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Due to nonlinear and discrete variables and constraints, optimal reactive power dispatch (ORPD) is a
complex optimization problem in power systems. In this paper, the purpose is to solve multi objective
ORPD (MO-ORPD) problem considering bus voltage limits, the limits of branches power flow, generators
voltages, transformers tap changers and the amount of compensation on weak buses. The objectives of
this paper are real power losses and voltage deviations from their corresponding nominal values, which
are conflicting objectives. Because of the stochastic behavior of loads, the MO-ORPD problem requires a
probabilistic approach. Hence, in this paper, a two-point estimate method (TPEM) is proposed to model
the load uncertainty in MO-ORPD problem. Moreover, the proposed method is compared with some other
methods such as deterministic approaches and Monte Carlo simulations (MCS). The obtained results
approve the efficiency of the proposed methodology. The proposed models are implemented and solved
using GAMS optimization package and verified using IEEE 14-bus and IEEE 30-bus standard test systems.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

Optimal power flow (OPF) is one of the main problems in power
system operation, which was introduced by Carpentier for first
time about 50 years ago [1]. Generally this problem categorized
into two sub-problems, namely optimal reactive power dispatch
(ORPD) and optimal real power dispatch [2]. ORPD is important
for security and economy of power systems. The ORPD determines
the optimal amount of reactive power generation at different
places, which is used for minimization of real power transmission
losses and total voltage deviation with considering different
equality and inequality constraints. Nonlinear objective function
and different type of constraints makes the ORPD problem a
large-scale nonlinear optimization problem.

The ORPD problem is modeled for different objective functions
and various methods are used for its solution. As presented in [3],
the reactive power generation management can be employed to
improve the voltage stability margin of power systems. A solution
to the reactive power dispatch problemwith a particle swarm opti-
mization approach based on multi-agent systems is presented in
[4]. In [5], a model for ORPD is presented for minimization of the
total costs. The total cost is defined as cost of energy loss of trans-
mission network and the costs of adjusting the control devices. In
[6], a harmony search algorithm is implemented for solution of
ORPD problem. In this paper, different objective functions
including power transmission loss, voltage stability and voltage
profile are optimized separately. Hybrid methods are also used
for solution of ORPD problem to provide the advantage of different
methods simultaneously. Hybridization of modified teaching
learning algorithm and double differential evolution algorithm
has been used in [7] for effective solution of ORPD problem. In
[8], hybrid standard real-coded genetic algorithm and simulated
annealing method is used to solve ORPD problem. In [9], applica-
tion of chance-constrained programming method to handle the
uncertainties in ORPD problem is studied. Uncertain nodal power
injections and random branch outages are considered as uncer-
tainty sources. The problem is solved by combining probabilistic
power flow and genetic algorithm. The differential evolution
algorithm for optimal settings of reactive power dispatch control
variables is employed in [10].

ORPD problem is modeled as multi-objective optimization
problem and solved using different methods in literature. A
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Nomenclature

Sets
NB=Nj set of buses
NL set of branches (transmission lines)
NG set of generating units
ND set of load buses
w‘ set of buses adjacent to ‘-th branch
NT set of tap changing transformers
Nsh set of VAR compensators
NO set of objective functions
NP set of Pareto optimal solutions

Indices
k index of Pareto optimal solutions
i=j index of bus number where i ¼ 1;2; . . . ;NB

‘ index of transmission lines
sl index of slack bus
r index of objective functions
t index of on-load tap changing transformers

Parameters
w1 weight of objective 1 (real power loss)
w2 weight of objective 2 (voltage deviation)
y‘=g‘=b‘ Admittance/conductance/susceptance of ‘-th line
Yij ¼ Gij þ jBij ij-th element of system YBUS matrix
PGi active power production at bus i
Pmin
Gi

=Pmax
Gi

minimum/maximum value for active power

Tmin
t =Tmax

t minimum/maximum value for t-th tap changer
settings

PDi
real power of the i-th bus

QDi
reactive power of the i-th bus

Qmin
Gi

=Qmax
Gi

minimum/maximum value for reactive power of the
i-th bus

Vmin
i =Vmax

i minimum/maximum value for voltage magnitude of
the i-th bus

Smax
‘ maximum value of power flow of ‘-th transmission line
QCi

VAR compensation capacity in each step at bus i

Amin
i =Amax

i minimum/maximum reactive power compensation
step at bus i

Variables
x vector of dependent variables
u vector of control variables
Tt value of t-th tap changer setting
Vi=Vj voltage magnitude of bus i/j
hi=hj voltage angle at bus i/j
S‘ power flow of ‘-th transmission line
QGi

reactive power generation in bus i
Ai reactive power compensation step at bus i
Qshi reactive power compensation at bus i

Functions
J total objective function
J1 first objective function (PL = real power loss)
J2 second objective function (VD = voltage deviation)
Jpu normalized objective function (PLpu and VDpu)

