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This paper presents quasi-oppositional differential evolution to solve reactive power dispatch problem of
a power system. Differential evolution (DE) is a population-based stochastic parallel search evolutionary
algorithm. Quasi-oppositional differential evolution has been used here to improve the effectiveness and
quality of the solution. The proposed quasi-oppositional differential evolution (QODE) employs
quasi-oppositional based learning (QOBL) for population initialization and also for generation jumping.
Reactive power dispatch is an optimization problem that reduces grid congestion with more than one
objective. The proposed method is used to find the settings of control variables such as generator termi-
nal voltages, transformer tap settings and reactive power output of shunt VAR compensators in order to
achieve minimum active power loss, improved voltage profile and enhanced voltage stability. In this
study, QODE has been tested on IEEE 30-bus, 57-bus and 118-bus test systems. Test results of the pro-
posed QODE approach have been compared with those obtained by other evolutionary methods reported
in the literature. It is found that the proposed QODE based approach is able to provide better solution.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

The reactive power dispatch (RPD) plays an important role for
improving economy and security of power system operation.
Although the reactive power generation has no production cost,
however it affects the overall generation cost by the way of the
active power loss. The RPD is a nonlinear, non-convex and
non-differentiable optimization problem. It minimizes active
power loss and improves voltage profile and voltage stability by
adjusting control variables such as generator voltages, transformer
tap settings, and reactive power output of shunt VAR compensators
in a power system while satisfying several equality and inequality
constraints.

Several classical mathematical methods [1–8] such as linear
programming, quadratic programming, gradient projection
method, interior point method, reduced gradient method and
Newton method have been applied to solve RPD problem of power
system. These methods are computationally fast but these meth-
ods optimize the objective function by linearizing it. The RPD is a
non-linear multimodal optimization problem with a mixture of
discrete and continuous variables. It has multiple local optima.
Hence, it is so hard to find the global optimum of reactive power
dispatch problem by using classical mathematical methods. For
these reasons, researchers have developed computational
intelligence-based techniques to solve the RPD problem.

In recent years, computational intelligence-based techniques,
such as evolutionary programming [9], adaptive genetic algorithm
[10], particle swarm optimization [11], hybrid stochastic search
technique [12], hybrid particle swarm optimization [13],
multiagent-based particle swarm optimization [14], bacterial for-
aging based optimization [15], differential evolution [16,21],
quantum-inspired evolutionary algorithm [17], self adaptive real
coded genetic algorithm [18], seeker optimization algorithm [19],
comprehensive learning particle swarm optimization (CLPSO)
[20], biogeography-based optimization [22], hybrid shuffled frog
leaping algorithm and Nelder–Mead simplex search [23], gravita-
tional search algorithm [24], quasi-oppositional teaching learning
based optimization [25], and opposition-based gravitational search
algorithm [26] have been applied to solve RPD problem. These
techniques have shown effectiveness in overcoming the disadvan-
tages of classical methods.

Since the mid 1990s, many techniques originated from Darwin’s
natural evolution theory have emerged. These techniques are usu-
ally termed by ‘‘evolutionary computation methods” including
evolutionary algorithms (EAs), swarm intelligence and artificial
immune system. Differential evolution (DE) [27–29], a relatively
new member in the family of evolutionary algorithms, first
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proposed over 1995–1997 by Storn and Price at Berkeley is a novel
approach to numerical optimization. It is a population-based
stochastic parallel search evolutionary algorithm which is very
simple yet powerful. The main advantages of DE are its capability
of solving optimization problems which require minimization pro-
cess with nonlinear, non-differentiable and multi-modal objective
functions.

The basic concept of opposition-based learning (OBL) [31–33]
was originally introduced by Tizhoosh. The main idea behind OBL
is for finding a better candidate solution and the simultaneous con-
sideration of an estimate and its corresponding opposite estimate
(i.e., guess and opposite guess) which is closer to the global opti-
mum. OBL was first utilized to improve learning and back propaga-
tion in neural networks by Ventresca and Tizhoosh [34], and since
then, it has been applied to many EAs, such as differential evolu-
tion [35], particle swarm optimization [36] and ant colony opti-
mization [37].

Quasi-oppositional based learning (QOBL) is implemented on
differential evolution (DE). The proposed quasi-oppositional differ-
ential evolution (QODE) along with basic differential evolution
(DE) is applied to solve the RPD problem. The RPD is a combinato-
rial optimization problem involving nonlinear functions having
multiple local optima and nonlinear and discontinuous constraints.
In order to evaluate the proposed method, the proposed QODE is
tested on IEEE 30-bus, 57-bus and 118-bus test systems with
different objective functions that reflect active power loss mini-
mization, voltage profile improvement and voltage stability
enhancement. Test results obtained from QODE have been com-
pared with those obtained by other evolutionary methods reported
in the literature. From numerical results, it is found that the pro-
posed QODE based approach provides better solution.

Problem formulation

The objective of the RPD is to minimize the active power loss
and to improve voltage profile and voltage stability while satisfy-
ing equality and inequality constraints. Three objective functions
and constraints are formulated as follows.

Objective functions

Minimization of active power loss
Minimization of active power loss in the transmission lines can

be formulated as follows

Minimize F1 ¼ Ploss ¼
XNTL
k¼1

gk V2
i þ V2

j � 2ViVj cos di � dj
� �h i

ð1Þ

where Ploss denotes active power loss of the power system, NTL is
the number of transmission lines, gk is the conductance of branch
k connected between ith bus and jth bus, Vi and Vj are the voltage
magnitudes of the ith and jth buses, di and dj are the voltage phase
angles of the ith and jth buses.

The vector of dependent variables x may be represented as

xT ¼ PG1;VL1; . . . ;VLNPQ ;QG1; . . . ;QGNG½ � ð2Þ
where PG1 denotes the slack bus power, VL is the PQ bus voltage, QG

is the reactive power output of the generator, NG is the number of
generator bus, NPQ is the number of PQ bus.

