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a b s t r a c t

Optimal reactive power dispatch (ORPD) problem is an important problem in the operation of power
systems. It is a nonlinear and mixed integer programming problem, which determines optimal values for
control parameters of reactive power producers to optimize specific objective functions while satisfying
several technical constraints. In this paper, stochastic multi-objective ORPD (SMO-ORPD) problem is
studied in a wind integrated power system considering the loads and wind power generation un-
certainties. The proposed multi objective optimization problem is solved using ε-constraint method, and
fuzzy satisfying approach is employed to select the best compromise solution. Two different objective
functions are considered as follow: 1) minimization of the active power losses and 2) minimization of the
voltage stability index (named L-index). In this paper VAR compensation devices are modeled as discrete
variables. Moreover, to evaluate the performance of the proposed method for solution of multi-objective
problem, the obtained results for deterministic case (DMO-ORPD), are compared with the available
methods in literature. The proposed method is examined on the IEEE-57 bus system. The proposed
models are implemented in GAMS environment. The numerical results substantiate the capability of the
proposed SMO-ORPD problem to deal with uncertainties and to determine the best settings of control
variables.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

From the viewpoint of operation cost, environmental concerns
and system security, optimal reactive power dispatch (ORPD) is
important for power utilities operators. The ORPD is a specific
subcategory of OPF problem, which optimizes objective functions
such as transmission losses or voltage stability enhancement by
adjusting the generators voltages set-points, allocating reactive
power compensation in weak buses, adjusting transformers tap
ratios, etc.

1.1. Literature review

ORPD can be divided into two categories considering the
number of target objective functions. These two categories are
M. Mohseni-Bonab), rabiee@
mmadi-Ivatloo).
single objective function (mostlyminimizing power losses) ormulti
objective (with considering two or three objectives) ORPD.

In the single objective ORPD, intelligent search based optimi-
zation algorithms like seeker optimization algorithm (SOA) [1],
harmony search algorithm [2], differential evolutionary-based
method [3,4], and gravitational search algorithm (GSA) [5] have
been developed to deal with the ORPD problem. In this category
voltage stability enhancement index or system real power loss are
minimizing separately. In Refs. [6], a method for coordinated
optimal allocation of reactive power sources in ACeDC power
systems using unified power flow controller (UPFC) is presented for
minimization of the sum of the squares of the voltage deviations of
all load buses. Management and scheduling of VAR generation to
enhance the voltage stability margin (VSM) in the framework of
optimal reactive power dispatch (ORPD) problem is proposed in
Ref. [7]. A reformed particle swarm optimization (PSO) strategy for
the ORPD in the presence of wind farms has been proposed in
Refs. [8], where PSO merged with a feasible solution search
(FSSPSO). Optimal activeereactive power dispatch (OARPD)
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Nomenclature

Sets
NB set of buses
NL set of branches
NG set of generating units
NW set of wind farms
Ns set of all possible scenarios
NT set of tap changing transformers
NC set of VAR compensators
NPQ set of system PQ buses
NPV set of system PV buses

Indices
k index of objective functions
m index of tap changing transformers
i/j index of bus numbers
S index of scenario numbers
[ index of transmission lines
sl index of slack bus

Parameters
ps probability of scenario s
pd probability of demand scenario d
pw probability of wind power generation scenario w
Yij:gij magnitude/angle of ij-th element of YBUS matrix (pu/

radian)
PGi;s active power production of generator at bus i in

scenario s
Pmin
Gi

=Pmax
Gi

minimum/maximum value for active power
Qmin
Ci

=Qmax
Ci

minimum/maximum value for reactive power
compensation at bus i in scenario s

Tmin
m =Tmax

m minimum/maximum value for m-th tap changer
settings

Pmin
Dd

=Pmax
Dd

minimum/maximum value of real power demand at
d-th load scenario

PDi;s expected real power of the i-th bus in scenario s
QDi ;s expected reactive power of the i-th bus in scenario s
Qmin
Gi

=Qmax
Gi

minimum/maximum value for reactive power of
generator at bus i

Vmin
i =Vmax

i minimum/maximum value for voltage magnitude of
the i-th bus

Smax
[ maximum transfer capacity of line [

v wind speed in m/s
vcin=v

c
out cut-in/out speed of wind turbine in m/s

vrated rated speed of wind turbine in m/s
Pavlw available wind power generation
Qb
Ci