Jmax
r =Jmin

r maximum/minimum value for r-th objective function

PLmin=PLmax minimum/maximum value for PL

VDmin=VDmax minimum/maximum value for VD
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strength Pareto evolutionary algorithm is proposed in [11] to han-
dle the ORPD problem considering the real power loss and the bus
voltage deviations as objective functions. In [12], real power loss,
voltage deviation and voltage stability index are considered as
objective functions and the obtained multi-objective problem is
solved using teaching learning based optimization algorithm.
Improving voltage stability margin of power system [13] by con-
trolling VAR sources is studied in [14,15]. In [15], L-index is used
as voltage stability index and is incorporated in multi-objective
ORPD problem considering active power losses as another objec-
tive. The problem is solved using chaotic PSO based multi-
objective optimization method. In [16], ORPD problem is modeled
as fuzzy goal programming problem and solved using genetic algo-
rithm. ORPD problem considering static voltage stability and volt-
age deviation is solved using a seeker optimization algorithm
(SOA) in [17]. The multi-objective ORPD problem considering
active power losses and voltage stability index as objective func-
tions is solved using modified NSGA-II in [18]. In [19], a hybrid
fuzzy multi-objective evolutionary algorithm based approach is
proposed for solution of multi-objective ORPD problems. Hybrid
modified imperialist competitive algorithm and invasive weed
optimization is implemented in [20] for multi-objective ORPD
(MO-ORPD) problem solution. In [21], different constraint handling
methods in ORPD problem including feasible solutions, self-
adaptive penalty, e-constraint, stochastic ranking, and the
ensemble of constraint handling techniques is evaluated. A multi
objective chaotic parallel vector evaluated interactive honey bee
mating optimization algorithm is presented in [22] to solve the
MO-ORPD problem with considering operational constraints of
the generators.

Therefore, it is observed that the MO-ORPD problem has been
solved so far with many intelligent algorithms but none of them
solve multi objective reactive power dispatch considering load
uncertainty. Load forecast can be obtained using historical load
data and whether forecast data using different methods. But,
always the forecast is not perfect and there is an inaccuracy in
the forecasted data. Therefore it is necessary to consider the effect
of uncertain loads in the problem.

Uncertain parameters in power systems can be divided into two
categories: The first one is technical parameters like outages,
demand and generation and second one is economical parameters
like as inflation rate or price levels. There are different methodolo-
gies for handling uncertainties in power systems that is based on
aforementioned parameters. Stochastic programming is widely
used in power system planning and operation for uncertainty mod-
eling [23–25]. In stochastic programming based methods, the
uncertain parameters are modeled using discrete scenarios with
their occurrence probability. Information gap decision theory
(IGDT) is a non-possibilistic uncertainty modeling method, which
does not require probability distribution of the uncertain parame-
ters. IGDT method is used for modeling wind power generation
uncertainty in OPF problem in presence of HVDC lines [26]. This
method is also used for modeling price uncertainty in operation
of generation companies [27] and distribution companies [28].
Robust optimization is another decision making tool in uncertain
environments. This method is utilized in [29] for market price
uncertainty modeling in optimal self-scheduling of a hydro-
thermal generating company. In [30], robust optimization method
is used for decision making of a retailer in energy market. An
updated review of the uncertainty modeling methods in energy
systems are provided in [31].

The aim of this paper is determining optimal values of control
variables in order to achieve the objectives such as reducing real
power losses and minimizing voltage deviation considering the



Fig. 1. OLTC model used in this paper.
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technical constraints as well as some existing uncertainties. In
order to model the load uncertainty, the Hong’s two-point estimate
method (TPEM) is used. The main feature of the proposed TPEM is
that it only requires resolving 2�m deterministic MO-ORPD to
obtain the behavior of m random variable. Since this paper focuses
on the uncertainties involved by the load, it is assumed that their
statistical features are estimated or measured. The main contribu-
tions of this work are summarized as follows:

(1) The stochastic behavior of load is modeled using TPEM.
(2) Similar to the Monte Carlo simulation (MCS) approaches,

TPEM use the deterministic routines for solving the proba-
bilistic MO-ORPD. However, they require a much lower com-
putational burden.

(3) Furthermore, PEM overcome the difficulties associated with
the lack of perfect knowledge of the probability functions of
stochastic variables, since these functions are approximated
using only their first few statistical moments (i.e., mean,
variance, skewness, and kurtosis). Therefore, a smaller level
of data information is needed.

The rest of the paper is organized as follows: Section ‘ORPD
problem formulation’ and ‘Multi objective optimal reactive power
dispatch (MO-ORPD)’ describe the reactive power dispatch
problem formulation and MO-ORPD problem, respectively.
Implementation of TPEM on the problem is presented in Section
‘Implementation of TPEM’. Section ‘Case study’ describes the
numerical example used in this paper. A brief summary of the
simulation results, the obtained numerical results, and some
other observations and discussions, are also included in this
section. Finally, the contributions and conclusions of this paper
are summarized in last section.

ORPD problem formulation

A system operator usually has various objectives such as mini-
mization of sum of system transmission loss and voltage deviation
of load buses from their desired values. These objective functions
may conflict with each other. Hence, at the first, the confliction
among them is investigated. The conventional ORPD model can
be described mathematically as follows.