The vector of control variables u may be represented as

uT ¼ VG1; . . . ;VGNG;Qc1; . . . ;QcNC ;T1; . . . ;TNT½ � ð3Þ
where NC and NT are the number of shunt VAR compensators and
the number of tap changing transformers, VG is the terminal voltage
at the voltage controlled bus, Qc is the output of shunt VAR com-
pensator and T is the tap setting of the tap changing transformer.
Voltage profile improvement
The objective is to minimize the voltage deviation of all load

ðPQÞ buses from 1 p.u. As a result the power system operates more
securely and service quality is also improved. The objective func-
tion can be formulated as follows

Minimize F2 ¼
XNPQ
i¼1

jVi � 1:0j ð4Þ

where NPQ is the number of load buses in the power system.

Voltage stability enhancement
Voltage stability problem is the ability of a power system to

maintain acceptable voltages at all bus bars in the system under
normal operating condition. A system experiences a state of volt-
age instability when the system is being subjected to a disturbance,
increase in load demand or change in system configuration which
causes a progressive and uncontrollable decrease in voltage. Weak
system, system with long transmission lines and heavily loaded
system are much prone to voltage instability problem.

Voltage instability is a major threat for secure and reliable opera-
tion of a large scale power system. The loss of voltage stability can
manifest in the form of progressive drop of voltage magnitudes, trig-
gering unintentional load shedding and even leading to cascading
outagesor system-wideblackouts.Recently,anumberofmajorblack-
outs around theworld [39]have takenplacedue tovoltage instability.

Voltage stability can be classified into long-term and short-term
concerns depending on the time frame of interest. Analysis tech-
niques can generally fall into static method and dynamic method.
The static method is necessary for analyzing long-term voltage sta-
bility problem where as dynamic method is necessary for analyz-
ing short-term voltage stability problem. The former is based on
steady state modeling of the network i.e. via algebraic equations
and relies on power flow. The latter is based on the time domain
simulation, which models the system via differential–algebraic
equations to account for the dynamic nature of system compo-
nents in particular loads. Here, long-term voltage stability problem
has been considered.

Enhancement of voltage stability of a system is an important
parameter of power system planning and operation. Voltage stabil-
ity enhancement can be done by minimizing the voltage stability
indicator i.e. L-index value at each bus of a power system. The
L-index of a bus indicates the proximity of voltage collapse condi-
tion of that bus. L-index Lj of jth bus is defined as follows [40]

Lj ¼ 1�
XNPV
i¼1

Fji
V i

Vj

�����
����� where j ¼ 1;2; . . . ;NPQ ð5Þ

Fji ¼ �½!1��1½!2� ð6Þ
where NPV is the number of PV bus and NPQ is the number of PQ
bus. !1 and !2 are the sub-matrices of the system YBUS obtained
after segregating the PQ and PV bus bar parameters as described
in (5).

IPQ
IPV

� �
¼ !1!2

!3!4

� �
VPQ

VPV

� �
ð7Þ

L-index is calculated for all the PQ buses. Lj represents no load case
and voltage collapse case of bus j in the range of 0 and 1 respec-
tively. Hence, a global system indicator L describing the stability
of a complete system is given as follows:

L ¼ maxðLjÞ; where j ¼ 1;2; . . . ;NPQ ð8Þ
Lower value of L represents a more stable system. In the RPD

problem, inaccurate tuning of control variable settings may
increase voltage stability margin of the system [21]. In order to
improve voltage stability and to move the system far from the volt-
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age collapse point, the objective function [24] can be defined as
follows:

Minimize F3 ¼ Lmax ð9Þ
where Lmax is the maximum value of L-index.

Constraints

The objective functions are subjected to the equality constraints
imposed by the physical laws governing the transmission system
as well as the inequality constraints imposed by the equipment
ratings given below.

Equality constraints
These constraints are load flow equations as described below:

PGi � PDi � Vi

XNB
j¼1

Vj Gij cos di � dj
� �� þ Bij sin di � dj

� �� ¼ 0;

i ¼ 1;2; . . . ;NB ð10Þ

QGi � QDi � Vi

XNB
j¼1

Vj Gij sin di � dj
� ��

Bij cos di � dj
� �� ¼ 0;

i ¼ 1;2; . . . ;NB ð11Þ
where NB is the number of buses, PGi and QGi are active and reactive
power generation at the ith bus, PDi and QDi are active and reactive
power demand at the ith bus, Gij and Bij are the transfer conduc-
tance and susceptance between ith bus and jth bus respectively.

Inequality constraints
Generator constraints. The generator voltage magnitudes and reac-
tive power outputs are constrained by design specifications. The
lower and upper limits of generator voltage magnitude and reac-
tive power output are given below:

Vmin
Gi 6 VGi 6 Vmax

Gi ; i ¼ 1;2; . . . ;NG ð12Þ
Qmin

Gi 6 QGi 6 Qmax
Gi ; i ¼ 1;2; . . . ;NG ð13Þ
Shunt VAR compensator constraints. Reactive power output of shunt
VAR compensators must be restricted within their lower and upper
limits as follows:

Qmin
ci 6 Qci 6 Qmax

ci ; i ¼ 1;2; . . . ;NC ð14Þ
Transformer constraints. The upper and lower values for the trans-
former tap settings are limited by physical considerations and
these are given below:

Tmin
i 6 Ti 6 Tmax

i ; i ¼ 1;2; . . . ;NT ð15Þ
Security constraints. These include the constraints on voltage mag-
nitudes at PQ buses and transmission line loadings. Voltage of each
PQ bus must be within its lower and operating limits. Line flow
through each transmission line must be within its capacity limits.
These are described as follows:

Vmin
Li 6 VLi 6 Vmax

Li ; i ¼ 1;2; . . . ;NPQ ð16Þ
Sli 6 Smax

li ; i ¼ 1;2; . . . ;NTL ð17Þ
Description of quasi-oppositional differential evolution

A brief description of differential evolution

Differential evolution (DE) is a type of evolutionary algorithm
originally proposed by Price and Storn [29] for optimization
problems over a continuous domain. DE is exceptionally simple,
significantly faster and robust. The basic idea of DE is to adapt
the search during the evolutionary process. At the start of the evo-
lution, the perturbations are large since parent populations are far
away from each other. As the evolutionary process matures, the
population converges to a small region and the perturbations
adaptively become small. As a result, the evolutionary algorithm
performs a global exploratory search during the early stages of
the evolutionary process and local exploitation during the mature
stage of the search. In DE the fittest of an offspring competes one-
to-one with that of corresponding parent which is different from
other evolutionary algorithms. This one-to-one competition gives
rise to faster convergence rate. Price and Storn gave the working
principle of DE with simple strategy in [29]. Later on, they sug-
gested ten different strategies of DE [30]. Strategy-7 (DE/rad/1/
bin) is the most successful and widely used strategy. The key
parameters of control in DE are population size ðNPÞ, scaling factor
ðSFÞ and crossover rate ðCRÞ. The optimization process in DE is car-
ried out with three basic operations: mutation, crossover and
selection. The DE algorithm is described as follows.

