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This paper presents multi-objective differential evolution (MODE) to solve multi-objective optimal reac-
tive power dispatch (MORPD) problem by minimizing active power transmission loss and voltage devi-
ation and maximizing voltage stability while varying control variables such as generator terminal
voltages, transformer taps and reactive power output of shunt VAR compensators. MODE has been tested
on IEEE 30-bus, 57-bus and 118-bus systems. Numerical results for these three test systems have been
compared with those acquired from strength pareto evolutionary algorithm 2 (SPEA 2).

� 2016 Elsevier Ltd. All rights reserved.
Introduction

Optimal reactive power dispatch (ORPD) perks up power sys-
tem economy and security. Reactive power generation has no pro-
duction cost but in general it has an effect on the production cost
related with active power transmission loss. Multi-objective opti-
mal reactive power dispatch (MORPD) minimizes active power
transmission losses and voltage deviation and maximizes voltage
stability simultaneously by adjusting control variables such as gen-
erator voltages, transformer tap settings, reactive power output of
shunt VAR compensators etc. at the same time satisfying several
equality and inequality constraints.

A variety of classical optimization techniques [1–5] such as
Newton method, linear programming, quadratic programming
and interior point method have been pertained to solve ORPD
problem. ORPD is a mixture of discrete and continuous variables
with multiple local optima. So it is difficult to acquire global
optima by using classical optimization techniques.

In recent times nature-inspired metheuristics such as evolu-
tionary programming (EP) [6], adaptive genetic algorithm (AGA)
[7], particle swarm optimization (PSO) [8], hybrid particle swarm
optimization (HPSO) [9], bacterial foraging algorithm (BFA) [10],
quantum-inspired evolutionary algorithm (QEA) [11], comprehen-
sive learning particle swarm optimization (CLPSO) [12] and hybrid
shuffled frog leaping algorithm (HSFLA) and Nelder-Mead simplex
search (NMSS) [13] have been pertained to solve ORPD problem.

ORPD problem is formulated as multi-objective optimization
problem [14]. The multi-objective problem can be transfer into a
single objective problem by weighted sum of objectives [15,16]
but it may cause the non-commensurable objectives to lose their
importance on merging into a single objective function. Hence, this
approach cannot be pertained to find Pareto-optimal solutions of
MORPD problems. Classical optimization methods can unearth
one solution in one simulation run and therefore these methods
are inconvenient to solve multi-objective optimization problems.
In case of multi-objective evolutionary algorithms (MOEAs) multi-
ple solutions are unearthed in one simulation run [17].

Recent developed multi-objective evolutionary optimization
techniques are non-dominated sorting genetic algorithm (NSGA-
II) [22,23], multi-objective differential evolution (MODE) [24],
strength pareto evolutionary algorithm (SPEA) [25], pareto
archived evolution strategy (PAES) and others. In recent times,
SPEA [14,18], NSGA-II [19], hybrid fuzzy multi-objective evolution-
ary algorithm [20], chaotic parallel vector evaluated interactive
honey Bee mating optimization [21] have been pertained to solve
multi-objective ORPD (MORPD) problem.

This paper proposes MODE for solving MORPD problem which
is formulated by reckoning active power transmission loss mini-
mization, voltage deviation minimization and voltage stability
maximization as competing objectives. The proposed technique is
validated by applying it to IEEE 30-bus, 57-bus and 118-bus test
systems. Test results acquired from the proposed technique are
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compared with those acquired from strength pareto evolutionary
algorithm 2 (SPEA 2).
Problem formulation

The MORPD problem is formulated as a true multi-objective
optimization problem by reckoning minimization of active power
transmission loss and voltage deviation and maximization of volt-
age stability as objectives at the same time fulfilling equality and
inequality constraints. The objective functions and constraints
can be stated as:
Objective functions

Minimization of active power transmission loss
The objective function can be stated as:

Minimize F1 ¼ Ploss ¼
XNTL
k¼1

gk½V2
i þ V2

j � 2ViVj cosðdi � djÞ� ð1Þ

where Ploss signifies active power transmission loss, NTL is the num-
ber of transmission lines, gk is the conductance of branch k con-
nected between ith bus and jth bus, Vi and Vj are the magnitude
voltage of ith and jth busses, di and dj are the phase angle of voltages
of the ith and jth busses.
Minimization of voltage deviation
The objective is to minimize the voltage deviation of all load

ðPQÞ busses from 1 p.u to perk up power system security and ser-
vice quality. The objective function can be stated as:

Minimize F2 ¼
XNPQ
i¼1

jVi � 1:0j ð2Þ

where NPQ is the number of load busses.

Maximization of voltage stability
Voltage stability is the capacity of a power system to keep up

suitable voltages at all bus bars beneath normal operating condi-
tion and even after disturbances such as change in load demand
or system configuration. In recent times a number of major net-
work collapses [28] have been taken place due to voltage instabil-
ity. Improvement of voltage stability has been acquired by
minimizing voltage stability indicator i.e. L – index value at each
bus which signifies voltage collapse condition of that bus. Lj of
jth bus [29] can be stated as:

Lj ¼ 1�
XNPV
i¼1

Fji
Vi

Vj

�����
����� where j ¼ 1;2; . . . . . . ;NPQ ð3Þ

Fji ¼ �½Y1��1½Y2� ð4Þ
where NPV is the number of PV bus and NPQ is the number of PQ
bus. Y1 and Y2 are sub-matrices. YBUS acquired after segregating
the PQ and PV bus parameters can be stated as:

IPQ
IPV

� �
¼ Y1Y2

Y3Y4

� �
VPQ

VPV

� �
ð5Þ

L – index is computed for all PQ busses. Lj is zero or one depend-
ing upon no load condition or voltage collapse condition of jth bus.
The objective function [27] can be stated as:

Minimize F3 ¼ maxðLjÞ; where j ¼ 1;2; . . . ;NPQ ð6Þ
Constraints

Equality constraints

PGi � PDi � Vi

XNB
j¼1

Vj Gij cosðdi � djÞ þ Bij sinðdi � djÞ
� � ¼ 0;

i ¼ 1;2; . . . ;NB ð7Þ

QGi � QDi � Vi

XNB
j¼1

Vj Gij sinðdi � djÞ � Bij cosðdi � djÞ
� � ¼ 0;

i ¼ 1;2; . . . ;NB ð8Þ
where NB is the number of busses, PGi and QGi are active and reac-
tive power generation at the ith bus, PDi and QDi are active and reac-
tive power demands at the ith bus, Gij and Bij are the transfer
conductance and susceptance between ith bus and jth bus
respectively.