ORPD objective functions

In this paper the objective functions are minimization of real
power losses and voltage deviation in load buses.

Minimization of total real power losses
With the increasing rate of energy consumption, the amount of

power losses increased too, making the reduction of power losses
as an important aim for system operators [32,33]. The active power
losses can be expressed as follows.

J1 ¼ PLðx;uÞ ¼
XNL

‘¼1
i;j2W‘

g‘½V2
i þ V2

j � 2ViVj cosðhi � hjÞ� ð1Þ

Minimization of voltage deviation at load bus
The second objective of ORPD problem is to maintain a proper

voltage level at load buses. Electrical equipment is designed for
optimum operation of nominal voltage. The deviation from the
nominal voltage will decrease the efficiency and life of the electri-
cal devices. Thus, the voltage profile of the system could be opti-
mized by minimization of the sum voltage deviations from the
corresponding rated values at load buses. This objective function
is defined as follows:
J2 ¼ VDðx;uÞ ¼
XND

i¼1

jVi � Vspc
i j ð2Þ
Constraints

Equality constraints (AC power flow equations)
The AC power flows equations are expressed as follows.

PGi
� PDi

¼ Vi

XNB

j¼1

Vj½Gij cosðhi � hjÞ þ Bij sinðhi � hjÞ�

QGi
� QDi

þ Qshi ¼ Vi

XNB

j¼1

Vj½Gij sinðhi � hjÞ � Bij cosðhi � hjÞ�
ð3Þ
Operational limits
The generators active and reactive power outputs along with

bus voltages should be hold in a pre-specified interval, as follows:

Pmin
Gi

6 PGi
6 Pmax

Gi
; 8i ¼ fslg ð4Þ

Qmin
Gi

6 QGi
6 Qmax

Gi
; 8i 2 NG ð5Þ

Vmin
i 6 Vi 6 Vmax

i ; 8i 2 NB ð6Þ
Also, the line flow limits are as follows.

jS‘j 6 Smax
‘ ; 8‘ 2 NL ð7Þ

Also, on-load tap changing transformers (OLTC) settings are mod-
eled in this paper. As it is depicted in Fig. 1, the OLTC connected
between buses i and j will change three elements of system YBUS
corresponding to ii-th, ij-th and ji-th elements.

YBUS ¼

� � � � � �
i # j #

i ! y‘
T2t

� y‘
Tt

� � � � � �
j ! � y‘

Tt
y‘

� � � . . .

2
666666664

3
777777775

ð8Þ

The OLTC settings should be restricted by their lower and upper
limits as follows:

Tmin
t 6 Tt 6 Tmax

t ; 8t 2 NT ð9Þ
It is worth to note that the reactive power output of VAR

compensation devices are modeled as a multi-step compensation,
i.e. a discrete variable is defined for each VAR compensation node
as follows, which determine how many steps of VAR injections are
necessary.

Qshi ¼ QCi
� Ai; 8i 2 Nsh ð10Þ

The reactive power compensation steps are limited as follows.

Amin
i 6 Ai 6 Amax

i ; 8i 2 Nsh ð11Þ
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Multi objective optimal reactive power dispatch (MO-ORPD)

Various methods are available to solve multi-objective
optimization problems such as weighted sum approach [34],
e-constraint method [24], and evolutionary algorithms [35]. In this
paper, the proposed multi-objective model of the MO-ORPD is
solved using the weighted sum method.

In the weighted sum method, different weights are used for the
conflicting objective functions to generate different Pareto optimal
solutions and then the different weights selects the most satisfac-
tory solution from the optimal Pareto set. In the weighted sum
method, the problem is solved as follows:

min½Jðx;uÞ� ¼ w1J1;puðx;uÞ þw2J2;puðx; uÞ ð12Þ

where

w1 þw2 ¼ 1 ð13Þ
The aforementioned MO-ORPD problem can be formulated

mathematically as a nonlinear constrained optimization problem,
which can be expressed as:

xT ¼ ½VL�T ; ½QG�T ; ½SL�T
h i

uT ¼ ½VG�T ; ½QC �T ; ½T�T
h i ð14Þ
Fuzzy modeling for normalizing objective functions

Since the objective functions (1) and (2) are not in the same
range and dimension, a fuzzy satisfying method is proposed to
calculate the normalized form of the objective functions in (12).
The fuzzy membership of each objective function maps it to the
interval [0,1]. More generally, the i-th objective function of Ji is
normalized as follows.