VAR compensation capacity in each step at bus i
Imin
Ci

=Imax
Ci

minimum/maximum Reactive power compensation
step at bus i

cos(4lag,i)/cos(4lead,i) lag/lead power factor limits of the wind
farms located at node i

zWi;s
percentage of wind power rated capacity realized at
scenario sin bus i

PrWi
wind farm rated capacity installed in bus i

Variables
xs vector of dependent variables in scenario s
us vector of control variables in scenario s
Tm value of m-th tap changer setting (which connects

buses i and j)
Vi,s voltage magnitude of bus i in scenario s
qi,s voltage angle at bus i in scenario s
S[,s power flow of [-th branch in scenario s
PGsl;s active power production of slack bus in scenario s
PWi ;s=QWi;s active/reactive power produced by wind farm at

scenario s
Qmin
Wi

=Qmax
Wi

minimum/maximum value of reactive power
produced by wind farm

QGi ;s reactive power production of generator at bus i in
scenario s

ICi;s reactive power compensation step at bus i in scenario s
QCi;s reactive power compensation at bus i in scenario s
fk individual value of k-th conflicting objective functionbfk normalized value of k-th objective function

Functions
PLs active power losses in scenario s
EPL expected active power losses
EPLL/EPLUminimum/maximum value for expected real power

loss
Lmax,s Lmax value in scenario s
ELmax expected value of voltage stability enhancement index

(Lmax)
ELLmax=EL

U
max minimum/maximum value of ELmax
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problem resolved one-by-one with evolutionary calculation
methods like as evolutionary programming (EP), PSO, differential
evolution (DE) and hybrid differential evolution (HDE) in Ref. [9].
An enhanced load flow Jaccobian is presented in Ref. [10] to
redispatch the reactive power. The proposed approximation used
tangent vector approach to decrease operational loss in a vital area
considering the voltage collapse possibility. In Ref. [11] a new
objective function is proposed for the ORPD problem based on a
local voltage stability index called DSY, which has a strong corre-
lation with VSM. Hybridized multiple heuristic algorithms are
widely used for solution of ORPD problem. For example, hybrid
shuffled frog leaping algorithm (SFLA) and regional seek algorithm
known as NeldereMead (NM-SFLA) [12], hybrid modified teach-
ingelearning algorithm (MTLA) and double differential evolution
(DDE) [13], hybrid modified imperialist competitive algorithm
(MICA) and invasive weed optimization (IWO) [14], firefly algo-
rithm (FA) and Nelder Mead (NM) simplex method [15] are used for
ORPD solution. Themost significant advantage of hybrid algorithms
is higher speed of convergence to the optimal solution. A penalty
function based method presented in Ref. [16] to convert discrete
ORPD model to the continuous and differentiable one. In a recent
study [17], to consider uncertainties in ORPD problem, the re-
searchers used chance constrained programming to solve ORPD
problem for minimizing active power losses. Nodal power in-
jections and random branch outages are considered as uncertainty
sources in this paper.

Voltage stability control is one of present-day challenges in
power systems operation and control. In Ref. [18] a multi-period
ORPD model is proposed which uses the concept of model pre-
dictive voltage control. In Ref. [19], the settings of reactive power
compensation devices are determine based on new improved
voltage stability index (IVSI) by using hybrid differential evolution
(HDE) algorithm. Voltage stability constrained optimal power flow
(VSC-OPF) problem with considering LMax index is proposed by



Fig. 1. The load PDF and load uncertainty scenarios generation.
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Ref. [20] in a wind-integrated system. Also, improved genetic al-
gorithm (IGA) is utilized in Ref. [20] for minimization LMax and
system total fuel cost. Also, a new index is introduce in Ref. [21]
named reactive power loadability (Qloadability), which is used to
determine the best location for the DSTATCOM to enhance voltage
stability, in distribution networks. DFIG-based variable speed wind
turbines are utilized.

The multi-objective ORPD (i.e. the second category), has
attracted attention of researchers, recently. In this category, LMax is
considered with different objectives (usually real power loss). Non-
dominated sorting genetic algorithm-II (NSGA-II) [22] andmodified
NSGA-II (MNSGA-II) [23] are applied to settle multi objective
optimal reactive power dispatch (MO-ORPD). To justify the Pareto-
front obtained using MNSGA-II, Pareto-front is created using
several runs of single objective optimization with the weighted
sum of objectives. Multi objective evolutionary algorithms (MOEAs)
have been used in recent years to solve MO-ORPD. In these algo-
rithms, active power losses, voltage stability enhancement and
voltage deviation are optimized simultaneously by determination
of optimal values of control variables. A modern hybrid fuzzymulti-
objective evolutionary algorithm (HFMOEA) [24], advanced teach-
ing learning based optimization (TLBO) algorithm [25], novel
strength Pareto multi group search optimizer (SPMGSO) [26],
chaotic upgraded PSO based multi-objective optimization
(MOCIPSO) and greatly enhanced PSO-based multi-objective opti-
mization (MOIPSO) approaches [27] and chaotic parallel vector
evaluated interactive honey beemating optimization (CPVEIHBMO)
[28] are examples of the recently presented algorithms for solution
of MO-ORPD.