Inequality constraints
Generator constraints. The generator voltage magnitudes and reac-
tive power outputs curbed by their minimum and maximum limits
can be stated as:

Vmin
Gi 6 VGi 6 Vmax

Gi ; i ¼ 1;2; . . . ;NG ð9Þ

Qmin
Gi 6 QGi 6 Qmax

Gi ; i ¼ 1;2; . . . ;NG ð10Þ
Shunt VAR compensator constraints. Reactive power output of shunt
VAR compensators curbed by their minimum and maximum limits
can be stated as:

Qmin
ci 6 Qci 6 Qmax

ci ; i ¼ 1;2; . . . ;NC ð11Þ
Transformer constraints. Transformer tap settings curbed by their
physical deliberation can be stated as:

Tmin
i 6 Ti 6 Tmax

i ; i ¼ 1;2; . . . ;NT ð12Þ
Security constraints. The voltage magnitude of each PQ bus curbed
by its minimum and maximum limits and transmission line flow
curbed by its maximum limit can be stated as:

Vmin
Li 6 VLi 6 Vmax

Li ; i ¼ 1;2; . . . ;NPQ ð13Þ

Sli 6 Smax
li ; i ¼ 1;2; . . . ;NTL ð14Þ
Principle of multi-objective optimization

Most of the real-world problems involve simultaneous opti-
mization of several objective functions. These functions are non-
commensurable and often competing and conflicting objectives.
Multi-objective optimization having such conflicting objective
functions gives rise to a set of optimal solutions, instead of one
optimal solution because no solution can be considered to be bet-
ter than any other with respect to all objective functions. These
optimal solutions are known as pareto-optimal solutions.

Generally, multi-objective optimization problem consisting of a
number of objectives and several equality and inequality con-
straints can be formulated as follows:

Minimize f iðxÞ i ¼ 1; . . . . . . ;Nobj ð15Þ
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Subject to
gkðxÞ ¼ 0 k ¼ 1; . . . ;K
hlðxÞ 6 0 l ¼ 1; . . . ; L

�
ð16Þ

where f i is the ith objective function, x is a decision vector.

Multi-objective differential evolution

Differential Evolution (DE) is a type of evolutionary algorithm
[26,27] for optimization problems over a continuous domain. DE
is exceptionally simple, significantly faster and robust. The basic
idea of DE is to adapt the search during the evolutionary process.
At the start of the evolution, the perturbations are large since par-
ent populations are far away from each other. As the evolutionary
process matures, the population converges to a small region and
the perturbations adaptively become small. As a result, DE per-
forms a global exploratory search during the early stages of the
evolutionary process and local exploitation during the mature
stage of the search. In DE the fittest of an offspring competes
one-to-one with that of corresponding parent which is different
from other evolutionary algorithms. This one-to-one competition
gives rise to faster convergence rate. In multi-objective differential
evolution (MODE) [24], a pareto-based approach is introduced to
implement the selection of the best individuals.

General approach

Before describing the multi-objective differential evolution
(MODE), nondominated sorting procedure, crowded distance esti-
mation procedure and simple crowded comparison operator have
been discussed.

Nondominated sorting procedure
In order to identify solutions of the first nondominated front in a

population of size NP, each solution can be compared with every
other solution in the population to find if it is dominated. At this
stage, all individuals in the first nondominated front are found. In
order to find the individuals in the next nondominated front, the
solutions of the first front are discounted temporarily and each
solution of the remaining population can be compared with every
other solution of the remaining population to find if it is dominated.
Thus all individuals in the second nondominated front are found.
This is true for finding third and higher levels of nondomination.

For each solution two entities are calculated: (a) domination
count np, the number of solutions which dominate the solution p
and (b) Sp, a set of solutions that the solution p dominates. The
algorithm for the formation of fast nondominated sort is described
below.

Algorithm 1: Non dominated sort

for each p 2 P
Sp ¼ /
np ¼ 0
for each q 2 P
if ðp � qÞ then if p dominates q
Sp ¼ Sp [ fqg add q to the set of solutions dominated

by p
else if ðq � pÞ then
np ¼ np þ 1 increment the domination counter of p

if np ¼ 0 then p belongs to the first front
Prank ¼ 1

F1 ¼ F1 [ fpg

Each population is assigned a rank equal to its nondomination level
or front number (1 is the best level, 2 is the next-best level and so on).
Crowded distance estimation procedure
To get an estimate of the density of solutions surrounding a par-

ticular solution in the population, the average distance of two
points on either side of this point along each of the objectives is
calculated. This quantity serves as an estimate of the perimeter
of the cuboid formed by using the nearest neighbors as the ver-
tices. This is called crowding distance. The crowding-distance com-
putation requires sorting the population according to each
objective function value in ascending order of magnitude. There-
after, for each objective function, the boundary populations (popu-
lations with smallest and largest function values) are assigned an
infinite distance value so that boundary points are always selected.
All other intermediate populations are assigned a distance value
equal to the absolute normalized difference in the function values
of two adjacent populations. This calculation is continued with
other objective functions. The overall crowding-distance value is
calculated as the sum of individual distance values corresponding
to each objective. Each objective function is normalized before cal-
culating the crowding distance.

