. The number of these parts is equal to (log n -
1) where n is the number of group members. The sibling

690

of leaving member generates the new group key and sends
it to one of the member in each part. To do this the sibling
node checks his/her list and finds one of the available
members in each part, shares a key with that member
using his/her public key and send the group key for his/her
via unicast. The member who receives the group key is
responsible to multicast it to his/her branch members
being encrypted with upper intermediate node which is
not affected. Now the users are able to renew the affected
intermediate node key. We use a simple example to
explain leave operation. Fig.3 illustrates a multicast group
of 8 members, ���� �C� �H� �@� �A� �F� �J� �� when u8
leaves the group.

(1) u7 is promoted to his/her parent position.
(2) u7 updates the member discovery list by deleting

the leaving node’s public key, and changes
his/her parent binary code. u7 also informs the
other nodes about the updated information.

(3) u7 generates new group key��<
?? , by using

symmetric algorithm.
(4) u7 checks his/her list and use Elliptic Curve key

agreement to share a key with one of the member
in each branch. Then it will unicast new group
key to each of them as follow:

�J

-#�3)L$
MNNNNO ��P ��<

����� 	 �C 	 �

�J

-#�3)L$
MNNNNO �AP ��<

����A 	 �J 	 �

(5) Now u1 and u5 multicast the received new group

key �<
??,to members of their branch as follow:

��

'-5$�3)L$
MNNNNNO �C� �� � �@P ��<

� ����@

�A

'-5$�3)L$
MNNNNNO �FP ��<

� ��A�F

(6) Finally the members in affected path calculate

the code of the affected intermediate node by the
formula given below:

�A� �F� �JP �A�J � ���<
� / =B�

Table III shows the updating of member discovery list
after a member leaves a group. This is necessary to insure
the backward secrecy. It can be seen from the table given
below that after deletion of node u8 its corresponding
public key n8×G was deleted.

Table III. Updating Member Discovery List when
a Member leaves the Group

Parent Binary Code Member Public key

000 n1×G, n2×G
001 n3×G,n4×G
010 n5×G,n6×G
011 n7×G

V. RESULTS
In this section we compare and analyze our proposal with
DHSA. The comparison metrics which are used include
key generation, key encryption and communication
overhead.
Key generation overhead is the number of keys generated
during the join and leave operations by the sponsor. Key
encryption overhead identifies the number of encryptions
on any membership change by the sponsor and co-
distributors. The last metric, key communication overhead
is used to estimate the number of messages required to
transmit in group rekeying process from the sponsor and
co-distributors.
Proposed ECC and DHSA reduces the number of key
generation at join and leave operations to 1 because on
each membership change, only the group key is generated
by the sibling member of new member, and the other
necessary keys are computed by the members. In proposed
ECC and DHSA key generation overhead is same but the
size of key in ECC is smaller as this is the property of
ECC. This feature results in efficiency of group key
management for a group with dynamic join and leave.
Table IV shows key encryption overhead at join and leave
operations. In proposed ECC when members join/leave
the group, one encryption is performed between the new
group member and the sibling member of the new member
and decreases the key size as comparison to DHSA. This
encryption is done based on symmetric algorithm. But in
DHSA, there are three encryptions between the new
member and the sibling node:

a) One encryption between the new member and the
root node.

b) Second encryption between the root node and the
neighbour of the new node

c) Finally third encryption between the neighbour
node and the node.

There are three encryptions between the member who left
the group and the sibling node:

a) One encryption between the sibling node and the
root node.

b) Second encryption between the root node and one
member in each branch

c) .Finally third encryption between the member
who received the group key and remaining
members in the branch.