The existing wind farms are usually employing variable speed
turbine technology. In this context, doubly fed induction generators
(DFIGs) and permanent magnet synchronous generators (PMSG)
are attractive choices. Thesemachines are able to exchange reactive
power with the AC network they connected. In Ref. [29], a detailed
model of capability curve for DFIG is developed. This model is
utilized in Refs. [30] and [31] to incorporate wind farms in the OPF
problem. Also, PMSG is basically synchronous generators and the
corresponding capability curve is well known.

1.2. Contributions

This paper is mainly focused on solving the MO-ORPD problem
in a wind integrated power system considering the associated
uncertainties. Demand and wind power generations are consid-
ered as sources of uncertainties in this work. The normal proba-
bility distribution function (PDF) and Rayleigh (PDF) are used for
modeling the load and wind speed uncertainties, respectively. Two
objective functions, namely active power losses minimization and
voltage stability index (Lmax) minimization are considered. The
multi-objective problem is handled using ε-constraint technique
and optimal Pareto set is attained. In this paper, for the sake of
comparison with available methods, the reactive power compen-
sation by shunt VAR compensators is modeled as continuous
variable in deterministic MO-ORPD (i.e DMO-ORPD), while
because of demonstrating real world problem, discrete model is
adopted for these compensating devices in the proposed sto-
chastic MO-ORPD (SMO-ORPD). The DMO-ORPD is NLP and the
SMO-ORPD is MINLP optimization problem, which both are
implemented in GAMS [32], and solved by SNOPT [33] and SBB [34]
solvers.

Given the above descriptions, the highlights of this paper are as
follows:

1) Modeling and including stochastic nature of loads and wind
generations in theMO-ORPD problem (i.e. SMO-ORPD problem).
2) Discrete steps for shunt VAR compensation devices are used in
the proposed SMO-ORPD problem. Most of the pervious litera-
ture used continuous modeling for capacitor banks.

3) To make use of ε-constraint technique and fuzzy satisfying
method for solving and choosing the best compromise solution
of MO-ORPD problem.
1.3. Paper organization

The remainder of this paper is set out as follows: Section 2
provides scenario based uncertainty modeling of stochastic pa-
rameters. In Section 3, complete formulation of MO-OPRD problem
is presented. Section 4 gives the numerical results. Finally, con-
clusions of this paper are summarized in Section 5.

2. Uncertainty modeling

2.1. Demand uncertainty characterization via scenario based
modeling

Due to stochastic nature of the load demand in electric power
systems, it is required to model the load uncertainty in operation
and planning of power systems. Generally load uncertainty can be
modeled using the normal of Gaussian PDF [35]. In this paper, it is
assumed that the mean and standard deviation of the load PDF, i.e.
mD and sD are known. Probability of d-th load scenario is shown by
pd and calculated using Fig. 1 as follows. It is worth to note that Pmin

Dd

and Pmax
Dd

are the boundaries of d-th interval (or d-th load scenario),
as shown in Fig. 1.

pd ¼
ZPmax
Dd

Pmin
Dd

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

"
� ðPD � mDÞ

2s2

2
#
dPD (1)

PDd
¼ 1

pd
�
ZPmax
D;d

Pmin
D;d

 
PD � 1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p exp

"
� ðPD � mDÞ

2s2

2
#!

dPD (2)

2.2. Wind power generation uncertainty modeling

Generally the wind speed uncertainty is modeled using the
Rayleigh or Weibul PDF [36]-[31]. It should be mentioned that the
Weibull distribution is a generalized form of the Rayleigh PDF. The
Rayleigh PDF of the wind speed can be expressed as follows:
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PDFðnÞ ¼
�
v

c2

�
exp

"
�
�

vffiffiffi
2

p
c

�2
#

(3)

The wind speed variation range is divided into intervals, which
is called scenarios. The probability of each scenario can be calcu-
lated from the following equation. The occurrence probability of
scenario s and the corresponding wind speed vs is calculated as
follows:

pw ¼
Zvf ;w
vi;w

�
v

c2

�
exp

"
�
�

vffiffiffi
2

p
c

�2
#
dv (4)

vw ¼ 1
pw

�
Zvf ;w
vi;w

 
v�

�
v

c2

�
exp

"
�
�

vffiffiffi
2

p
c

�2
#!

dv (5)

where, vw is the wind speed at w-th wind scenario, and vi,w, vf,w are
the starting and ending points of wind speed's interval at w-th
scenario, respectively. Also, c is scaling parameter which is obtained
by historical wind data.

The characteristic curve of a wind turbine determines the rela-
tion between the available wind speed and generated wind power.
A linearized characteristics curve is presented in Fig. 2 [37]. Using
this curve, the forecasted output power of the wind turbine for
different wind speeds can be obtained using the following
equation.