The algorithm shown below outlines the crowding distance
computation procedure of all solutions in an nondominated set F.

Algorithm 2: Crowding distance assignment

l ¼ jFj number of solutions in F
for each i, set F½i�distance ¼ 0 initialize distance
for each objective m
F ¼ sort ðF;mÞ sort using each objective value
F½1�distance ¼ F½l�distance ¼/
for i ¼ 2 to ðl� 1Þ
F½i�distance ¼ F½i�distance þ ðF½iþ 1� �m� F½i� 1� �mÞ

=ðfmax
m � fmin

m Þ

Here, F½i�:m refers to themth objective function value of the ith indi-

vidual in the set F. fmax
m and fmin

m are the maximum and minimum
values of the mth objective function.

Crowded-comparison operator
The crowded-comparison operator ð�Þ guides the selection pro-

cess at the various stages of the algorithm toward a uniformly
spread-out pareto-optimal front. Every individual i in the popula-
tion has two attributes:

(a) nondomination rank ðirankÞ
(b) crowding distance ðidistanceÞ

i � j if irank < jrank or ðirank ¼ jrankÞ and ðidistance > jdistanceÞð Þ

Between two populations with differing nondomination ranks,
the population with the lower (better) rank is preferred. If both
populations belong to the same front, then the population with lar-
ger crowding distance is preferred.

Computational flow

Firstly, a population of size, NP, is generated randomly and
objective functions are evaluated. At a given generation of the evo-
lutionary search, the population is sorted into several ranks based
on non-domination. Secondly, DE operations are carried out over
the individuals of the population. Trial vectors of size NP are gener-
ated and objective functions are evaluated. Both the parent vectors
and trial vectors are combined to form a population of size 2NP.
Then, the ranking of the combined population is carried out fol-
lowed by the crowding distance calculation. The best NP individu-
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als are selected based on its ranking and crowding distance. These
individuals act as the parent vectors for the next generation. The
algorithm of MODE can be described in the following steps:

Step 1. Generate box, R, of size NP. Parent vectors of size NP is
randomly generated and kept in R.
Step 2. Classify these vectors into fronts based on nondomina-
tion [22] as follows:
(a) Create new empty box R/ of size NP.
(b) Compare each vector with all other vectors in R.
(c) Start with i ¼ 1.
(d) If ith vector is not dominated by any other vector in R,

keep ith vector in R/ and go to (f).
(e) If ith vector is dominated by any other vector in R, go to

(f).
(f) Increment i by one. If i 6 NP, go to (d) otherwise go to (g).
(g) R/ now contains a sub-box (of size 6 NP) of nondomi-

nated vectors, referred to as the first front or sub-box.
Assign it a rank number equal to one (Irank ¼ 1).

(h) Create subsequent fronts or sub-boxes of R/ with the vec-
tors remaining in R and assign these Irank ¼ 2;3; . . ..
Finally, all NP vectors are in R/ into one or more fronts.
Step 3. To calculate the crowding distance, Ii;dist , for the ith vec-
tor in any front, F, of R/, sort all the vectors in front, F, according
to each objective function value in ascending order of magni-
tude. The crowding distance of the ith vector in its front F is
the average side-length of the cuboid formed by using the near-
est neighbors as the vertices. Assign large values of crowding
distance Idist to the boundary vectors (vectors with smallest
and largest function values).
The following procedure is adopted to identify the better of the
two vectors. Vector i is better than vector j (i) if Ii;rank < Ij;rank or
(ii) if Ii;rank ¼ Ij;rank and Ii;dist > Ij;dist .
Step 4. Take a new empty box R/ / of size NP. Perform DE oper-
ations over NP vectors in R/ to generate NP trial vectors and store
these vectors in R//.
(a) Select a target vector, i in R/.
(b) Start with i ¼ 1.
(c) Choose two vectors, r1 and r2 at random from the NP vec-

tors in R/. Find the vector difference between these two
vectors and multiply this difference with the scaling fac-
tor Fs to get the weighted difference.

(d) Choose a third random vector r3 from the NP vectors in R/

and add this vector to the weighted difference to obtain
the noisy random vector.

(e) Perform crossover between the target vector and noisy
random vector to find the trial vector. This is carried
out by generating a random number and if random num-
ber > CR (crossover factor), copy the target vector into
the trial vector else copy the noisy random vector into
the trial vector and put it in box R//.

(f) Increment i by one. If i 6 NP, go to (c) otherwise go to
Step 5.
Step 5. Copy all NP parent vectors from R/ and all NP trial vectors
from R// into box R///. Box R/// has 2NP vectors.
(a) Classify these 2NP vectors into fronts based on non-
domination and calculate the crowding distance of each
vector. Take the best NP vectors from Box R/// and put
into Box R////.
This completes one generation. Stop if generation number is
equal to maximum number of generations. Else copy NP vectors
from Box R//// to the starting box R and go to Step 2.

Fig. 1 portrays the flowchart of multi-objective differential
evolution.
Best compromise solution

Once the Pareto optimal set is obtained, at the end of the MODE,
it is necessary to choose one solution from all non-dominated solu-
tions that represents the best compromise according to the
requirements of the decision maker. Due to the imprecise nature
of the decision maker’s (DM) judgment, it is natural to assume that
the DMmay have fuzzy or imprecise nature goals of each objective
function. Hence, the membership functions are introduced to rep-
resents the goals of each objective function; each membership
function is defined by the experiences and intuitive knowledge of
the decision maker.