Initialization
The initial population of NP vectors is randomly selected based

on uniform probability distribution for all variables to cover the
entire search uniformly. Each individual Xi is a vector that contains
as many parameters as the problem decision variables D. Random
values are assigned to each decision parameter in every vector
according to:

X0
ij � UðXmin

j ;Xmax
j Þ ð18Þ

where i ¼ 1; . . . ;NP and j ¼ 1; . . . ;D; Xmin
j and Xmax

j are the lower and

upper bounds of the jth decision variable; U Xmin
j ;Xmax

j

	 

denotes a

uniform random variable ranging over Xmin
j ;Xmax

j

h i
. X0

ij is the initial

jth variable of ith population. All the vectors should satisfy the

constraints. Evaluate the value of the cost function f X0
i

	 

of each

vector.

Mutation
DE generates new parameter vectors by adding the weighted

difference vector between two population members to a third

member. For each target vector Xk
i at kth iteration the noisy vector

X=k
i is obtained by

X=k
i ¼ Xk

a þ SF Xk
b � Xk

c

	 

; i 2 NP ð19Þ

where Xk
a, X

k
b and Xk

c are selected randomly from NP vectors at kth
iteration and a– b – c – i. The scaling factor ðSFÞ, in the range
0 < SF 6 1:2, controls the amount of perturbation added to the par-
ent vector. The noisy vectors should satisfy the constraint.

Crossover

Perform crossover for each target vector Xk
i with its noisy vector

X=k
i and create a trial vector X==k

i such that

X==k
i ¼ X=k

i ; if q 6 CR

Xk
i ; otherwise

(
; i 2 NP ð20Þ

where q is an uniformly distributed random number within [0,1].
The crossover constant ðCRÞ, in the range 0 6 CR 6 1, controls the
diversity of the population and aids the algorithm to escape from
local optima.
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Selection

Perform selection for each target vector, Xk
i by comparing its

cost with that of the trial vector, X==k
i . The vector that has lesser cost

of the two would survive for the next iteration.

Xkþ1
i ¼ X==k

i ; if f X==k
i

	 

6 f Xk

i

	 

Xk

i ; otherwise

8<
: ; i 2 NP ð21Þ

The process is repeated until the maximum number of iterations or
no improvement is seen in the best individual after many iterations.

Fig. 1 shows the flowchart of differential evolution.

Opposition-based learning

Opposition-based learning (OBL) was developed by Tizhoosh
[31] to improve candidate solution by considering current popula-
tion as well as its opposite population at the same time.

Evolutionary optimization methods start with some initial pop-
ulation and try to improve them toward some optimal solution.
The process of searching terminates when some predefined criteria
are satisfied. The process is started with random guesses in the
absence of a priori information about the solution.

The process can be improved by starting with a closer i.e. fitter
solution by simultaneously checking the opposite solution. By
doing this, the fitter one (guess or opposite guess) may be chosen
as an initial solution. According to the theory of probability, 50% of
the time, a guess is further from the solution than its opposite
guess. Therefore, process starts with the closer of the two guesses.
The same approach can be applied not only to the initial solution
but also continuously to each solution in the current population.
Start

Specify the DE parameters

Set Iter.=1

Generate initial population

Set target vector

Evaluate cost of target vector

Generate mutant vector by mutation operation

Generate trial vector by crossover operation

Evaluate cost of trial vector

The best vector survives by selection operation

Iter. < Max. Iter.
Iter.=Iter.+1

Yes

Stop

No

Fig. 1. Flowchart of differential evolution.
Quasi-opposition-based learning

Quasi-opposition-based learning (QOBL) was introduced by
Rahnamayan et al. [38] to improve candidate solution by consider-
ing current population as well as its quasi-opposite population at
the same time.

The process can be improved by starting with a closer i.e. fitter
solution by simultaneously checking the quasi-opposite solution.
By doing this, the fitter one (guess or quasi-opposite guess) may
be chosen as an initial solution. The process starts with the closer
of the two guesses. The same approach can be applied not only to
the initial solution but also continuously to each solution in the
current population. It is proved that a quasi-opposite number is
usually closer than a random number to the solution. It is also
proved that a quasi-opposite number is usually closer than an
opposite number to the solution [38]. The idea of QOBL technique
is used in population initialization and generation jumping.

Definition of opposite number and quasi-opposite number
If x be a real number between ½lb;ub�, its opposite number ðxoÞ

and its quasi-opposite number ðxqoÞ are defined as

xo ¼ lbþ lu� x ð22Þ
and

xqo ¼ rand
lbþ lu

2

� �
; ðlbþ lu� xÞ

� �

Similarly, this definition can be extended to higher dimensions [31]
as stated in the next sub-section.

Definition of opposite point and quasi-opposite point
Let X ¼ ðx1; x2; . . . ; xnÞ be a point in n-dimensional space where

xi 2 ½lbi;ubi� and i 2 1;2; . . . ;n. The opposite point Xo ¼
ðxo1; xo2; . . . ; xonÞ is completely defined by its components as in (23).

xoi ¼ lbi þ ubi � xi ð23Þ
The quasi-opposite point Xqo ¼ ðxqo1; xqo2; . . . ; xqonÞ is completely

defined by its components as in (24).

xqoi ¼ rand
lbi þ lui

2

� �
; ðlbi þ lui � xiÞ

� �
ð24Þ

By employing the definition of quasi-opposite point, the quasi-
opposition-based optimization is defined in the following sub-
section.