Pavlw ¼

8>>>><>>>>:
0 vw � vcin or vw � vcout

vw � vcin
vrated � vcin

Pwr vcin � vw � vrated

Pwr vrated � vw � vcout

(6)

By generating the proper number of scenarios for wind power
and load demand, the overall number of combined wind-load
scenarios is obtained by multiplying the number of wind and
load individual scenarios. The probability of scenario s, which is
obtained considering w-th scenario of wind and d -th scenario of
load demand, can be obtained using the following equation.

ps ¼ pw � pd (7)
2.3. Two stage stochastic optimization framework

In this paper two-stage stochastic programming method is used
for decision making in an uncertain environment. In this method,
Fig. 2. The power curve of a wind turbine (rotor speed control regions).
the decision variables are categorized as “here and now” and “wait
and see” variables [38]. The optimal values of “here and now” or
“first stage” variables should be determined before realization of
scenarios. In other words, their values are scenario independent
and are same for all scenarios. In other hand, the optimal values of
“wait and see” or “second stage” variables should be determined
after realization of the scenarios. In other words, their values are
scenario dependent and may be different for different scenarios. In
the proposed SMO-ORPD problem the decision variables (DVs) are
generator voltages, tap values of tap changing transformers and the
amount of reactive power compensations in the weak buses.

3. Problem formulation

In this section, the studied objective functions, description of
ε-constraint method for dealing with the SMO-ORPD, fuzzy satis-
fying method for selection of the best compromise solution of
Pareto front and problem constraints like load flow equations are
described.

3.1. Objective functions

Voltage stability of the power system is strongly correlated with
reactive power management of the system. Hence, voltage stability
improvement is also considered as another objective function be-
sides the total power losses. These objective functions may be
conflicted [39]-[27]. The ORPD problem variables subsets can be
stated as follows.

u ¼

266664
Vi ;ci2NG
Tm ;cm2NT
QCi;s ;ci2NC ;cs
PWi;s ;ci2NW ;cs
QWi;s ;ci2NW ;cs

377775

x ¼

266664
Vi;s ;ci2NPQ ;cs
qi;s ;ci2NB ;cs
S[;s ;c[2NL ;cs
QGi;s ;ci2NG ;cs
PGi;s ;ci ¼ sl ;cs

377775
(8)

where, u is the set of control variables, and x is the set of state
variables. As it is aforementioned, the set of control variables is
divided into two distinct subsets, i.e. here and now and wait and see
control variables. The set of here and now decision variables (DHN)
are as follows:

DHN ¼
�
Vi ;ci2NG
Tm ;cm2NT

�
(9)

Also, the set of wait and see decision variables (DWS) are as
follows.

DWS ¼
8<:

QCi;s ;ci2NC ;cs
PWi;s ;ci2NW ;cs
QWi;s ;ci2NW ;cs

9=; (10)

3.1.1. Minimization of total active power losses
Minimization the total power losses in transmission system is

important objective in power systems for improvement of the total
energy efficiency and economic reasons. The active power losses in
scenario s can be mathematically expressed as follows.

PLsðus; xsÞ ¼
XNG

i¼1

PGi;s þ
XNW

i¼1

PWi;s �
XNB

i¼1

PDi;s (11)
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Expected value of power losses (EPL) over the whole scenarios is
considered as the first objective function. It is calculated as follows.

f1 ¼ EPL ¼
XNs

s¼1

ðps � PLsðus; xsÞÞ (12)
Fig. 3. Description of εeconstraint method.
3.1.2. Minimization of voltage stability index (L-index)
Several methods can be used for incorporating static voltage

stability enhancement in ORPD problem. For example, power-
evoltage curves is implemented in Ref. [40] for static voltage sta-
bility modeling. Minimum singular value of the load flow Jaccobian
matrix [41] and minimum L-index [42] are other indices used for
determining the voltage stability margin of the system. In this pa-
per L-index is chosen for quantifying voltage stability. This index
shows the distance of the current state of power system from the
voltage stability limit point, which is computed based on power
flow solution. It should be mentioned that the value of L-index
varies between 0 and 1. L-index value less than 1 (voltage collapse
point) and close to 0 (no load point) corresponds withmore voltage
stability margin. The voltage magnitude and phase angle of
network buses are functions of system load and generation. By
increasing the transmitted power and for near maximum power
transfer condition, the voltage stability index values for load buses
becomes closer to 1, which indicates that the system is closer to
voltage collapse. For any load node j, L-index can be expressed as
[25]:

Lj ¼
�����1�

XNG

i¼1

Fji
Vi

Vj

�����
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
1�

XNG

i¼1

hjicos
�
wji
	!2

þ
 XNG

i¼1

hji sin
�
wji
	!2

vuut
; cj2NPQ

(13)

where, Vi ¼ Vi:qi and Vj ¼ Vj:qj. Also hji and wji are calculated
using the following equations.