In this study, a simple linear membership function portrayed in
Fig. 2 and given by Eq. (17) is considered for each of the objective
functions.

li ¼
0; if f i P fmax

i

fmax
i �f i

fmax
i �fmin

i
if fmin

i < f i < fmax
i

1; if f i 6 fmin
i

8>><
>>:

ð17Þ

where fmin
i and fmax

i are the minimum and the maximum value of
the ith objective function among all non-dominated solutions,
respectively. The membership function li is varied between 0 and
1, where li ¼ 0 indicates the incompatibility of the solution with
the set, while li ¼ 1 means full compatibility.

For each non-dominated solution k, the normalized member-
ship function lk is calculated as follows:

lk ¼
PNobj

i¼1 lk
iPMnd

k¼1

PNobj

i¼1 lk
i

ð18Þ

whereMnd is the number of non-dominated solutions and Nobj is the
number of objective functions. The function lk can be considered as
a membership function of non-dominated solutions in a fuzzy set,
where the solution having the maximum membership in the fuzzy
set is considered as the best compromise solution.
Simulation results

The proposed technique has been pertained to solve MORPD
problem and IEEE 30-bus, IEEE 57-bus and IEEE 118-bus systems
have been tested to confirm its efficacy. In order to show the effi-
cacy of the proposed MODE technique, SPEA 2 has been pertained
to solve the problem. All the algorithms i.e. MODE, SPEA 2 and dif-
ferential evolution (DE), used in this paper for solving MORPD
problem have been executed in MATLAB 7.0 on a PC (Pentium-IV,
80 GB, 3.0 GHz).

In order to explore the extreme points of the trade-off surface,
active power transmission loss, voltage deviation and L-index
objectives are minimized individually by using DE for all the three
test systems.

MODE has been pertained to minimize active power transmis-
sion loss, voltage deviation and L-index objectives simultaneously
for all the three test systems. For comparison, SPEA 2 has been
applied to solve the MORPD problem.

In case of DE, the scaling factor ðSF), crossover rate ðCRÞ and the
maximum iteration number (Nmax) have been chosen as 1, 0.9 and
100 respectively for all the cases of three test system. The popula-
tion size is 100 for IEEE 30-bus system and IEEE 57-bus system but
for IEEE 118-bus system population size is 200.

In case of MODE and SPEA 2, the population size, maximum
number of iterations, scaling factor ðSF) and crossover rate ðCRÞ
have been chosen as 10, 30, 1 and 0.9, respectively for all the three
test systems.
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Fig. 1. Flowchart of multi-objective differential evolution.

1 

:
 :

 :
 :

0      :                              f
minf maxf

μ

Fig. 2. Linear membership function.

M. Basu / Electrical Power and Energy Systems 82 (2016) 213–224 217

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077
50 runs are carried out for each case for each test system and
the best results acquired from 50 runs are given here.
IEEE 30-bus system

The line data, bus data, generator data and the minimum and
maximum limits for the control variables have been adapted from
[3]. The system has six generators at busses 1, 2, 5, 8, 11 and 13 and
four transformers with off nominal tap ratio at lines 6–9, 6–10, 4–
12, and 28–27 and shunt VAR compensators are connected at bus
bars 10, 12, 15, 17, 20, 21, 23, 24 and 29. Total real power demand
is 2.834 p.u. at 100 MVA base.

The optimal control variables and active power transmission
loss, voltage deviation, L-index and CPU time acquired from the
minimization of active power transmission loss, voltage deviation
and L-index by using DE have been summed up in Table 1. The
optimal control variables and active power transmission loss, volt-
age deviation, L-index and CPU time acquired from the best com-
promise solution of last iteration from proposed from MODE and
SPEA 2 have been also summed up in Table 1. The convergence
characteristics acquired from active power transmission loss, volt-
age deviation, L-index minimization by using DE have been por-
trayed in Fig. 3. The distribution of 10 nondominated solutions
acquired from the last iteration of proposed MODE and SPEA 2
for this test system is portrayed in Fig. 4. Fig. 4 portrays the rela-
tionship of active power transmission loss, voltage deviation and
L-index of nondominated solutions.
IEEE 57-bus system

The standard IEEE 57-bus system consists of 80 transmission
lines, seven generators at busses 1, 2, 3, 6, 8, 9, 12 and 15 branches
under load tap setting transformer branches. The reactive power



Table 1
Optimal value of control variables acquired from IEEE 30 bus system for different cases.

Control variable Active power loss minimization Voltage stability enhancement Improvement of voltage profile MORPD MODE MORPD SPEA 2

V1 1.0500 1.0500 1.0500 1.0500 1.0500
V2 1.0338 1.0336 1.0340 1.0338 1.0188
V5 1.0058 1.0055 1.0059 1.0058 1.0189
V8 1.0230 1.0232 1.0235 1.0230 1.0197
V11 1.0913 1.0911 1.0917 1.0913 1.0206
V13 1.0400 1.0402 1.0396 1.0400 1.0211
T6�9 0.9994 0.9875 1.0157 0.9979 1.0153
T6�10 1.0012 1.0031 1.0274 1.0035 0.9633
T4�12 0.9983 1.0222 1.0087 1.0007 1.0132
T28�27 1.0141 0.9895 0.9817 1.0049 0.9575
Qc10 0.0030 0.0000 0.0095 0.0000 0.0029
Qc12 0.0199 0.0032 0.0068 0.0095 0.0000
Qc15 0.0475 0.0500 0.0301 0.0500 0.0500
Qc17 0.0334 0.0314 0.0079 0.0620 0.0333
Qc20 0.0182 0.0500 0.0247 0.0451 0.0444
Qc21 0.0250 0.0249 0.0171 0.0256 0.0500
Qc23 0.0342 0.0486 0.0301 0.0128 0.0220
Qc24 0.0345 0.0403 0.0500 0.0500 0.0000
Qc29 0.0000 0.0500 0.0178 0.0409 0.0500
power loss (MW) 2.6867 7.0812 9.2745 4.6801 7.0800
voltage deviation 0.4609 0.8886 0.0607 0.6572 0.6593
Lmax 0.0581 0.0238 0.0543 0.0507 0.0517
CPU time (sec) 27.78 27.97 28.04 25.56 34.63
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Fig. 3. Active power loss, voltage deviation and L-index convergence characteristics of IEEE 30 bus system.
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sources are considered at busses 18, 25 and 53. The system line
data, bus data, generator data and the minimum and maximum
limits for the control variables, the upper and lower limits of reac-
tive power sources and transformer tap settings have been adapted
from [30]. The total system active power demand is 12.508 p.u. and
reactive power demand is 3.364 p.u. at 100 MVA base.