Quasi-opposition based optimization
Let X ¼ ðx1; x2; . . . ; xnÞ be a point in n-dimensional space i.e. a

candidate solution. Assume f ¼ ð�Þ is a fitness function which is
used to measure the candidate’s fitness. According to the definition
of the quasi-opposite point, Xqo ¼ ðxqo1; xqo2; . . . ; xqonÞ is the quasi-
opposite of X ¼ ðx1; x2; . . . ; xnÞ. Now, if f ðXqoÞ < f ðXÞ (for aminimiza-
tion problem), then point X can be replacedwith Xqo; otherwise, the
process is continued with X. Hence, the point and its quasi-opposite
point are evaluated simultaneously in order to continue with the
fitter one.

Quasi-oppositional differential evolution

In the present work, the concept of the quasi-opposition-based
learning [38] is incorporated in differential evolution. The original
DE is chosen as a parent algorithm and the quasi-opposition-based
ideas are embedded in DE. Fig. 2 shows the flowchart of QODE
algorithm.



Start

Specify the DE parameters

Set Iter.=1

Generate and evaluate initial populations and its quasi-opposite members

Set target vector

Generate mutant vector by mutation operation

Generate trial vector by crossover operation

Evaluate cost of trial vector

The best vector survives by selection operation

Iter. < Max. Iter.
Iter.=Iter.+1

Yes

Stop

No

If cost function value of quasi-opposite member is less than the cost function value of 
initial population replace the initial population with its quasi-opposite member

Generate and evaluate the quasi-opposite members of the best vector

If cost function value of quasi-opposite member is less than the cost function 
value of the best vector replace the best vector with its quasi-opposite member

Fig. 2. Flowchart of QODE.

Table 1
Optimal value of control variables obtained from QODE for IEEE 30 bus system for different cases.

Control
variable

Active power
loss minimization

Voltage stability
enhancement

Improvement of
voltage profile

Minimization of active power loss
with improvement of voltage profile

V1 1.0500 1.0500 1.0500 1.0500
V2 1.0338 1.0336 1.0340 1.0334
V5 1.0058 1.0055 1.0059 1.0057
V8 1.0230 1.0232 1.0235 1.0232
V11 1.0913 1.0911 1.0917 1.0915
V13 1.0400 1.0402 1.0396 1.0404
T6�9 0.9994 0.9875 1.0157 1.0189
T6�10 1.0012 1.0031 1.0274 1.0212
T4�12 0.9983 1.0222 1.0087 1.0058
T28�27 1.0141 0.9895 0.9817 0.9977
Qc10 0.0030 0.0000 0.0095 0.0242
Qc12 0.0199 0.0032 0.0068 0.0469
Qc15 0.0475 0.0500 0.0301 0.0092
Qc17 0.0334 0.0314 0.0079 0.0027
Qc20 0.0182 0.0500 0.0247 0.0307
Qc21 0.0250 0.0249 0.0171 0.0318
Qc23 0.0342 0.0486 0.0301 0.0073
Qc24 0.0345 0.0403 0.0500 0.0311
Qc29 0.0000 0.0500 0.0178 0.0207
Power loss (MW) 2.6867 7.0812 9.2745 3.1010
Voltage deviation 0.4609 0.8886 0.0607 0.2590
Lmax 0.0581 0.0238 0.0543 0.0647
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Table 2
Comparison of performance for active power loss minimization of IEEE 30 bus system.

Techniques Best loss (MW) Average loss (MW) Worst loss (MW) CPU time (s)

QODE 2.6867 2.6879 2.6895 82.074
DE 3.0762 3.0782 3.0981 74.675
GSA [24] 4.5143 – – 94.693
DE [21] 4.5550 – – –
CLPSO [20] 4.5615 – – 138
PSO [20] 4.6282 – – 130
SARGA [18] 4.5740 – – –
QOTLBO [25] 4.5594 – – –
OGSA [26] 4.4984 – – 89.19
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Application of the proposed method

The proposed QODE and DE have been applied to solve RPD
problems. Three different test systems with three different objec-
tive functions have been studied to verify its applicability. Pro-
grams have been written in MATLAB-7 language and executed on
a 3.0 GHz Pentium-IV personal computer. In order to demonstrate
the effectiveness of the proposed QODE for solution of three differ-
ent RPD problems, IEEE 30-bus, 57-bus and 118-bus test systems
have been considered. The results obtained from proposed QODE
method are compared with those obtained from other evolutionary
methods reported in the literature.
4.5

5

W
)

QODE
DE
IEEE 30-bus system

The line data, bus data, generator data and the minimum and
maximum limits for the control variables have been adapted from
[4]. The system has six generators at buses 1, 2, 5, 8, 11 and 13 and
four transformers with off nominal tap ratio at lines 6–9, 6–10,
4–12, and 28–27. In addition, shunt VAR compensating devices
are assumed to be connected at bus bars 10, 12, 15, 17, 20, 21,
23, 24 and 29. as in [41]. The total system active power demand
is 2.834 p.u. at 100 MVA base. In this study, 50 test runs are per-
formed to solve the RPD problem for different objective functions.
Different types of RPD problem for this test system are solved by
using QODE and DE.
0 10 20 30 40 50 60 70 80 90 100
2.5

3

3.5

4

P
ow

er
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ss
 (M

Iteration

Fig. 3. Active power loss convergence characteristics for IEEE 30 bus system.

Table 3
Comparison of performance for Lmax minimization of IEEE 30 bus system.

Techniques Best Lmax Average Lmax Worst Lmax CPU time (s)

QODE 0.0238 0.0241 0.0246 50.473
DE 0.0256 0.0261 0.067 42.035
GSA [24] 0.1160 – – 225.26
DE [21] 0.1246 – – –
QOTLBO [25] 0.1242 – – –
OGSA [26] 0.1230 – – 185.16
Minimization of active power loss
The proposed QODE and DE have been applied for minimization

of active power loss as the objective function. Here, the population
size ðNPÞ, scaling factor ðSFÞ, crossover rate ðCRÞ and the maximum
iteration number ðNmaxÞ have been selected 100, 1.0, 1.0 and 100
respectively for this test system.