691

Table IV. Comparison of Key Encryption Overhead of a Node at Join

and Leave Operations

Protocols Join Leave
DHSA 3 3

Proposed ECC 1 1

The communication overhead for proposed ECC and
DHSA at join operation is key size (key size of DHSA is
512 bits and proposed ECC key size is 112 bits) b. At join
the sibling member of new member just communicates
with that member, and delivers the group key to that
member, and the other members compute the new group
key by applying one-way hash function to previous group
key but the size of the key is smaller in ECC. The
communication overhead of DHSA at leave is larger than
the proposed ECC because the leaving node
communicates with every single node to deliver the
necessary keys. The message size of proposed ECC is
smaller because only the new group key is delivered to
remaining members. RSTC � � G is the height of the tree in
which group members are arranged. If any member leaves
the group, then tree is traversed twice from top to bottom
and from bottom to top to check the position of the tree.
So total communication overhead of a Node is:

0199*U005%)V%*#+(% � W �RSTC � � G� 	 X!"�Y:Z!

Table V illustrates the proposed method time taken by the
nodes when user join, leave, display and read leaf nodes in
the key tree. We will calculate the time taken by 100
nodes in a distributed environment for join, leave, and
display and read leaf node. During implementation with
Elliptic Curve Cryptography for public key exchange, our
results are very efficient that takes less time than DHSA.
ECC provides more security with less number of keys and
it is more scalable than DHSA.

Table V. Time Taken by Nodes for Join, Leave, Display

and Read Leaf by using Elliptic Curve Cryptography

Nodes Join Leave Display Read

Leaf
Total

1 node 1 sec 4 sec 2 sec 5 sec 12 sec
2 node 1 sec 9 sec 3 sec 7 sec 20 sec
3 node 2 sec 11 sec 4 sec 10 sec 27 sec
4 node 2 sec 14 sec 5 sec 13 sec 34 sec
5 node 3 sec 17 sec 5 sec 16 sec 41 sec
6 node 3 sec 20 sec 6 sec 17 sec 46 sec
7 node 4 sec 21 sec 6 sec 22 sec 48 sec
8 node 4 sec 22 sec 7 sec 25 sec 63 sec
9 node 5 sec 24 sec 7 sec 26 sec 52 sec

10 node 5 sec 26 sec 7 sec 28 sec 66 sec
20 nodes 10 sec 52 sec 12 sec 45 sec 119 sec
30 node 14 sec 76 sec 15 sec 68 sec 173 sec
40 node 19 sec 119 sec 18 sec 91 sec 247 sec
50 node 22 sec 150 sec 20 sec 115 sec 307 sec
60 node 26 sec 197 sec 25 sec 145 sec 393 sec
70 node 29 sec 245 sec 30 sec 172 sec 476 sec
80 node 33 sec 290 sec 34 sec 201 sec 558 sec
90 node 37 sec 340 sec 37 sec 233 sec 647 sec

100 node 41 sec 390 sec 40 sec 257 sec 728 sec

VI.CONCLUSION

 In this paper we have proposed a new group key
management approach in distributed network. This
protocol is based on logical key hierarchy because in this
group members are arranged in hierarchical manner. We
have proposed usage of symmetric cryptosystem along
with asymmetric cryptosystem. For asymmetric key,
Elliptic Curve Cryptography key agreement is introduced.
We have used Elliptic Curve Cryptography and it provides
much stronger security with smaller key size. The features
of this protocol are that, at join no keys are needed to be
exchanged between existing members, at leave only one
key, the group key, is delivered to remaining members.
 Proposed algorithm takes less time when users join or
leave the group in comparison to existing one. In ECC,
there is only 1 key generation and key encryption
overhead at join and leave operation. At join the
communication overhead is key size of a node and at
leave operation is�W �RSTC � � G� 	 X!"�Y:Z! of a node. In
future, this work can be further improved using network
parameters like network delay and network failure which
can further increase the reliability and quality of service of
the algorithm.

REFRENCES

[1] Jiang and Hu, “A Survey of Group Key Management,”
IEEE International Conference on Computer Science
and Software Engineering, Vol. 3, pp. 994-1002,
December 12-14, 2008.

[2] Fan, Ping, Kuan and Ming, “A Dynamic Layering
Scheme of Multicast Key Management,” 5th IEEE
International Conference on Infomration Assurance
and Security, Xian, China, Vol. 1, pp. 269-272, August
18-20, 2009.