The optimal control variables and active power transmission
loss, voltage deviation, L-index and CPU time acquired from the
minimization of active power transmission loss, voltage deviation
and L-index by using DE have been summed up in Table 2. The
optimal control variables and active power transmission loss, volt-
age deviation, L-index and CPU time acquired from the best com-
promise solution of last iteration from proposed from MODE and
SPEA 2 have been also summed up in Table 2. The convergence



Table 2
Optimal value of control variables acquired from IEEE 57 bus system for different cases.

Control variable Active power loss minimization Voltage stability enhancement Improvement of voltage profile MORPD MODE MORPD SPEA 2

V1 1.0400 1.0400 1.0400 1.0400 1.0400
V2 1.0101 1.0103 1.0099 1.0100 1.0101
V3 0.9849 0.9847 0.9851 0.9850 0.9853
V6 0.9805 0.9800 0.9803 0.9800 0.9804
V8 1.0054 1.0050 1.0051 1.0050 1.0048
V9 0.9803 0.9805 0.9804 0.9800 0.9801
V12 1.0147 1.0150 1.0152 1.0150 1.0155
T4�18 1.0987 0.9801 0.9831 0.9805 0.9700
T4�18 1.0820 0.9526 0.9510 0.9529 0.9780
T21�20 0.9221 0.9501 0.9507 0.9505 0.9604
T24�26 1.0171 1.0045 1.0043 1.0047 1.0430
T7�29 0.9960 0.9777 0.9769 0.9775 0.9670
T34�32 1.0999 0.9138 0.9139 0.9136 1.0430
T11�41 1.0750 0.9465 0.9461 0.9463 1.0351
T15�45 0.9541 0.9269 0.9258 0.9265 0.9487
T14�46 0.9370 0.9962 0.9957 0.9960 0.9789
T10�51 1.0160 1.0385 1.0379 1.0388 1.0351
T13�49 1.0998 0.9052 0.9053 0.9048 0.9352
T11�43 1.0980 0.9240 0.9229 0.9245 0.9233
T40�56 0.9799 0.9875 0.9868 0.9877 0.9867
T39�57 1.0246 1.0098 1.0095 1.0092 1.0104
T9�55 1.0371 0.9373 0.9367 0.9375 0.9404
Qc18 0.0488 0.0401 0.0000 0.0405 0.0554
Qc25 0.0012 0.0590 0.0008 0.0433 0.0591
Qc53 0.0001 0.0166 0.0583 0.0174 0.0000
Power loss (MW) 15.8473 34.9690 29.9137 18.8903 20.7699
Voltage deviation 3.6588 1.0947 0.6634 1.1004 1.0920
Lmax 0.1625 0.0977 2.7554 0.1755 0.1574
CPU time (sec) 49.53 49.67 49.93 47.77 61.79
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Fig. 5. Active power loss, voltage deviation and L-index convergence characteristics of IEEE 57 bus system.

M. Basu / Electrical Power and Energy Systems 82 (2016) 213–224 219

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077
characteristics acquired from active power transmission loss, volt-
age deviation, L-index minimization by using DE have been por-
trayed in Fig. 5. The distribution of 10 nondominated solutions
acquired from the last iteration of proposed MODE and SPEA 2
for this test system is portrayed in Fig. 6. Fig. 6 portrays the rela-
tionship of active power transmission loss, voltage deviation and
L-index of nondominated solutions.
IEEE 118-bus system

The standard IEEE 118-bus system consists of 186 transmission
lines, 54 generator busses, 64 load busses, 9 branches under load
tap setting transformer and 14 reactive power sources. The system
line data, bus data, generator data and the minimum and maxi-
mum limits for the control variables, the upper and lower limits
of reactive power sources and transformer tap settings have been
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Fig. 6. Pareto-optimal front acquired from the last iteration for IEEE 57 bus system.

Table 3
Optimal value of control variables acquired from active power loss minimization for
IEEE 118 bus system.

Variable

V1 0.9552
V4 0.9984
V6 0.9907
V8 1.0151
V10 1.0500
V12 0.9903
V15 0.9701
V18 0.9730
V19 0.9654
V24 0.9920
V25 1.0500
V26 1.0154
V27 0.9680
V31 0.9671
V32 0.9682
V34 0.9853
V36 0.9793
V40 0.9700
V42 0.9850
V46 1.0050
V49 1.0250
V54 0.9550
V55 0.9516
V56 0.9543
V59 0.9850
V61 0.9950
V62 0.9980
V65 1.0050
V66 1.0500
V69 1.0350
V70 0.9857
V72 0.9800
V73 0.9910
V74 0.9655
V76 0.9422
V77 1.0058
V80 1.0400
V85 0.9885
V87 1.0150
V89 1.0050
V90 0.9800
V91 0.9835
V92 0.9724
V99 1.0103
V100 0.9693
V103 0.9532
V104 0.9370
V105 0.9396
V107 0.9520
V110 0.9567
V111 0.9800
V112 0.9750

Table 3 (continued)

Variable

V113 0.9930
V116 1.0050
T8�5 0.9811
T26�25 0.9603
T30�17 0.9611
T38�37 0.9360
T63�59 0.9598
T64�61 0.9847
T65�66 0.9349
T68�69 0.9345
T81�82 0.9359
Qc5 �0.2599
Qc34 0.0218
Qc37 �0.0145
Qc44 0.0678
Qc45 0.0644
Qc46 0.0000
Qc48 0.0992
Qc74 0.0771
Qc79 0.0852
Qc82 0.1203
Qc83 0.0805
Qc105 0.0828
Qc107 0.1975
Qc110 0.0005

Power loss (MW) 80.9257
Voltage deviation 2.0904
Lmax 0.1100
CPU time (s) 80.07

Table 4
Optimal value of control variables acquired from L-index minimization for IEEE 118
bus system.