JðkÞr;pu ¼
1 JðkÞr 6 Jmin

r

JðkÞr �Jmax
r

Jmin
r �Jmax

r
Jmin
r 6 JðkÞr 6 Jmax

r

0 JðkÞr P Jmax
r

8>>><
>>>:

; 8r ¼ 1; . . . ;NO; 8k ¼ 1; . . . ;NP

ð15Þ
For the entire Pareto optimal set, the number of best compro-

mise solution (BCS) is obtained by using min–max criterion [36]
as follows.

max
k

min
r

ðJr;puÞ
� �

ð16Þ

This means that the solution which has the largest value of
minrðJr;puÞ, is the BCS. In this paper for objective functions (1) and
(2), the normalized values are expressed as:

PLpu ¼ J1;pu ¼ PL� PLmax

PLmin � PLmax ð17Þ

VDpu ¼ J2;pu ¼ VD� VDmax

VDmin � VDmax ð18Þ
Solution tool

In this paper the stochastic multi-objective reactive power dis-
patch problem is formulated as a mixed integer nonlinear pro-
gramming (MINLP) problem, and it is solved using Generalized
Algebraic Modeling Systems (GAMS) software [37]. Also, CONOPT
[38] and SBB [39] solvers are utilized for dealing with nonlinear
programming (NLP) and MINLP problems, respectively.
Implementation of TPEM

Monte-Carlo simulation is an iterative approach which utilizes
cumulative density function (CDF) of random variables to deter-
mine the final result. This method is widely used for uncertainty
modeling. Requiring great number of iterations to reach the
desired convergence is the main drawback of the MCS. The TPEM
is an approximate method. The information provided by central
moments is used to find some representative points (s points for
each variable) named concentrations. These representative points
are used for solution of the model and the statistical information
of the random output variable is calculated using the solutions
obtained for representative points [40].

Assume that Xfx1; x2; . . . ; xl; . . . ; xmg is a random variable with a
mean value lxl

and standard deviation rxl :Moreover, Z is a random
function of X (i.e. Z = F(X)). Each of the s concentrations of variables
xl can be defined as a pair composed of a location xl;s and a weight
wl;s: The proposed method uses a particular case of point estimate
method, known as Hong’s two-point estimate method (HTPEM).
Using HTPEM, function F has to be evaluated only s times for each
random input variable xl at the points made up of the sth location
of random input variable xl and the mean value (lxl

) of remaining
input variables. Therefore, the total number of evaluations is 2�m.
The location xl;s is determined as follows [41]:

xl;s ¼ lxl
þ nl;s � rxl ð19Þ

In which, nl;s is the standard location of random variable xl. The
standard locations and weights of random variable of xl are
computed by:

nl;1 ¼ kl;3
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ kl;3

2

� �2
s

; nl;2 ¼ kl;3
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ kl;3

2

� �2
s

ð20Þ

and

wl;1 ¼ � nl;2
mðnl;1 � nl;2Þ

; wl;2 ¼ nl;1
mðnl;1 � nl;2Þ

ð21Þ

where kl;3 denotes the skewness of the random variable xl:

kl;3 ¼
E ðxl � lxl

Þ3
h i

ðrxl Þ3
ð22Þ

The algorithm of solving the MO-ORPD problem by means of
HTPEM is shown in Fig. 2.

In the MO-ORPD problem, the load is modeled as random
variable with known probability distribution. The locations and
weights have to be computed as described previously. A determin-
istic MO-ORPD must be run for each concentration. The solution of
an MO-ORPD is:

Zl;s ¼ Ffxl;1; xl;2; . . . ; xl;s; . . . ; xm;sg ð23Þ
where Zl;s, is the vector of random output variables associated with
the sth concentration of random input variable and represents the
nonlinear relation between the input and output variables in
the MO-ORPD. The raw moments of output random variables are
determined as:

EðZÞ ffi EðZÞ þ
X
s

wl;s � Zl;s ð24Þ

To clarify the flowchart of algorithm, the solution steps are
summarized as follows:

Step 1: Set the first and second moments of sth output random
variables to zero: EðZÞ ¼ 0.
Step 2: Select the input random variable xl:
Step 3: Compute kl;3; nl;s;wl;s based on (19)–(22).



Fig. 2. Flowchart of the proposed algorithm.
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Step 4: Determine the two estimated locations of xl;s.
Step 5: Solve the deterministicMO-ORPD for each concentration.
Step 6: Update the raw moments of output variables.
Step 7: Repeat the steps 2–6 until all concentrations of all input
random variables are taken into account. Finally, compute the
statistical information of output random variables.
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Case study

Test systems

Simulation is carried out on IEEE 14-bus and IEEE 30-bus stan-
dard test systems.

Case I: IEEE 14-bus system [10,42] consists of 14 buses, which 5
of them are generator buses. Bus 1 is the slack bus, 2, 3, 6 and 8 are
taken as PV buses and the remaining 9 buses are PQ buses. The net-
work has 20 branches, 3 transformers and 4 capacitor banks. The
three branches 4–7, 4–9, 5–6 are equipped with under load tap
changing transformers which their taps is within the interval
[0.9,1.1]. Two capacitor banks are available at weak buses 9 and
14. Each capacitor bank consists of three 6 MVAr steps. The dimen-
sion of control variables is 17, which consist of five PV generator
voltages within the range of [0.9,1.1] and power output of slack
bus generator in the interval [0,323.4] MW, three tap changing
transformers within the range of [0.9,1.1] and two shunt compen-
sation capacitor banks. The topology and initial operating condi-
tions of this system are given in [42].