8><>:
hji ¼

��Fji��Vi

Vj

wji ¼ aji þ qi � qj

(14)

In order to calculate Fji, the system YBUS matrix is rearranged as
follows:

IL
IG

�
¼


YGG YGL
YLG YLL

�

VL
VG

�
(15)

With this rearrangement, Fji in (13) can be expressed as:

F ¼ �½YLL��1½YLG� (16)

Since F is a complex matrix, then it is represented by its polar
form, i.e.

F ¼ ���Fji��:aji

;
�
cj2NPQ ; i2NG

	
(17)

Thus, for each scenario s, the maximum value of L-index among
all load buses is considered as the voltage stability index as follows:

Lmaxsðus; xsÞ ¼ max
�
Lj
	

; j2NPQ (18)

The second objective (i.e. f2) is the expected value of Lmax for all
scenarios, which is obtained from (18):
f2 ¼ ELmax ¼
XNs

s¼1

ðps � Lmaxsðus; xsÞÞ (19)

3.2. εeconstraint method

εeconstraint method [35] is an approach in which the multi-
objective optimization problem is converted to a conventional
single-objective problem. In this method, all objective functions
except one, treated as inequality constraints by defining proper
value of control parameter named as ε parameter. In the proposed
SMO-ORPD problem, f1 is optimized while f2 is considered as a
constraint as follows.

OF ¼ minðf1Þ (20)

s:t :�
f2 � ε

ð25Þ � ð35Þ
(21)

It is observed from Fig. 3 and Equations (20) and (21) that f2 (i.e.
ELmax) is constrained by the parameter ε. This parameter varies from
the minimum value to the maximum value of f2 (i.e. from fL

2 to fU
2 )

gradually, and for any value of ε, the modified single objective
optimization problem (i.e. (20), (21)) is solved, and the optimal
solutions like point C in Fig. 3 are obtained. It is noteworthy that in
(21) the constraints of the original multi-objective optimization
problem, i.e. (25)e(35), which are described in Section 3.4), are also
included. The set of all obtained solutions for the entire variations
of ε (from fL

2 to fU
2 ) are Pareto optimal front of the multi-objective

optimization problem.

3.3. Fuzzy decision maker

By solving theMO-ORPD problem a Pareto front is derived and it
is required to select the best solution from this Pareto optimal set.
Fuzzy decision maker is used in this paper for this purpose. In the
method a fuzzy membership function is assigned to each solution
in the Pareto front. The fuzzy membership is in the interval [0, 1].
The linear fuzzy membership functions can be obtained for the i-th
objective function of bfk using the following equation [35].

bfk ¼

8>>>>><>>>>>:

1 fk � fL
k

fk � fU
k

fL
k � fU

k

fL
k � fk � fU

k

0 fk � fU
k

(22)



S.M. Mohseni-Bonab et al. / Renewable Energy 85 (2016) 598e609 603

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077
The best compromise solution can be selected using the min-
emax method described in Ref. [43]. In the minemax method
minimum value of bf1 and bf2 for each solution is determined, and
the solution with maximum value of minðbf1; bf2Þ is selected as the
best compromise solution. In this paper, bf1 and bf2 are calculated as
follows.

bf1 ¼ EPL� EPLU

EPLL � EPLU
(23)

bf2 ¼ ELmax � ELUmax
ELLmax � ELUmax

(24)

3.4. Constraints

3.4.1. Equality constraints (AC power balance equations)
The obtained solution should satisfy the power flow equations,

which are described mathematically in the following.8>>>><>>>>:
PGi;s þ PWi;s � PDi;s ¼ Vi;s

XNB

j¼1

Vj;sYij cos
�
qi;s � qj;s � gij

	
QGi;s þ QWi;s þ QCi;s � QDi;s ¼ Vi;s

XNB

j¼1

Vj;sYij sin
�
qi;s � qj;s � gij

	
(25)

3.4.2. Inequality constraints on control/dependent variables
The active power, reactive power generation of the generators

and voltage of buses should be in the allowed range as follows:

Pmin
Gi

� PGsl ;s � Pmax
Gi

;ci ¼ sl; cs (26)

Qmin
Gi

� QGi;s � Qmax
Gi

;ci2NG; cs (27)

Vmin
i � Vi;s � Vmax

i ; ci2NB; cs (28)

The power transmitted from the branches is constrained to its
maximum value as follows.��S[;s�� � Smax

[ ; c[2NL; cs (29)

The tap amounts of tap changers are also limited as follows.