Variable

V1 0.9548
V4 0.9975
V6 0.9901
V8 1.0153
V10 1.0500
V12 0.9901
V15 0.9703
V18 0.9729
V19 0.9652
V24 0.9924
V25 1.0497
V26 1.0153
V27 0.9685
V31 0.9671
V32 0.9695
V34 0.9838
V36 0.9800
V40 0.9705
V42 0.9851
V46 1.0053
V49 1.0253
V54 0.9550
V55 0.9529
V56 0.9556
V59 0.9851
V61 0.9953
V62 0.9984
V65 1.0052
V66 1.0504
V69 1.0350
V70 0.9868
V72 0.9807
V73 0.9911
V74 0.9623
V76 0.9430
V77 1.0061
V80 1.0404
V85 0.9888
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Table 4 (continued)

Variable

V87 1.0153
V89 1.0055
V90 0.9853
V91 0.9800
V92 1.0039
V99 1.0101
V100 1.0172
V103 1.0039
V104 0.9756
V105 0.9702
V107 0.9520
V110 0.9730
V111 0.9803
V112 0.9751
V113 0.9933
V116 1.0051
T8�5 0.9805
T26�25 0.9602
T30�17 0.9607
T38�37 0.9351
T63�59 0.9597
T64�61 0.9848
T65�66 0.9345
T68�69 0.9346
T81�82 0.9353
Qc5 �0.3278
Qc34 0.0000
Qc37 �0.1635
Qc44 0.0521
Qc45 0.0905
Qc46 �0.3338
Qc48 0.0324
Qc74 0.0000
Qc79 0.1860
Qc82 0.1253
Qc83 0.1362
Qc105 0.0000
Qc107 �0.1278
Qc110 0.0693

Power loss (MW) 114.45
Voltage deviation 1.6884
Lmax 0.0619
CPU time (s) 80.35

Table 5
Optimal value of control variables acquired from voltage deviation minimization for
IEEE 118 bus system.

Variable

V1 0.9553
V4 0.9981
V6 0.9905
V8 1.0152
V10 1.0498
V12 0.9901
V15 0.9706
V18 0.9731
V19 0.9655
V24 0.9923
V25 1.0500
V26 1.0151
V27 0.9683
V31 0.9672
V32 0.9711
V34 0.9846
V36 0.9820
V40 0.9703
V42 0.9851
V46 1.0054
V49 1.0253
V54 0.9551
V55 0.9557
V56 0.9565

Table 5 (continued)

Variable

V59 0.9849
V61 0.9953
V62 0.9981
V65 1.0054
V66 1.0500
V69 1.0350
V70 0.9871
V72 0.9803
V73 0.9908
V74 0.9634
V76 0.9431
V77 1.0063
V80 1.0401
V85 0.9891
V87 1.0153
V89 1.0051
V90 0.9853
V91 0.9804
V92 0.9994
V99 1.0100
V100 1.0171
V103 1.0044
V104 0.9768
V105 0.9737
V107 0.9520
V110 0.9733
V111 0.9801
V112 0.9754
V113 0.9929
V116 1.0051
T8�5 0.9848
T26�25 0.9601
T30�17 0.9603
T38�37 0.9351
T63�59 0.9605
T64�61 0.9849
T65�66 0.9347
T68�69 0.9351
T81�82 0.9354
Qc5 �0.3398
Qc34 �0.1214
Qc37 �0.1308
Qc44 0.0835
Qc45 0.0973
Qc46 0.0000
Qc48 0.0649
Qc74 0.0000
Qc79 0.0824
Qc82 0.1579
Qc83 0.0123
Qc105 0.0000
Qc107 0.0000
Qc110 0.0316

Power loss (MW) 83.9356
Voltage deviation 1.6008
Lmax 0.0674
CPU time (s) 80.97

Table 6
Optimal value of control variables acquired from MODE for IEEE 118 bus system.

Variable

V1 0.9556
V4 0.9979
V6 0.9904
V8 1.0150
V10 1.0477
V12 0.9903
V15 0.9715
V18 0.9732
V19 0.9649
V24 0.9921
V25 1.0500

(continued on next page)
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Table 6 (continued)

Variable

V26 1.0153
V27 0.9684
V31 0.9672
V32 0.9689
V34 0.9835
V36 0.9803
V40 0.9709
V42 0.9856
V46 1.0055
V49 1.0252
V54 0.9556
V55 0.9563
V56 0.9569
V59 0.9848
V61 0.9955
V62 0.9986
V65 1.0051
V66 1.0500
V69 1.0350
V70 0.9875
V72 0.9806
V73 0.9911
V74 0.9632
V76 0.9434
V77 1.0062
V80 1.0415
V85 0.9867
V87 1.0155
V89 1.0051
V90 0.9852
V91 0.9807
V92 1.0045
V99 1.0103
V100 1.0171
V103 1.0053
V104 0.9819
V105 0.9757
V107 0.9528
V110 0.9739
V111 0.9805
V112 0.9758
V113 0.9927
V116 1.0056
T8�5 0.9854
T26�25 0.9605
T30�17 0.9601
T38�37 0.9355
T63�59 0.9604
T64�61 0.9849
T65�66 0.9348
T68�69 0.9352
T81�82 0.9358
Qc5 �0.0756
Qc34 0.0083
Qc37 �0.2464
Qc44 0.0016
Qc45 0.0812
Qc46 �0.2410
Qc48 0.0381
Qc74 0.0000
Qc79 0.1230
Qc82 0.0396
Qc83 0.1008
Qc105 0.0000
Qc107 �0.1057
Qc110 0.0375

Power loss (MW) 104.83
Voltage deviation 1.6954
Lmax 0.0662
CPU time (s) 81.45

Table 7
Optimal value of control variables obtained from SPEA 2 for IEEE 118 bus system.