[3] Kim, Perrig and Tsudik, “Tree-based Group Key
Agreement,” ACM Transactions on Information and
System Security, Vol. 7, Issue 1, pp. 60-94, February
2004.

[4] Panja, Madria and Bhargave, “Energy and
Communication Efficient Group Key Management
Protocol for Hierarchical Sensor Networks,” IEEE
International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing, Taichung,
Taiwan, Vol. 1, pp. 8-15, June 05-07, 2006.

[5] Zhang, Li, Chen, Tao and Yang, “EDKAS: An
Efficient Distributed Key Agreement Scheme using
One-Way Function Trees for Dynamic Collaborative
Groups,” IEEE Multi-conference on Computational
Engineering in Systems Applications, Bejing, China,
pp. 1215-1222, October 2006.

[6] Mortazavi, Kato, “An Efficient Distributed Group Key
Management using Hierarchical Approach with Diffie-
Hellman and Symmetric Algorithm: DHSA,” IEEE
International Symposium on Computer Networks and
Distributed Systems, pp. 49-54, Februrary, 23-24
2011.

[7] Zeng, Xia and Su, “A New Group Key Management
Scheme based on DMST for Wireless Sensor
Networks,” 6th IEEE International Conference on
Mobile Adhoc and Sensor Systems, Macau, China, pp.
989-994, October 12-15, 2006.

[8] Ye, Zhao, and Guo, “A Safety Group Key
Management Scheme in Mobile Adhoc Network,” 8th

692

IEEE International Conference on Reliability,
Maintainability and Safety, Chengdu, China, pp. 512-
515, July 20-24, 2009.

[9] Chen, Lin, Shen, Hashimoto and Kato, “A Group-
Based Key Management Protocol for Mobile Ad Hoc
Networks,” IEEE Global Telecommunications
Conference, Honolulu, Hawaii, pp. 1-5, November 30-
December 04, 2009.

[10] Shoufan and Huss, “High-Performance Rekeying
Processor Architecture for Group Key Management,”
IEEE Transactions on Computers, Vol. 58, Issue 10,
pp. 1421-1434, October 2009.

[11] Dawood, Mneney, Aghdasi and Dawoud, “An
Efficient Hierarchical Group Key Managemnt
Protocol for Mobile Ad-Hoc Networks,” IEEE 1st
International Conference on Wireless Communication,
Vehicular Technology, Information Theory and
Aerospace & Electronic Systems Technology,
Aalborg, Denmark, pp. 619-623, May 17-20, 2009.

[12] McGrew and Sherman, “ Key Establishment in Large
Dynamic Groups Using One-Way Function Trees,”
IEEE Transactions on Software Engineering, Vol. 29,
Issue 5, pp. 444-458, May 2003.

[13] Malik, “Efficient Implementation of Elliptic Curve
Cryptography using Low-power Digital Signal
Processor,” 12th IEEE International Conference on
Advanced Communication Technology, Phoenix Park,
Vol. 2, pp. 1464-1468, February 07-10, 2010.

[14] Kristin, “The Advantages of Elliptic Curve
Cryptography for Wireless Security,” IEEE Wireless
Communications, Vol. 11, Issue 1, pp. 62-67, February
2004.

[15] William Stallings, “Cryptography and Network
Security Principle and Practice,” Fourth Edition.

[16] Shen, Huang and Chen, “A Time-Bound Hierarchical
Access Control for Muticast Systems” Proceedings of
IEEE International Conference on Machine Learning
and Cybernetics, Xian, Vol. 2, pp. 543-548, July 15-
17, 2012.

[17] Pushpalatha and Chitra, “GAMANET: A Ganatic
Algorithm Approach for Hierarchical Group Key
Management in Mobile Adhoc Network,” Proceedings
of IEEE International Conference on Pattern
Recognition, Informatics and Mobile Engineering,
Salem, pp. 368-373, February 21-22, 2013.

693