Case II: IEEE 30-bus system [42] consists of 30 buses, out of
which 6 are generator buses. Bus 1 is the slack bus. The network
has 41 branches, 4 transformers and 9 capacitor banks. The dimen-
sion of control variable is 25. The initial operating conditions of the
system are given by [42]. According to [12], shunt capacitors are
installed at buses 10, 12, 15, 17, 20, 21, 23 and 29. Also, each
VAR compensation device is assumed to be 6 steps of 6 MVAR.

In order to clearly illustrate the effectiveness of proposed
method, a comparison among the results of three different cases:

(I) Deterministic optimization (ignoring the uncertainty in
input parameter).

(II) Uncertainty characterization using TPEM.
(III) Uncertainty characterization using MCS.

The simulation results are described as follows.
0 0.005 0.01 0.015 0.02 0.025 0.03
13

13.5

14

VD (pu)

PL
 (M

W
)

Fig. 3. Pareto front of deterministic case for IEEE 14-bus system.
Case I: IEEE-14 bus system

Deterministic optimization
In Case I, only the mean value of load is considered in the MO-

ORPD problem. Real power loss and voltage deviation are consid-
ered as objective functions simultaneously.

In order to solve the multi-objective RPD problem by weighted
sum method, maximum and minimum values of the expected real
power loss (i.e. f1) and voltage deviation (i.e. f2) are calculated,
which are equal to 14.33382 MW, 13.08294 MW, 0.02925 pu and
0.00147 pu, respectively. These border values are achieved by
maximizing and minimizing the objective functions of MO-ORPD
individually.
Table 1
Pareto optimal solution of deterministic case for IEEE 14-bus system.

# w1 w2 PL (MW) VD (pu)

1 1.0 0.0 13.08294 0.02925
2 0.9 0.1 13.10148 0.01631
3 0.8 0.2 13.13466 0.01196
4 0.7 0.3 13.1677 0.00972
5 0.6 0.4 13.19957 0.00839
6 0.5 0.5 13.24408 0.00719
7 0.4 0.6 13.29397 0.00628
8 0.3 0.7 13.45718 0.00435
9 0.2 0.8 13.64897 0.00293

10 0.1 0.9 13.92241 0.00190
11 0.0 1.0 14.33382 0.00147

The bold numbers correspond to the best compromise Pareto optimal solution.
Table 1 shows the values of both objective functions for all 11
Pareto optimal solutions. Among these optimal solutions, Solu-
tion#1 is the minimum power loss, with the equal to
13.08294 MW and the VD of 2.9% (minimum VD).

As explained in Section ‘Fuzzy modeling for normalizing objec-
tive functions’, in order to select the best solution among the
obtained Pareto optimal set, a fuzzy satisfying method is utilized
here. It is evident from the last column of Table 1 that the BCS is
Solution#7, with the maximum weakest membership function of
0.82695. The corresponding MO-ORPD problem real power loss
and VD are equal to 13.29397 MW and 0.00628 pu, respectively.
Correspondingly, the Pareto optimal front of the two objective
functions is derived, which is depicted in Fig. 3. This Pareto front
consists of 11 Pareto optimal solutions.

Uncertainty characterization using TPEM
Due to the stochastic behavior of the load, the MO-ORPD prob-

lem analysis requires a probabilistic approach. In this section, a
TPEM is employed to model the uncertainty in load with consider-
ing the mean and standard deviation values of load. In this case,
the expected objective functions are higher than the deterministic
case. The mean values of real power loss and voltage deviation of
MO-ORPD for this case are also summarized in Table 2. According
to Table 2 Solution#7 is the BCS. The Pareto optimal front of the
two objective functions is derived, which is depicted in Fig. 4. This
Pareto front consists of 11 Pareto optimal solutions.

Uncertainty characterization using MCS
In this section, MCS is used to deal with the aforementioned

uncertainties. The MCS is a numerical simulation procedure
applied to the problems involving random variables with known
J1;pu ¼ PLmax�PL
PLmax�PLmin

J2;pu ¼ VDmax�VD
VDmax�VDmin

minðJ1;pu; J2;puÞ

1 0 0
0.98518 0.46584 0.46584
0.95865 0.62236 0.62236
0.93224 0.70321 0.70321
0.90676 0.75105 0.75105
0.87118 0.79415 0.79415
0.83130 0.82695 0.82695
0.70082 0.89629 0.70082
0.54750 0.94755 0.54750
0.32890 0.98465 0.32890
0 1 0



Table 2
Pareto optimal solution of TPEM for IEEE 14-bus system.