Variable

V1 0.9550
V4 0.9981
V6 0.9905
V8 1.0154
V10 1.0479
V12 0.9905
V15 0.9712
V18 0.9734
V19 0.9645
V24 0.9920
V25 1.0500
V26 1.0157
V27 0.9683
V31 0.9678
V32 0.9688
V34 0.9834
V36 0.9803
V40 0.9708
V42 0.9854
V46 1.0058
V49 1.0256
V54 0.9552
V55 0.9561
V56 0.9568
V59 0.9849
V61 0.9953
V62 0.9986
V65 1.0055
V66 1.0500
V69 1.0350
V70 0.9875
V72 0.9807
V73 0.9913
V74 0.9632
V76 0.9430
V77 1.0065
V80 1.0411
V85 0.9866
V87 1.0158
V89 1.0053
V90 0.9852
V91 0.9808
V92 1.0043
V99 1.0106
V100 1.0171
V103 1.0052
V104 0.9817
V105 0.9755
V107 0.9523
V110 0.9736
V111 0.9804
V112 0.9758
V113 0.9926
V116 1.0054
T8�5 0.9852
T26�25 0.9605
T30�17 0.9602
T38�37 0.9352
T63�59 0.9601
T64�61 0.9849
T65�66 0.9348
T68�69 0.9353
T81�82 0.9356
Qc5 -0.1388
Qc34 0.0000
Qc37 �0.1229
Qc44 0.0002
Qc45 0.0858
Qc46 �0.1585
Qc48 0.0013
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Table 7 (continued)

Variable

Qc74 0.0000
Qc79 0.1869
Qc82 0.0078
Qc83 0.1136
Qc105 0.0000
Qc107 �0.1121
Qc110 0.0466

Power loss (MW) 101.92
Voltage deviation 1.7332
Lmax 0.0660
CPU time (s) 98.88
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Fig. 8. Pareto-optimal front acquired from the last iteration for IEEE 118 bus
system.
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adapted from [31]. The total system active power demand is
42.4200 p.u. and reactive power demand is 14.3800 p.u. at 100
MVA base.

The optimal control variables and active power transmission
loss, voltage deviation, L-index and CPU time acquired from the
minimization of active power transmission loss, voltage deviation
and L-index by using DE have been summed up Tables 3, 4 and 5
respectively. The optimal control variables and active power trans-
mission loss, voltage deviation, L-index and CPU time acquired
from the best compromise solution of last iteration from proposed
MODE and SPEA 2 have been summed up in Tables 6 and 7 respec-
tively. The convergence characteristics acquired from active power
transmission loss, voltage deviation, L-index minimization by
using DE have been portrayed in Fig. 7. The distribution of 10 non-
dominated solutions acquired from the last iteration of proposed
MODE and SPEA 2 for this test system is portrayed in Fig. 8.
Fig. 8 portrays the relationship of active power transmission loss,
voltage deviation and L-index of nondominated solutions.
Conclusion

This paper studies MORPD problem which is formulated as a
multi-objective optimization problem by reckoning minimization
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Fig. 7. Active power loss, voltage deviation and L-index
of active power transmission loss, minimization of voltage devia-
tion and maximization of voltage stability as competing objectives.
Test results acquired from MODE have been compared with those
acquired from SPEA 2. The proposed MODE based MORPD problem
assists a power system operator to acquire superior dispatch
decisions on the basis of pareto-optimal solutions as compared to
SPEA 2.
References

[1] Dommel H, Tinny W. Optimal power flow solution. IEEE Trans Power Appar
Syst 1968;PAS-87(10):1866–76.

[2] Momoh JA, El-Hawary ME, Adapa R. A review of selected optimal power flow
literature to 1993 Part I & II. IEEE Trans Power Syst 1999;14(1):96–111.

[3] Lee K, Park Y, Ortiz J. A united approach to optimal real and reactive power
dispatch. IEEE Trans Power Appar Syst 1985;PAS-104(5):1147–53.

[4] Quintana VH, Santos-Nieto M. Reactive power-dispatch by successive
quadratic programming. IEEE Trans Energy Conver 1989;4(3):425–35.

[5] Granville S. Optimal reactive dispatch through interior point methods. IEEE
Trans Power Syst 1994;9(1):136–46.

[6] Wu QH, Ma JT. Power system optimal reactive power dispatch using
evolutionary programming. IEEE Trans Power Syst 1995;10(3):1243–9.

[7] Wu QH, Cao YJ, Wen JY. Optimal reactive power dispatch using an adaptive
genetic algorithm. Electr Power Energy Syst 1998;20(8):563–9.
0 50 100
1.5

2

2.5

3

3.5

V
ol

ta
ge

 D
ev

ia
tio

n

Iteration

50 60 70 80 90 100
ation

convergence characteristics of IEEE 118 bus system.

http://refhub.elsevier.com/S0142-0615(16)30419-7/h0005
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0005
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0010
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0010
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0015
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0015
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0020
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0020
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0025
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0025
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0030
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0030
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0035
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0035


224 M. Basu / Electrical Power and Energy Systems 82 (2016) 213–224

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077
[8] Yoshida H, Kawata K, Fukuyama Y, Takamura S, Nakanishi Y. A particle swarm
optimization for reactive power and voltage control considering voltage
security assessment. IEEE Trans Power Syst 2000;15(4):1232–9.