The optimal values of control variables obtained from the pro-
posed QODE are given in Table 1. The best, average and worst
active power loss and average CPU time among 50 runs of solutions
obtained from proposed QODE and DE are summarized in Table 2.
The active power loss obtained from gravitational search algorithm
(GSA) [24], differential evolution (DE) [21], comprehensive learn-
ing particle swarm optimization (CLPSO) [20], particle swarm opti-
mization (PSO) [20], self adaptive real coded genetic algorithm
(SARGA) [18], quasi-oppositional teaching learning based opti-
mization (QOTLBO) [25] and opposition-based gravitational search
algorithm (OGSA) [26] are also shown in Table 2. The convergence
characteristic obtained from proposed QODE and DE for minimum
active power loss solution is shown in Fig. 3. It is seen from Table 2,
that active power loss obtained from QODE is the least among all
other methods. It is also observed that QODE based approach
performs best after that it follows DE, OGSA, GSA, QOTLBO, CLPSO,
SARGA and PSO.
Enhancement of voltage stability
In this case, the proposed QODE and DE approach have been

applied for enhancement of voltage stability i.e. minimization of
Lmax. Here, the population size ðNPÞ, scaling factor ðSFÞ, crossover
rate ðCRÞ and the maximum iteration number ðNmaxÞ have been
selected 100, 1.0, 1.0 and 50 respectively for this test system. The
optimal values of control variables obtained from the proposed
QODE are shown in Table 1. The best, average and worst active
power loss and average CPU time among 50 runs of solutions
obtained from proposed QODE and DE are summarized in Table 3.
The Lmax obtained from gravitational search algorithm (GSA) [24],
differential evolution (DE) [21], quasi-oppositional teaching learn-
ing based optimization (QOTLBO) [25] and opposition-based grav-
itational search algorithm (OGSA) [26] are also shown in Table 3.
The convergence characteristic obtained from proposed QODE
and DE for Lmax minimization is shown in Fig. 4. It is seen from
Table 3 that the value of Lmax obtained from QODE is the lowest
among all other methods. It is also observed that QODE based



Table 4
Comparison of performance for Voltage deviation of IEEE 30 bus system.

Techniques Best voltage
deviation

Average voltage
deviation

Worst voltage
deviation

CPU
time (s)

QODE 0.0607 0.0609 0.0612 81.310
DE 0.0623 0.0626 0.0631 74.506
GSA [24] 0.0676 – – 198.65
DE [21] 0.0911 – – –
QOTLBO [25] 0.0856 – – –
OGSA [26] 0.0640 – – 190.14

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
ol

ta
ge

 D
ev

ia
tio

n

Iteration

QODE
DE

Fig. 5. Voltage deviation convergence characteristics for IEEE 30 bus system.
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Fig. 4. Lmax convergence characteristics for IEEE 30 bus system.
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approach performs best after that it follows DE, GSA, OGSA and
QOTLBO.

Improvement of voltage profile
In this case, the proposed QODE and DE have been applied for

improvement of voltage profile. Here, the population size ðNPÞ,
scaling factor ðSFÞ, crossover rate ðCRÞ and the maximum iteration
number ðNmaxÞ have been selected 100, 1.0, 1.0 and 100 respec-
tively for this test system. The optimal values of control variables
obtained from the proposed QODE are given in Table 1. The best,
average and worst voltage deviation and average CPU time among
50 runs of solutions obtained from proposed QODE and DE are
summarized in Table 4. The voltage deviation obtained from grav-
itational search algorithm (GSA) [24], differential evolution (DE)
[21], quasi-oppositional teaching learning based optimization
(QOTLBO) [25] and opposition-based gravitational search algo-
rithm (OGSA) [26] are also shown in Table 4. The convergence
characteristic obtained from proposed QODE and DE for voltage
deviation is shown in Fig. 5. It is seen from Table 4, that voltage
deviation obtained from QODE is the lowest among all other meth-
ods. It is also observed that QODE based approach performs best
after that it follows DE, GSA, OGSA and QOTLBO.

Minimization of active power loss with improvement of voltage profile
In this case, a twofold objective function is formed in order to

minimize the active power loss and improve voltage profile by
minimizing the voltage deviation of all load buses from 1.0 p.u.
The objective function can be expressed as

Minimize F4 ¼ Ploss þ w
XNPQ
i¼1

jVi � 1:0j ð25Þ

where w is a weighting factor to be selected by the user. The value of
w in this case is chosen as 0.01 [20].

The problem is solved by using proposed QODE and DE. Here,
the population size ðNPÞ, scaling factor ðSFÞ, crossover rate ðCRÞ
and the maximum iteration number ðNmaxÞ have been selected
100, 1.0, 1.0 and 100 respectively for this test system. The results
obtained from proposed QODE for optimal values of control vari-
ables are shown in Table 1.

IEEE 57-bus system

The standard IEEE 57-bus system consists of 80 transmission
lines, seven generators at buses 1, 2, 3, 6, 8, 9, 12 and 15 branches
under load tap setting transformer branches. The reactive power
sources are considered at buses 18, 25 and 53. The system line
data, bus data, generator data and the minimum and maximum
limits for the control variables have been adapted from [19] and
[42]. The upper and lower limits of reactive power sources and
transformer tap settings are taken from [24]. The total system
active power demand is 12.508 p.u. and reactive power demand
is 3.364 p.u. at 100 MVA base. In this study, 50 test runs are per-
formed to solve the RPD problem for different objective functions.
Different types of RPD problem for this test system are solved by
using QODE and DE.
Minimization of active power loss
The proposed QODE and DE approach is applied for minimiza-

tion of active power loss as the objective function. Here, the popu-
lation size ðNPÞ, scaling factor ðSFÞ, crossover rate ðCRÞ and the
maximum iteration number ðNmaxÞ have been selected 100, 1.0,
1.0 and 100 respectively for this test system. The optimal values
of control variables obtained from the proposed QODE are given
in Table 5. The best, average and worst active power loss and aver-
age CPU time among 50 runs of solutions obtained from proposed
QODE and DE are summarized in Table 6. The active power loss
obtained from gravitational search algorithm (GSA) [24], compre-
hensive learning particle swarm optimization (CLPSO) [19], seeker
optimization algorithm (SOA) [19] and opposition-based gravita-
tional search algorithm (OGSA) [26] are also shown in Table 6.
The convergence characteristic obtained from proposed QODE
and DE for minimum active power loss solution is shown in
Fig. 6. It is seen from Table 6 that active power loss obtained from
QODE is the lowest among all other methods. It is also observed
that QODE based approach performs best after that it follows DE,
OGSA, GSA, SOA and CLPSO.