Tmin
m � Tm � Tmax

m ; cm2NT (30)

It is worth to note that the reactive power output of VAR
compensation devices are modeled as a multi-step compensation,
i.e. a discrete variable is defined for each VAR compensation node
as follows, which determine how many steps of VAR injections are
necessary.

QCi;s ¼ Qb
Ci
� ICi;s ; ci2NC ; cs (31)

The reactive power compensation steps are limited as follows.

Imin
Ci

� ICi;s � Imax
Ci

ci2NC ; cs (32)

Also, for the available active/reactive power outputs of wind
farms, the following constraints are considered:

0 � PWi;s � zWi;s
� PrWi

; ci2NW ; cs (33)

Qmin
Wi

� QWi;s � Qmax
Wi

; ci2NW ;cs (34)
In this paper, the reactive power output of wind farms are
limited to the corresponding active power output as follows.8<:Qmax

Wi
¼ tg

�
4lag

�
� PWi;s

Qmin
Wi

¼ �tgð4leadÞ � PWi;s

(35)

This means that in those scenarios in which the active power
output of wind farm decreases, the reactive power injection is also
restricted accordingly.

4. Case study and numerical results

Simulations are performed on the IEEE 57-bus test system. In
order to clearly illustrate the effectiveness of proposed method,
different cases are studied as follows:

(A) Deterministic optimization without wind farms (by ignoring
the uncertainties of load and wind farms).

(B) Stochastic optimization with wind farms and load un-
certainties (uncertainty characterization using scenario
based approach).

For sake of comparison with the existing literature, the VAR
compensation devices are modeled as continuous control variables
in case (A). While, in case (B) the VAR compensations are modeled
with discrete steps as described in the previous section.

4.1. Description of IEEE 57-bus system

IEEE 57-bus system consists of 57 buses and 7 generator buses
[44], as shown in Fig. 4. Bus 1 is the slack bus. The network consists
of 80 branches in which 14 branches are under load tap changing
transformers. The reactive power compensation buses are buses 18,
25 and 53 [39], and each step of VAR compensation is assumed to
be 0.5 MVAR. The load flow data and initial operating condition of
the system are given in Ref. [45].

4.2. Scenario generation

Scenario generation technique was described in Section 2. In
this paper, normal PDF is considered for uncertainty modeling of
loads active and reactive power demand. The mean value of this
PDF is the rated power of loads given in Ref. [45]. The standard
deviation is assumed to be 2% of the mean load. Also, the entire PDF
of loads is divided into five distinct areas and hence five scenarios
are considered for loads. The amounts of average load in all sce-
narios along with their corresponding probabilities are given in
Table 1.

Also, it assumed that a 250 MW wind farm is located at bus 52.
The parameters of wind speed PDF and the corresponding wind
power generation scenarios for this wind farm are adopted from
Ref. [46]. There are five wind power generation scenarios, which
their characteristics are summarized in Table 1. Finally, the total 25
wind-load scenarios along with the corresponding probabilities are
given in Table 1.

4.3. Case-A: DMO-ORPD without WF

In this case, the Pareto front is obtained for IEEE 57-bus test
system without considering any uncertainty and without wind
power integration. The VAR compensation devices are modeled by
continuous variables for the sake of comparison with the previous
literature. The data of compensation limits are available in Ap-
pendix (Table A1). Table 2 summarizes the obtained Pareto



Fig. 4. Single line diagram of IEEE 57-bus test system.
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solutions for this case. By using minemax fuzzy satisfying method,
it is evident from Table 2 that the best compromise solution is
Solution#4, with the maximum weakest membership function of
0.8303. The corresponding PL and Lmax are equal to 25.0137 MW
and 0.2290, respectively. For this solution, the optimal values of
control variables are given in Table 3. It is also noteworthy that
Solution#1 corresponds to the loss minimization case, i.e. in Solu-
tion#, only PL is minimized, and the minimum value of PL is ob-
tained 22.9486 MW. The Pareto optimal front of the two objective
functions in case-A is depicted in Fig. 5.

Also, the obtained active power losses is compared with the
results reported by some recently published algorithms. Fig. 6
shows the obtained results for Solution#1 where the aim is to
minimize the active power losses individually. According to this
figure, it can be evidently observed that the obtained solution is
superior to the previously reported ones like as seeker optimization
algorithm (SOA) [39], comprehensive learning particle swarm
optimizer (CLPSO) [39], local differential evolution (L-DE) [39],
harmony search algorithm (HSA) [2], simple genetic algorithm
(SGA) [2], conventional PSO (CePSO) [12] and gravitational search
algorithm (GSA) [5]. It is worth to mention that, since the above
references reported the results for only minimization of active
power losses, thus the results obtained in Solution#1 are compared
with their reported ones.