# w1 w2 PL (MW) VD (pu) J1;pu ¼ PLmax�PL
PLmax�PLmin

J2;pu ¼ VDmax�VD
VDmax�VDmin

minðJ1;pu; J2;puÞ

1 1.0 0.0 13.09301 0.02856 1 0 0
2 0.9 0.1 13.11238 0.0162 0.98454 0.45635 0.45635
3 0.8 0.2 13.14655 0.01185 0.95725 0.61699 0.61699
4 0.7 0.3 13.18318 0.00947 0.928 0.70488 0.70488
5 0.6 0.4 13.21372 0.00823 0.90363 0.7506 0.7506
6 0.5 0.5 13.2563 0.00712 0.86962 0.79179 0.79179
7 0.4 0.6 13.30514 0.00625 0.83064 0.82377 0.82377
8 0.3 0.7 13.47842 0.00427 0.69229 0.89704 0.69229
9 0.2 0.8 13.67139 0.00288 0.53822 0.94833 0.53822

10 0.1 0.9 13.94164 0.00189 0.32245 0.98492 0.32245
11 0.0 1.0 14.3455 0.00148 0 1 0

The bold numbers correspond to the best compromise Pareto optimal solution.
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or assumed probability distributions. It consists of repeating a
deterministic simulation process, where in each simulation, a par-
ticular set of values for the random variables are generated accord-
ing to the corresponding probability distributions. The result of
MCS is similar to a sample of an experimental observation. By col-
lecting the results of many such simulations, it is possible to apply
the methods of statistical estimation and inference to the data set
obtained.

For load buses, the random variable to be treated by the
simulation procedure is load considering its stochastic behavior.
It is assumed that this variable is normally distributed with a
known mean value (corresponding to the forecasted value) and a
5% standard deviation.

The appropriate values of random variables are generally
achieved by inverting the cumulative distribution function. In
0 0.005 0.01 0.015 0.02 0.025 0.03
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Fig. 4. Pareto front of TPEM for IEEE 14-bus system.

Table 3
Pareto optimal solution of MCS for IEEE 14-bus system.

# w1 w2 PL (MW) VD (pu) J1;pu ¼ PLmax�PL
PLmax�PLmin

J2;pu ¼ VDmax�VD
VDmax�VDmin

minðJ1;pu; J2;puÞ

1 1.0 0.0 13.08053 0.028124 1 0 0
2 0.9 0.1 13.0999 0.016391 0.98430 0.44102 0.44102
3 0.8 0.2 13.13422 0.012028 0.95648 0.60500 0.60500
4 0.7 0.3 13.16835 0.009778 0.92881 0.68957 0.68957
5 0.6 0.4 13.20198 0.008429 0.90154 0.74028 0.74028
6 0.5 0.5 13.2492 0.007181 0.86326 0.78720 0.78720
7 0.4 0.6 13.30991 0.006128 0.81405 0.82676 0.81405
8 0.3 0.7 13.47235 0.004255 0.68236 0.89716 0.68236
9 0.2 0.8 13.66353 0.002876 0.52738 0.94901 0.52738

10 0.1 0.9 13.91945 0.001927 0.31991 0.98468 0.31991
11 0.0 1.0 14.31407 0.001519 0 1 0

The bold numbers correspond to the best compromise Pareto optimal solution.

Table 4
Control variables for the best solution in IEEE 14-bus system.

Control variables Deterministic approach MCS (mean) TPEM (mean)

Generator variables
Vg1 (pu) 1.06 1.05921 1.059895
Vg2 (pu) 1.03528 1.03455 1.035015
Vg3 (pu) 0.99919 0.99862 0.99898
Vg6 (pu) 1.02437 1.02407 1.02404
Vg8 (pu) 1.00945 1.0096 1.008995
Pg1 (MW) 227.294 227.158 227.3203

Shunt compensation (A � QC)
Qc9 (MVar) 0 0 0
Qc14 (MVar) 1 � 6 0.9462 � 6 1 � 6

Transformer tap changer
T4–7 (pu) 0.96816 0.96732 0.96883
T4–9 (pu) 1.08422 1.08153 1.082185
T5–6 (pu) 0.98957 0.98926 0.989645

Fig. 5. Pareto front of MCS for IEEE 14-bus system.



Table 5
Pareto optimal solution of deterministic case for IEEE 30-bus system.

# w1 w2 PL (MW) VD (pu) J1;pu ¼ PLmax�PL
PLmax�PLmin

J2;pu ¼ VDmax�VD
VDmax�VDmin

minðJ1;pu; J2;puÞ

1 1.0 0.0 4.27644 0.02331 1 0 0
2 0.9 0.1 4.31683 0.01284 0.94982 0.47461 0.47461
3 0.8 0.2 4.40142 0.00569 0.84474 0.79893 0.79893
4 0.7 0.3 4.43982 0.00411 0.79904 0.87062 0.79904
5 0.6 0.4 4.49653 0.00269 0.72659 0.93511 0.72659
6 0.5 0.5 4.52067 0.00228 0.69660 0.95364 0.6966
7 0.4 0.6 4.54198 0.00205 0.67013 0.96407 0.67013
8 0.3 0.7 4.57093 0.00184 0.63417 0.97332 0.63417
9 0.2 0.8 4.61642 0.00165 0.57765 0.98226 0.57765

10 0.1 0.9 4.71905 0.00142 0.45016 0.99265 0.45016
11 0.0 1.0 5.08142 0.00126 0 1 0

The bold numbers correspond to the best compromise Pareto optimal solution.
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Fig. 6. Pareto front of deterministic case for IEEE 30-bus system.

Table 6
Pareto optimal solution of TPEM for IEEE 30-bus system.