Table 6
Comparison of performance for active power loss minimization of IEEE 57 bus system.

Techniques Best loss
(MW)

Average loss
(MW)

Worst loss
(MW)

CPU time
(s)

QODE 15.8473 15.8986 15.9249 101.29
DE 16.7857 16.8533 16.9276 93.84
GSA [24] 23.4611 – – 321
CLPSO [19] 24.5152 – – 423
SOA [19] 24.2654 – – 382
OGSA [26] 23.43 – – 309.12
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Fig. 6. Active power loss convergence characteristics for IEEE 57 bus system.

Table 7
Comparison of performance for Lmax minimization of IEEE 57 bus system.

Techniques Best Lmax Average Lmax Worst Lmax CPU time (s)

QODE 0.0977 0.0982 0.0990 114.017
DE 0.1034 0.1038 0.1045 105.954
OGSA [26] 0.1759 0.1841 0.1900 –
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Fig. 7. Lmax convergence characteristics for IEEE 57 bus system.

Table 5
Optimal value of control variables obtained from QODE for IEEE 57 bus system for different cases.

Control loss
variable

Active power
minimization

Voltage stability
enhancement

Improvement of
voltage profile

Minimization of active power loss
with improvement of voltage profile

V1 1.0400 1.0400 1.0400 1.0400
V2 1.0101 1.0103 1.0099 1.0107
V3 0.9849 0.9847 0.9851 0.9850
V6 0.9805 0.9800 0.9803 0.9806
V8 1.0054 1.0050 1.0051 1.0047
V9 0.9803 0.9805 0.9804 0.9800
V12 1.0147 1.0150 1.0152 1.0149
T4�18 1.0987 0.9801 0.9831 0.9805
T4�18 1.0820 0.9526 0.9510 0.9529
T21�20 0.9221 0.9501 0.9507 0.9505
T24�26 1.0171 1.0045 1.0043 1.0047
T7�29 0.9960 0.9777 0.9769 0.9775
T34�32 1.0999 0.9138 0.9139 0.9136
T11�41 1.0750 0.9465 0.9461 0.9463
T15�45 0.9541 0.9269 0.9258 0.9265
T14�46 0.9370 0.9962 0.9957 0.9960
T10�51 1.0160 1.0385 1.0379 1.0388
T13�49 1.0998 0.9052 0.9053 0.9048
T11�43 1.0980 0.9240 0.9229 0.9245
T40�56 0.9799 0.9875 0.9868 0.9877
T39�57 1.0246 1.0098 1.0095 1.0092
T9�55 1.0371 0.9373 0.9367 0.9375
Qc18 0.0488 0.0401 0.0000 0.0116
Qc25 0.0012 0.0590 0.0008 0.0428
Qc53 0.0001 0.0166 0.0583 0.0464
Power loss (MW) 15.8473 34.9690 29.9137 16.3628
Voltage deviation 3.6588 1.0947 0.6634 1.0003
Lmax 0.1625 0.0977 2.7554 0.1369
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Enhancement of voltage stability
In this case, the proposed QODE and DE are applied for enhance-

ment of voltage stability i.e. minimization of Lmax. Here, the popu-
lation size ðNPÞ, scaling factor ðSFÞ, crossover rate ðCRÞ and the
maximum iteration number ðNmaxÞ have been selected 100, 1.0,



Table 10
Comparison of performance for active power loss minimization of IEEE 118 bus
system.

Techniques Best loss
(MW)

Average loss
(MW)

Worst loss
(MW)

CPU
time (s)

QODE 80.9257 81.2145 81.5336 312.54
DE 82.2473 82.6514 83.0175 301.07
GSA [24] 127.76 – – 1198.65
CLPSO [20] 130.96 – – 1472
PSO [20] 131.99 – – 1215
QOTLBO [25] 112.2789 113.7693 115.4516 –
OGSA [26] 126.99 – – 1152.32

Table 8
Comparison of performance for voltage deviation of IEEE 57 bus system.

Technique Best voltage
deviation

Average voltage
deviation

Worst voltage
deviation

CPU
time (s)

QODE 0.6634 0.6649 0.6655 103.75
DE 0.6792 0.6805 0.6812 94.89
OGSA [26] 0.6982 – – 419.17
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Fig. 8. Voltage deviation convergence characteristics for IEEE 57 bus system.
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1.0 and 100 respectively for this test system. The optimal values of
control variables obtained from the proposed QODE are given in
Table 5. The best, average and worst Lmax and average CPU time
among 50 runs of solutions obtained from proposed QODE and
DE are summarized in Table 7. The Lmax obtained from
opposition-based gravitational search algorithm (OGSA) [26] is
also shown in Table 7. The convergence characteristic obtained
from proposed QODE and DE for Lmax minimization is shown in
Fig. 7. It is seen from Table 7 that the value of Lmax obtained from
QODE is the lowest among all other methods. It is also observed
that QODE based approach performs best after that it follows DE,
and OGSA.
Table 9
Optimal value of control variables obtained from QODE for IEEE 118 bus system for active