4.4. Case-B: SMO-ORPD with WF

In this case the load and wind power uncertainties are consid-
ered in the MO-ORPD using the previously described two stage
stochastic programming approach. The attained Pareto optimal
solutions in this case are presented in Table 4. It is inferred from this
table that the EPL varies from 21.5119 MW to 26.1406 MW, whereas
the ELmax varies from 0.255 to 0.2069, respectively. The Solution#1
corresponds to the EPL minimization case, where the minimum
value of 21.5119 MW is obtained for EPL, whereas Solution#20 deals
with the case of ELmax minimization, in which the minimum value
of ELmax is 0.2069. It is observed from Table 5 that Solution#5 is the
best compromise solution, with EPL equals to 22.4864 MW and
ELmax equals to 0.2188. Also, Fig. 7 depicts the obtained optimal
Pareto front in this case.

Table 5 summarizes the obtained optimal here and now control
variables for the best compromise solution. Also, the optimal values



Table 1
Wind/load scenarios with the corresponding individual and mixed probabilities.

Scenario number Load (%) Wind (%) ps

load scenarios s1 95 0 0.0017
s2 95 12.87 0.0051

Load (%) pd s3 95 49.37 0.0101
d1 95 0.025 s4 95 86.83 0.005
d2 97 0.135 s5 95 100 0.0031
d3 100 0.680 s6 97 0 0.0093
d4 103 0.135 s7 97 12.87 0.0276
d5 105 0.025 s8 97 49.37 0.0546

s9 97 86.83 0.0269
s10 97 100 0.0166
s11 100 0 0.0469
s12 100 12.87 0.139
s13 100 49.37 0.2753
s14 100 86.83 0.1355

Wind power generation scenarios s15 100 100 0.0834
s16 103 0 0.0093
s17 103 12.87 0.0276

Wind (%) pw s18 103 49.37 0.0546
w1 0 0.0689 s19 103 86.83 0.0269
w2 12.87 0.2044 s20 103 100 0.0166
w3 49.37 0.4048 s21 105 0 0.0017
w4 86.83 0.1992 s22 105 12.87 0.0051
w5 100 0.1227 s23 105 49.37 0.0101

s24 105 86.83 0.005
s25 105 100 0.0031

Table 2
Pareto optimal solutions for DMO-ORPD without WFs (Case-A). The bold values
correspond to the Pareto optimal solution.

# PL (MW) Lmax bf1 bf2 minðbf1; bf2Þ
1 22.9486 0.2644 1.0000 0.0000 0.0000
2 23.6370 0.2347 0.9474 0.6962 0.6962
3 24.3253 0.2312 0.8947 0.7789 0.7789
4 25.0137 0.2290 0.8421 0.8303 0.8303
5 25.702 0.2275 0.7895 0.8657 0.7895
6 26.3904 0.2264 0.7368 0.8925 0.7368
7 27.0787 0.2255 0.6842 0.9139 0.6842
8 27.7671 0.2247 0.6316 0.9316 0.6316
9 28.4554 0.2241 0.5789 0.9466 0.5789
10 29.1438 0.2235 0.5263 0.9595 0.5263
11 29.8321 0.2230 0.4737 0.9706 0.4737
12 30.5205 0.2227 0.4210 0.9795 0.4210
13 31.2088 0.2224 0.3684 0.9861 0.3684
14 31.8972 0.2222 0.3158 0.9904 0.3158
15 32.5855 0.2221 0.2632 0.9935 0.2632
16 33.2739 0.2220 0.2105 0.9959 0.2105
17 33.9622 0.2219 0.1579 0.9977 0.1579
18 34.6506 0.2218 0.1053 0.9989 0.1053
19 35.3389 0.2218 0.0526 0.9996 0.0526
20 36.0273 0.2218 0.0000 1.0000 0.0000

Table 3
Optimal control variables for the best compromise solution (i.e. Solution#4) in Case-
A.

Control variable # DMO-ORPD (Case-A)

Generator Control variable VG1 (pu) 1.013
VG2 (pu) 1.0005
VG3 (pu) 0.9868
VG6 (pu) 0.9908
VG8 (pu) 0.9941
VG9 (pu) 0.9795
VG12 (pu) 0.9655
PG1 (MW) 445.8137

Transformer Tap changer (pu) T1 1.0009
T2 0.9844
T3 1.0022
T4 0.9856
T5 0.9519
T6 0.9926
T7 0.9836
T8 1.0076
T9 0.9946
T10 0.9668
T11 0.9000
T12 1.0217
T13 1.0320
T14 1.0025