[9] Esmin AAA, Lambert-Torres G, De-Souza ACZ. A hybrid particle swarm
optimization applied to loss power minimization. IEEE Trans Power Syst
2005;20(2):859–66.

[10] Tripathy M, Mishra S. Bacterial foraging-based solution to optimize both real
power loss and voltage stability limit. IEEE Trans Power Syst 2007;22
(1):240–8.

[11] Vlachogiannis JG, Lee KY. Quantum-inspired evolutionary algorithm for real
and reactive power dispatch. IEEE Trans Power Syst 2008;23(4):1627–36.

[12] Mahadevan K, Kannan PS. Comprehensive learning particle swarm
optimization for reactive power dispatch. Appl Soft Comput 2010;10:641–52.

[13] Khorsandi A, Alimardani A, Vahidi B, Hosseinian SH. Hybrid shuffled frog
leaping algorithm and Nelder-Mead simplex search for optimal reactive power
dispatch. IET Gen Trans Distrib 2011;5(2):249–56.

[14] Abido MA, Bakhashwain JM. Optimal VAr dispatch using a multiobjective
evolutionary algorithm. Electr Power Energy Syst 2005;27(1):13–20.

[15] Hsaio YT, Chaing HD, Liu CC, Chen YL. A computer package for optimal
multiobjective VAr planning in large scale power systems. IEEE Trans Power
Syst 1994;9(2):668–76.

[16] Chen YL, Ke YL. Multi-objective VAr planning for large-scale power systems
using projection-based two-layer simulated annealing algorithms. IEE Proc
Gener Transm Distrib 2004;151(4):555–60.

[17] Deb K. Multiobjective optimization using evolutionary algorithms. Chichester
(UK): Wiley; 2001.

[18] Sailaja kumari M, Maheswarapu S. Enhanced genetic algorithm based
computation technique for multi-objective optimal power flow solution. Int
J Electr Power Energy Syst 2010;32(6):736–42.

[19] Jeyadevi S, Baskar S, Babulal CK, Willjuice Iruthayarajan M. Solving
multiobjective optimal reactive power dispatch using modified NSGA-II. Int J
Electr Power Energy Syst 2011;33:219–28.
[20] Saraswat A, Saini A. Multi-objective optimal reactive power dispatch
considering voltage stability in power systems using HFMOEA. Eng Appl
Artif Intell 2013;26:390–404.

[21] Ghasemi A, Valipour K, Tohidi A. Multi objective optimal reactive power
dispatch using a new multi objective strategy. Electr Pow Energy Syst
2014;57:318–34.

[22] Srinivas N, Deb K. Multi-objective function optimization using nondominated
sorting genetic algorithms. Evol Comp 1995;2(3):221–48.

[23] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans Evol Comput April 2002;6(2):182–97.

[24] Babu BV, Anbarasu B. Multi-objective differential evolution (MODE): an
evolutionary algorithm for multi-objective optimization problems (MOOPs).
In: Proceedings of the third international conference on computational
intelligence, robotics, and autonomous systems (CIRAS-2005), Singapore,
December 13–16, 2005.

[25] Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength pareto
evolutionary algorithm. Technical report TIK – report 103, Zurich
(Switzerland): Swiss Federal Institute of Technology (ETH); May 2001.

[26] Storn R, Price KV. Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. J Glob Optim 1997;11(4):341–59.

[27] Price KV, Storn R, Lampinen J. Differential evolution: a practical approach to
global optimization. Berlin: Springer-Verlag; 2005.

[28] IEEE Working Group: ‘‘Voltage stability of power systems: concepts, analytical
tools and industry experience”,.IEEE Special Publication 90TH0358-2-PWR;
1990.

[29] Kessel P, Glavitsch H. Estimating the voltage stability of a power system. IEEE
Trans Power Deliv 1986;1(3):346–54.

[30] The IEEE 57-bus test system [online], available at <http://www.ee.washington.
edu/research/pstca/pf57/pg_tca57bus.htm>.

[31] The IEEE 118-bus test system [online], available at <http://www.ee.
washington.edu/research/pstca/pf118/pg_tca118bus.htm>.

http://refhub.elsevier.com/S0142-0615(16)30419-7/h0040
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0040
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0040
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0045
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0045
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0045
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0050
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0050
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0050
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0055
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0055
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0060
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0060
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0065
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0065
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0065
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0070
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0070
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0075
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0075
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0075
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0080
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0080
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0080
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0085
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0085
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0090
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0090
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0090
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0095
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0095
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0095
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0100
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0100
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0100
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0105
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0105
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0105
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0110
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0110
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0115
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0115
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0130
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0130
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0135
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0135
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0145
http://refhub.elsevier.com/S0142-0615(16)30419-7/h0145
http://www.ee.washington.edu/research/pstca/pf57/pg_tca57bus.htm
http://www.ee.washington.edu/research/pstca/pf57/pg_tca57bus.htm
http://www.ee.washington.edu/research/pstca/pf118/pg_tca118bus.htm
http://www.ee.washington.edu/research/pstca/pf118/pg_tca118bus.htm

	Multi-objective optimal reactive power dispatch using multi-objective differential evolution
	Introduction
	Problem formulation
	Objective functions
	Minimization of active power transmission loss
	Minimization of voltage deviation
	Maximization of voltage stability

	Constraints
	Equality constraints
	Inequality constraints
	Generator constraints
	Shunt VAR compensator constraints
	Transformer constraints
	Security constraints



	Principle of multi-objective optimization
	Multi-objective differential evolution
	General approach
	Nondominated sorting procedure
	Crowded distance estimation procedure
	Crowded-comparison operator

	Computational flow
	Best compromise solution

	Simulation results
	IEEE 30-bus system
	IEEE 57-bus system
	IEEE 118-bus system

	Conclusion
	References