# w1 w2 PL (MW) VD (pu) J1;pu ¼ PLmax�PL
PLmax�PLmin

J2;pu ¼ VDmax�VD
VDmax�VDmin

minðJ1;pu; J2;puÞ

1 1.0 0.0 4.30268 0.02379 1 0 0
2 0.9 0.1 4.33289 0.01425 0.96803 0.42378 0.42378
3 0.8 0.2 4.41618 0.00651 0.87991 0.76750 0.76750
4 0.7 0.3 4.46399 0.00408 0.82932 0.87547 0.82932
5 0.6 0.4 4.50329 0.00294 0.78774 0.92578 0.78774
6 0.5 0.5 4.5299 0.00244 0.75959 0.94828 0.75959
7 0.4 0.6 4.55421 0.00213 0.73386 0.96167 0.73386
8 0.3 0.7 4.58568 0.00188 0.70057 0.97295 0.70057
9 0.2 0.8 4.63158 0.00165 0.65201 0.98306 0.65201

10 0.1 0.9 4.73173 0.00141 0.54604 0.99381 0.54604
11 0.0 1.0 5.24781 0.00127 0 1 0

The bold numbers correspond to the best compromise Pareto optimal solution.
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Fig. 7. Pareto front of TPEM for IEEE 30-bus system.

Table 7
Pareto optimal solution of MCS for IEEE 30-bus system.

# w1 w2 PL (MW) VD (pu) J1;pu ¼ PLmax�PL
PLmax�PLmin

J2;pu ¼ VDmax�VD
VDmax�VDmin

minðJ1;pu; J2;puÞ

1 1.0 0.0 4.29858 0.02343 1 0 0
2 0.9 0.1 4.32877 0.01442 0.96781 0.40721 0.40721
3 0.8 0.2 4.41204 0.00661 0.87901 0.76024 0.76024
4 0.7 0.3 4.45897 0.00421 0.82896 0.86850 0.82896
5 0.6 0.4 4.49929 0.00301 0.78596 0.92281 0.78596
6 0.5 0.5 4.52747 0.00246 0.75591 0.94768 0.75591
7 0.4 0.6 4.55584 0.00209 0.72565 0.96452 0.72565
8 0.3 0.7 4.58361 0.00187 0.69604 0.97424 0.69604
9 0.2 0.8 4.62892 0.00165 0.64773 0.98444 0.64773

10 0.1 0.9 4.7242 0.00144 0.54612 0.99394 0.54612
11 0.0 1.0 5.23631 0.00130 0 1 0

The bold numbers correspond to the best compromise Pareto optimal solution.

S.M. Mohseni-Bonab et al. / Electrical Power and Energy Systems 75 (2016) 194–204 201

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077



0 0.005 0.01 0.015 0.02 0.025
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

VD (pu)

PL
 (M

W
)

BCS

PL mean                  4.45897
PL SD                     0.21608
PL Var                    0.04669
VD mean                 0.00421
VD SD                    0.00072
VD Var                    0

BCS characteristics

Fig. 8. Pareto front of MCS for IEEE 30-bus system.

Table 8
Control variables for the best solution in IEEE 30-bus system.

Control variables Deterministic approach MCS (mean) TPEM (mean)

Generator variables
Vg1 (pu) 1.02287 1.01984 1.01962
Vg2 (pu) 1.01621 1.01302 1.01296
Vg5 (pu) 1.00636 1.00347 1.00342
Vg8 (pu) 0.99956 0.099632 0.99638
Vg11 (pu) 1.00577 1.00389 1.00322
Vg13 (pu) 1.01696 1.01397 1.01353
Pg1 (MW) 60.30136 60.8497 60.9537

Shunt compensation (QC � A)
Qc10 (MVar) 0 0 0
Qc12 (MVar) 0 0 0
Qc15 (MVar) 1 � 6 0.7481 � 6 1 � 6
Qc17 (MVar) 1 � 6 0.9484 � 6 1 � 6
Qc20 (MVar) 0 0.0515 � 6 0
Qc21 (MVar) 1 � 6 0.9785 � 6 1 � 6
Qc23 (MVar) 0 0 0
Qc24 (MVar) 1 � 6 0.8756 � 6 1 � 6
Qc29 (MVar) 0 0.5748 � 6 0.5 � 6

Transformer tap changer
T6–9 0.97062 0.9685 0.96949
T6–10 1.1 1.0998 1.1
T4–12 0.9809 0.9746 0.98136
T28–27 0.99198 0.9947 0.99654
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particular, the MATLAB function RANDN provides normally
distributed random numbers directly.

In this method, 10,000 random variables are selected for consid-
ering the stochastic behavior of the loads. Due to the large number
of MCS samples, just some statistical parameters such as mean,
standard deviation (SD) and variance (Var) of the answers are pre-
sented here. Table 3 shows the mean value of both objective func-
tions for all 11 Pareto optimal solutions. Among these optimal
Table 9
Comparison of obtained results for deterministic cases with previously published method

Case # Solution Values

PL (MW)

Case I Method Proposed DE [10] PSO [10]
PL minimization 13.08294 13.239 13.25
VD minimization 14.33382
BCS 13.29397

Case II Method Proposed DE [43] QOTLBO [12]
PL minimization 4.27644 4.555 4.5594
VD minimization 5.08142 6.4755 6.4962
BCS 4.43982 5.2594
solutions, Solution#7 is the BCS. The Pareto optimal front of the
objective functions is derived, which is depicted in Fig. 5. The char-
acteristics of this solution, i.e. its mean and standard deviation for
both objectives are also given in this figure.