Variable QODE Variable QODE Va

V1 0.9552 V49 1.0250 V9

V4 0.9984 V54 0.9550 V9

V6 0.9907 V55 0.9516 V9

V8 1.0151 V56 0.9543 V9

V10 1.0500 V59 0.9850 V1

V12 0.9903 V61 0.9950 V1

V15 0.9701 V62 0.9980 V1

V18 0.9730 V65 1.0050 V1

V19 0.9654 V66 1.0500 V1

V24 0.9920 V69 1.0350 V1

V25 1.0500 V70 0.9857 V1

V26 1.0154 V72 0.9800 V1

V27 0.9680 V73 0.9910 V1

V31 0.9671 V74 0.9655 V1

V32 0.9682 V76 0.9422 T8

V34 0.9853 V77 1.0058 T2

V36 0.9793 V80 1.0400 T3

V40 0.9700 V85 0.9885 T3

V42 0.9850 V87 1.0150 T6

V46 1.0050 V89 1.0050 T6
Improvement of voltage profile
In this case, the proposed QODE and DE have been applied for

improvement of voltage profile. Here, the population size ðNPÞ,
scaling factor ðSFÞ, crossover rate ðCRÞ and the maximum iteration
number ðNmaxÞ have been selected 100, 1.0, 1.0 and 100 respec-
tively for this test system. The optimal values of control variables
obtained from the proposed QODE are given in Table 5. The best,
average and worst voltage deviation and average CPU time among
50 runs of solutions obtained from proposed QODE and DE are
summarized in Table 8. The voltage deviation obtained from
opposition-based gravitational search algorithm (OGSA) [26] is
also shown in Table 8. The convergence characteristic obtained
from proposed QODE and DE for voltage deviation is shown in
Fig. 8. It is seen from Table 8, that voltage deviation obtained from
QODE is lower than DE and OGSA.
Minimization of active power loss with improvement of voltage profile
In this case, a twofold objective function is formed in order to

minimize the active power loss and improve voltage profile by
minimizing the voltage deviation of all load buses from 1.0 p.u.
as given in Eq. (25). The weighting factor w is selected by the user.
The value of w in this case is chosen as 0.1.

The problem is solved by using QODE and DE. Here, the popula-
tion size ðNPÞ, scaling factor ðSFÞ, crossover rate ðCRÞ and the max-
imum iteration number ðNmaxÞ have been selected 100, 1.0, 1.0 and
100 respectively for this test system. The results obtained from
proposed QODE for optimal values of control variables are shown
in Table 5.
power loss minimization.

riable QODE Variable QODE

0 0.9800 T65�66 0.9349
1 0.9835 T68�69 0.9345
2 0.9724 T81�82 0.9359
9 �0.2599 Qc5 1.0103
00 0.9693 Qc34 0.0218
03 �0.0145 Qc37 0.9532
04 0.9370 Qc44 0.0678
05 0.9396 Qc45 0.0644
07 0.9520 Qc46 0.0000
10 0.9567 Qc48 0.0992
11 0.9800 Qc74 0.0771
12 0.9750 Qc79 0.0852
13 0.9930 Qc82 0.1203
16 1.0050 Qc83 0.0805
�5 0.9811 Qc105 0.0828
6�25 0.9603 Qc107 0.1975
0�17 0.9611 Qc110 0.0005
8�37 0.9360 Power loss (MW) 80.9257
3�59 0.9598 Voltage deviation 2.0904
4�61 0.9847 Lmax 0.1100
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Fig. 9. Active power loss convergence characteristics for IEEE 118 bus system.

Table 12
Comparison of performance for Lmax minimization of IEEE 118 bus system.

Techniques Best Lmax Average Lmax Worst Lmax CPU time (s)

QODE 0.0500 0.0506 0.0514 312.657
DE 0.0589 0.0592 0.0597 301.789
CLPSO [20] 0.0965 – – –
PSO [20] 0.1388 – – –
QOTLBO [25] 0.0608 0.0616 0.0631 –
OGSA [26] 0.06000 – – 1112.1
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IEEE 118-bus system

The standard IEEE 118-bus system consists of 186 transmission
lines, 54 generator buses, 64 load buses, 9 branches under load tap
setting transformer and 14 reactive power sources. The system line
data, bus data, generator data and the minimum and maximum
limits for the control variables have been adapted from [20] and
[43]. The upper and lower limits of reactive power sources and
transformer tap settings are taken from [20]. The total system
active power demand is 42.4200 p.u. and reactive power demand
is 14.3800 p.u. at 100 MVA base. In this study, 50 test runs are per-
formed to solve the RPD problem for different objective functions.
Different types of RPD problem for this test system are solved by
using QODE and DE.

Minimization of active power loss
The proposed QODE and DE have been applied for minimization

of active power loss as the objective function. Here, the population
size ðNPÞ, scaling factor ðSFÞ, crossover rate ðCRÞ and the maximum
iteration number ðNmaxÞ have been selected 200, 1.0, 1.0 and 100
respectively for this test system. The optimal values of control vari-
ables obtained from the proposed QODE are given in Table 9. The
Table 11
Optimal value of control variables obtained from QODE for IEEE 118 bus system for volta

Variable QODE Variable QODE V

V1 0.9548 V49 1.0253 V
V4 0.9975 V54 0.9550 V
V6 0.9901 V55 0.9529 V
V8 1.0153 V56 0.9556 V
V10 1.0500 V59 0.9851 V
V12 0.9901 V61 0.9953 V
V15 0.9703 V62 0.9984 V
V18 0.9729 V65 1.0052 V
V19 0.9652 V66 1.0504 V
V24 0.9924 V69 1.0350 V
V25 1.0497 V70 0.9868 V
V26 1.0153 V72 0.9807 V
V27 0.9685 V73 0.9911 V
V31 0.9671 V74 0.9623 V
V32 0.9695 V76 0.9430 T
V34 0.9838 V77 1.0061 T
V36 0.9800 V80 1.0404 T
V40 0.9705 V85 0.9888 T
V42 0.9851 V87 1.0153 T
V46 1.0053 V89 1.0055 T
best, average and worst active power loss and average CPU time
among 50 runs of solutions obtained from proposed QODE and
DE are summarized in Table 10. The active power loss obtained
from gravitational search algorithm (GSA) [24], comprehensive
learning particle swarm optimization (CLPSO) [20], particle swarm
optimization (PSO) [20], quasi-oppositional teaching learning
based optimization (QOTLBO) [25] and opposition-based gravita-
tional search algorithm (OGSA) [26] are also shown in Table 10.
The convergence characteristic obtained from proposed QODE
and DE for minimum active power loss solution is shown in
Fig. 9. It is seen from Table 10 that active power loss obtained from
QODE is the lowest among all other methods. It is also observed
that QODE based approach performs best after that it follows DE,
QOTLBO, OGSA, GSA, CLPSO and PSO.
Enhancement of voltage stability
In this case, the proposed QODE and DE have been applied for

enhancement of voltage stability i.e. minimization of Lmax. Here,
the population size ðNPÞ, scaling factor ðSFÞ, crossover rate ðCRÞ
and the maximum iteration number ðNmaxÞ have been selected
200, 1.0, 1.0 and 100 respectively for this test system. The optimal
values of control variables obtained from the proposed QODE are
given in Table 11. The best, average and worst Lmax and average
CPU time among 50 runs of solutions obtained from proposed
QODE and DE are summarized in Table 12. The Lmax obtained from
comprehensive learning particle swarm optimization (CLPSO) [20],
particle swarm optimization (PSO) [20], quasi-oppositional teach-
ing learning based optimization (QOTLBO) [25] and opposition-
based gravitational search algorithm (OGSA) [26] are also shown
in Table 12. The convergence characteristic obtained from pro-
posed QODE and DE for Lmax minimization is shown in Fig. 10. It
is seen from Table 12 that the value of Lmax obtained from QODE
ge stability enhancement.