VAR Compensation (MVAR) QC18 10.0000
QC25 5.9109
QC53 6.3418
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of wait and see control variables are depicted in Figs. 8e10, in all
possible scenarios. Fig. 8 shows the active power generation at the
slack bus (i.e. bus 1) in all 25 scenarios. Besides, Fig. 9 depicts the
active/reactive power output of the wind farm in all scenarios. The
optimal amount of reactive power compensation steps in the buses
18, 25 and 53 are also given in Fig. 10.
5. Conclusions

The stochastic multi-objective optimal reactive power dispatch
(SMO-ORPD) problem in awind integrated power system is studied
in this paper taking into account the uncertainties of system load
and wind power generations. A two-stage stochastic optimization
model is implemented for decision making under the above un-
certainties. Real power losses and voltage stability enhancements
index (L-index) are optimized simultaneously in a multi objective
optimization framework. The ε-constraint method is used to solve
multi-objective optimization problem. To verify the effectiveness
and optimality of the proposed model, the obtained results in the
deterministic case are compared with the recently applied intelli-
gent search-based algorithms and it is found that the proposed
method can find better solutions for both objective functions in this
case.

In the stochastic case, a comprehensive set of decision variables
including here and now and wait and see control variables
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Table 4
Pareto optimal solutions for SMO-ORPD (Case-B). The bold values correspond to the
Pareto optimal solution.

# EPL (MW) ELmax bf1 bf2 minðbf1; bf2Þ
1 21.5119 0.2550 1.0000 0.0000 0.0000
2 21.7555 0.2273 0.9474 0.5747 0.5747
3 21.9991 0.2236 0.8947 0.6532 0.6532
4 22.2427 0.2209 0.8421 0.7078 0.7078
5 22.4864 0.2188 0.7895 0.7522 0.7522
6 22.7300 0.2171 0.7368 0.7867 0.7368
7 22.9736 0.2157 0.6842 0.8158 0.6842
8 23.2172 0.2145 0.6316 0.8416 0.6316
9 23.4608 0.2134 0.5789 0.8646 0.5789
10 23.7044 0.2124 0.5263 0.8853 0.5263
11 23.9481 0.2115 0.4737 0.9040 0.4737
12 24.1917 0.2107 0.4211 0.9210 0.4211
13 24.4353 0.2100 0.3684 0.9345 0.3684
14 24.6789 0.2094 0.3158 0.9473 0.3158
15 24.9225 0.2088 0.2632 0.9588 0.2632
16 25.1661 0.2083 0.2105 0.9694 0.2105
17 25.4097 0.2079 0.1579 0.9794 0.1579
18 25.6534 0.2074 0.1053 0.9886 0.1053
19 25.8970 0.2071 0.0526 0.9947 0.0526
20 26.1406 0.2069 0.0000 1.0000 0.0000

Table 5
Optimal values for here and now control variables at the best compromise solution
(i.e. Solution#5) in Case-B.

Control variable # SMO-ORPD (Case-B)

Generator Control variable VG1 (pu) 1.0445
VG2 (pu) 1.0278
VG3 (pu) 0.9991
VG6 (pu) 0.9938
VG8 (pu) 0.984
VG9 (pu) 0.9799
VG12 (pu) 1.009

Transformer Tap changer (pu) T1 1.0005
T2 0.9949
T3 0.9997
T4 0.9976
T5 0.9850
T6 0.9961
T7 0.9944
T8 1.0100
T9 0.9990
T10 0.9917
T11 0.9000
T12 1.0194
T13 0.9830
T14 0.9886
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obtained. The proposed SMO-ORPD model is implemented on the
IEEE 57-bus test system. The numerical results show that in the
presence of wind power generation, the expected value of active
power losses and L-index are decreased in comparison with the
deterministic case. This implies the positive impact of wind power
generation on the voltage stability enhancement and efficiency of
the system.
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At the future works, new uncertainty modeling techniques such
as information gap decision theory (IGDT) and robust optimization
(RO) will be utilized, since these approaches are powerful tools to
deal with the problems in which no PDF or membership function is
available regarding the uncertain parameters. Also, it is interesting
to include the uncertainties associated with other forms of
renewable energies such as photo-voltaic technology in the ORPD
problem.



0

2

4

6

8

10

12

14

16

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25

Sw
itc

hi
ng

 S
te

p

Scenario Number

Bus 18

Bus 25

Bus 53

Fig. 10. Switching steps in VAR compensation buses 18, 25 and 53 at different scenarios.

S.M. Mohseni-Bonab et al. / Renewable Energy 85 (2016) 598e609608

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077
Appendix
Table A1
The data of VAR Compensation devices

Bus no. DMO-ORPD [47], [39] SMO-ORPD

Qmin
Ci

(MVAR) Qmax
Ci

(MVAR) Imin
Ci

Imax
Ci

QCi
(MVAR)

18 0 10 0 14 0.5
25 0 5.9 0 6 0.5
53 0 6.3 0 14 0.5
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