Control variables in Case I
Table 4 summarizes the obtained control variables for Case I. It

is observed that the obtained results by TPEM method is very close
to those obtained by MCS, which shows the efficiency of the TPEM
method.

Case II: IEEE-30 bus system

Deterministic optimization
Similar to Case-I, the Pareto front is obtained for IEEE 30-bus

test system without considering load uncertainty. Table 5 summa-
rizes the information of the Pareto solutions for this case. Fig. 6
shows the Pareto front for Case II. It is evident from the last column
of Table 5 that the BCS is Solution#4, with the maximum weakest
membership function of 0.79904. The corresponding MO-ORPD
problem PL and VD are equal to 4.43982 MW and 0.00411 pu,
respectively.

Uncertainty characterization using TPEM
The load uncertainty is modeled using TPEM for Case II and

results of Pareto solutions are presented in Table 6. Fig. 7 shows
the Pareto front for Case II with considering load uncertainty using
TPEM.

Uncertainty characterization using MCS
The MCS method is used for load uncertainty modeling in this

case. Similar to Case I, 10,000 different samples are selected for
loads based on the normal distribution. Table 7 summarizes the
obtained results using MCS for Case II. Also, the optimal Pareto
front is depicted in Fig. 8. It is observed from Table 7 that the
BCS is Solution#4 in this case. The characteristics of this solution,
i.e. its mean and standard deviation for both objectives are also
given in Fig. 8.

Control variables in Case II
Table 8 summarizes the obtained control variables for Case II.

Similar to Case I, the results obtained by TPEM approach is close
to those obtained by MCS, which means that the TPEM method
could be employed to deal with uncertainties in the case of uncer-
tain MO-ORPD problem.

Comparison and discussion

Table 9 compares the obtained results for Case I and Case II with
the previously published works. As can be observed from this table,
the proposed model can obtain better results compared with the
heuristic methods.
s.

VD (pu)

ACO [7] Proposed
13.1226 0.02925

0.00147
0.00628

HBMO [22] Proposed QOTLBO [12] HBMO [22] DE [43]
4.40867 0.02331 1.9057 0.87364 1.9589
5.20924 0.00126 0.0856 0.2106 0.0911
5.53522 0.00411 0.1210 0.87664



Table 10
Comparison between the results of TPEM and other methods in Case I (IEEE 14-bus
system).

Case I Deterministic approach TPEM MCS

PL (MW) 13.29397 13.30514 13.30991
VD (pu) 0.00628 0.00625 0.006128
Number of run 1 56 10,000
Computing time (min) 0.374 14.862 315.278

Table 11
Comparison between the results of TPEM and other methods in Case II (IEEE 30-bus
system).

Case II Deterministic approach TPEM MCS

PL (MW) 4.43982 4.46399 4.45897
VD (pu) 0.00411 0.00408 0.00421
Number of run 1 120 10,000
Computing time (min) 1.399 147.32 1515.02
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Tables 10 and 11 compare the obtained objective functions (J1
and J2) value for the BCS in TPEM, MCS and deterministic approach
for Cases I and II, respectively. On the other hand, because of consid-
ering the load uncertainty in the TPEM and MCS, the total expected
real power losses in both cases are higher than the deterministic
approach. Moreover, it is inferred from these tables that the results
obtained by the TPEM and MCS are very close. This means the fact
that the TPEM is an accurate method for dealing with such a prob-
abilistic model. However, the number of runs and execution time of
TPEM is much less than MCS. Therefore, with a reasonable approx-
imation for both objective functions values, the performance of
TPEM is desired in probabilistic MO-ORPD problem.

Conclusions

Multi objective reactive power dispatch (MO-ORPD) problem is
studied in this paper considering the load uncertainty. The objec-
tive functions used in the proposed probabilistic MO-ORPD prob-
lem are real power losses and voltage deviations (from their
corresponding nominal values). The stochastic behavior of load is
simulated using two-point estimate method (TPEM) and Monte
Carlo simulation (MCS). Mixed integer nonlinear programming
model is developed for the proposed MO-ORPD problem. The pro-
posed method is implemented and analyzed on two standard test
cases, and its effectiveness is verified using different simulations
and comparisons. The proposed model yields better results in com-
parison with previously proposed heuristic algorithms for deter-
ministic cases. Also, the results of case studies show that the
obtained values for both objective functions in MO-ORPD using
TPEM is very close to the corresponding values obtained by MCS.
However, the number of runs and the execution time of TPEM
are much less than the MCS. Therefore, in order to save the compu-
tation time while maintaining the reasonable approximation for
the objective functions value, the TPEM is preferred to deal with
the probabilistic MO-ORPD problem.
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