ariable QODE Variable QODE

90 0.9853 T65�66 0.9345
91 0.9800 T68�69 0.9346
92 1.0039 T81�82 0.9353
99 1.0101 Qc5 �0.2931
100 1.0172 Qc34 0.0000
103 1.0039 Qc37 �0.1504
104 0.9756 Qc44 0.0929
105 0.9702 Qc45 0.0976
107 0.9520 Qc46 0.0000
110 0.9730 Qc48 0.1382
111 0.9803 Qc74 0.0000
112 0.9751 Qc79 0.0222
113 0.9933 Qc82 0.1529
116 1.0051 Qc83 0.1973
8�5 0.9805 Qc105 0.0000
26�25 0.9602 Qc107 0.0000
30�17 0.9607 Qc110 0.0003
38�37 0.9351 Power loss (MW) 94.0059
63�59 0.9597 Voltage deviation 1.6066
64�61 0.9848 Lmax 0.0500
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Fig. 10. Lmax convergence characteristics for IEEE 118 bus system.

Table 14
Comparison of performance for voltage deviation of IEEE 118 bus system.

Techniques Best voltage
deviation

Average voltage
deviation

Worst voltage
deviation

CPU time
(s)

QODE 1.6008 1.6012 1.6019 301.4058
DE 1.6167 1.6172 1.6178 290.0573
CLPSO [20] 1.6177 – – –
PSO [20] 2.2359 – – –
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is the lowest among all other methods. It is also observed that
QODE based approach performs best after that it follows DE, OGSA,
QOTLBO, OGSA, CLPSO and PSO.
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Fig. 11. Voltage deviation convergence characteristics for IEEE 118 bus system.
Improvement of voltage profile
In this case, the proposed QODE and DE have been applied for

improvement of voltage profile. Here, the population size ðNPÞ,
scaling factor ðSFÞ, crossover rate ðCRÞ and the maximum iteration
number ðNmaxÞ have been selected 200, 1.0, 1.0 and 100 respec-
tively for this test system. The optimal values of control variables
obtained from the proposed QODE are given in Table 13. The best,
average and worst voltage deviation and average CPU time among
50 runs of solutions obtained from proposed QODE and DE are
summarized in Table 14. The voltage deviation obtained from com-
prehensive learning particle swarm optimization (CLPSO) [20] and
particle swarm optimization (PSO) [20] is also shown in Table 14.
The convergence characteristic obtained from proposed QODE
and DE for voltage deviation is shown in Fig. 11. It is seen from
Table 14, that the voltage deviation obtained from QODE is the
lowest among all other methods. It is also observed that QODE
based approach performs best after that it follows DE, CLPSO and
PSO.
Table 13
Optimal value of control variables obtained from QODE for IEEE 118 bus system for impro

Variable QODE Variable QODE V

V1 0.9553 V49 1.0253 V
V4 0.9981 V54 0.9551 V
V6 0.9905 V55 0.9557 V
V8 1.0152 V56 0.9565 V
V10 1.0498 V59 0.9849 V
V12 0.9901 V61 0.9953 V
V15 0.9706 V62 0.9981 V
V18 0.9731 V65 1.0054 V
V19 0.9655 V66 1.0500 V
V24 0.9923 V69 1.0350 V
V25 1.0500 V70 0.9871 V
V26 1.0151 V72 0.9803 V
V27 0.9683 V73 0.9908 V
V31 0.9672 V74 0.9634 V
V32 0.9711 V76 0.9431 T
V34 0.9846 V77 1.0063 T
V36 0.9820 V80 1.0401 T
V40 0.9703 V85 0.9891 T
V42 0.9851 V87 1.0153 T
V46 1.0054 V89 1.0051 T
Conclusion

In this paper, QODE is demonstrated and successfully applied to
solve RPD problem. The RPD problem is formulated as a nonlinear
optimization problem with equality and inequality constraints of
power system. In this study, different objective functions such as
minimization of active power loss and enhancement of voltage
profile and voltage stability are considered. The proposed QODE
approach is tested on IEEE 30-bus, 57-bus and 118-bus test sys-
tems to demonstrate its effectiveness. Due to incorporation of
QOBL technique in DE, proposed QODE approach is able to provide
vement of voltage profile.

ariable QODE Variable QODE

90 0.9853 T65�66 0.9347
91 0.9804 T68�69 0.9351
92 0.9994 T81�82 0.9354
99 1.0100 Qc5 �0.3398
100 1.0171 Qc34 �0.1214
103 1.0044 Qc37 �0.1308
104 0.9768 Qc44 0.0835
105 0.9737 Qc45 0.0973
107 0.9520 Qc46 0.0000
110 0.9733 Qc48 0.0649
111 0.9801 Qc74 0.0000
112 0.9754 Qc79 0.0824
113 0.9929 Qc82 0.1579
116 1.0051 Qc83 0.0123
8�5 0.9848 Qc105 0.0000
26�25 0.9601 Qc107 0.0000
30�17 0.9603 Qc110 0.0316
38�37 0.9351 Power loss (MW) 83.9356
63�59 0.9605 Voltage deviation 1.6008
64�61 0.9849 Lmax 0.0574



40 M. Basu / Electrical Power and Energy Systems 78 (2016) 29–40

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077
better quality solution and less iteration cycles than other evolu-
tionary methods reported in the literature.
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