
Bubble Budgeting: Throughput Optimization for Dynamic
Workloads by Exploiting Dark Cores in Many Core Systems

Abstract—All the cores of a many-core chip cannot be active at the
same time, due to reasons like low CPU utilization in server systems
and limited power budget in dark silicon era. These free cores (referred
to as bubbles) can be placed near active cores for heat dissipation so
that the active cores can run at a higher frequency level, boosting the
performance of active cores and applications. Budgeting inactive cores
(bubbles) to workloads to boost performance has the following three
challenges. First, the number of bubbles varies due to dynamic workloads.
Second, communication distance increases when a bubble is inserted
between two communicating tasks, leading to performance degradation.
Third, budgeting too many bubbles as cooler to running applications
leads to insufficient cores for future applications. In order to address
these challenges, in this paper, a bubble budgeting scheme is proposed to
budget free cores to each application so as to optimize the throughput of
the whole system, including the execution time of each application and
the waiting time incurred for newly arrived applications. Essentially, the
proposed algorithm determines the number and locations of bubbles to
optimize the performance and waiting time of each application, followed
by tasks of each application being mapped to a core region. Experiments
show that our approach achieves 50% higher throughput when compared
to state-of-the-art thermal-aware runtime task mapping approaches.

I. INTRODUCTION

Many-core chips are widely used in servers, datacenters, clusters

to provide high throughput computation services. In such systems,

applications or user requests dynamically arrive and leave the system

with various workload characteristics. One phenomenon observed in

such high-performance many-core system is that, there are plenty

of free cores which are either not utilized or even shut down from

time to time. We have referred these free and powered-off cores as

dark cores or bubbles. Free cores exist due to two reasons. First, in

datacenters, the CPU usage is lower than 100% at most of the time,

the average CPU utilization is as low as 50%, as shown in Figure

1 [7]. Therefore, some cores are not running useful applications at

certain time period. Second, the high density integration of chips

leads to a possible dark silicon issue [11], where a large portion

of the cores have to be turned off to meet the thermal and power

constraints.

Several efforts have been made to exploit the bubbles (dark cores)

to boost performance of active cores and applications, by determining

the number, position, and voltage/frequency levels of the active cores
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Fig. 1. Week Workload CPU Demand Trace, from [7].

[13], [18]. An active core can run at a higher level of frequency

if bubbles are located near it for heat dissipation. This helps to

achieve higher performance while meeting the temperature constraint.

However, in a server system with dynamic workloads, the following

challenges need to be addressed so as to optimize the overall system

performance.

First, for a system handling dynamic workloads, since the number

of available/free cores changes with the arrival and departure of

applications, the position of bubbles and voltage/frequency of active

cores need to be adjusted at run-time under the temperature constraint

in response to arrival and departure of applications. Most of the

approaches (e.g., [13], [18]) consider static workloads only, i.e.,

a fixed set of applications known in advance and fixed number

of bubbles, which does not reflect the dynamic feature of several

systems, e.g., a server.

Next, communication overhead between the active cores executing

communicating tasks is largely affected by placing bubbles near

them. Communication distance between two tasks increases if the

corresponding two cores have bubbles (dark cores) inserted between

them for heat dissipation. Therefore, although active cores can

possibly run at a higher frequency level if bubbles are placed near

them, the applications might suffer from increased communication

overhead, resulting in poor performance. Existing approaches (e.g.,

[13], [18]) ignore such communication overhead.

Furthermore, if most of the bubbles are placed near active cores

and used for heat dissipation, a newly arrived application might need

to wait for a longer time due to insufficient free cores. Therefore,

the decision of whether a free core should be shut down for heat

dissipation as a bubble, or to be turned on to run tasks affects both

the execution time of current application and the possible waiting

time for future applications. Existing approaches ignore waiting time

incurred for each newly arrived application, which also affects the

overall system throughput.



Contribution: This paper addresses the aforementioned challenges

by proposing a lightweight dynamic resource management approach

that handles dynamic workloads, where applications containing de-

pendent tasks arrive at different moments of time. This work tries to

determine the number and location of both free and active cores, so

as to optimize performance, communication cost and waiting time.

The main contributions of the approach are as follows:

1) We propose performance and waiting time models targeting

dynamic workloads, where applications arrive and depart in

the system at different times. Therefore, the number of free

cores vary in the system. These models can be updated online.

2) We propose an online algorithm to select the number and

locations of free cores for each application. Instead of optimiz-

ing each individual application’s performance, this algorithm

tries to optimize the system throughput in terms of number

of executed applications within a given time, which depends

on the waiting time for each newly arrived application and

the execution time of each application. Both computation and

communication performances are optimized when determining

the number and location of bubbles and active cores.

II. RELATED WORK

Allocating system resources to the tasks of multiple applications on

on-chip many-core system has been an emerging research direction

[25]. Several resource allocation approaches have been proposed

while following different policies. Most of these approaches map

communicating tasks of each application close to each other such

that communication overhead and power are reduced [2]–[4], [6],

[17], [24]. Some of these approaches also reduce computation power

of the cores by employing voltage/frequency scaling [4]. However,

these approaches do not consider a power budget for the whole chip,

which is desired in the dark silicon era.

There has been some efforts to perform the mapping by taking

the power budget into account [14], [21]. Some of these efforts just

try to respect the power budget, whereas others try for the thermal

design power budget, which guarantees reliable operation for given

thermal characteristic of the system [21]. However, considering only

the power budget in the mapping process may result in thermal

violations, which deteriorate performance and reliability of the system

[18]. Therefore, temperature of the cores need to considered to avoid

the thermal violations.

Thermal-aware resource allocation approaches have been explored

to reduce peak temperature and temperature gradient while directly

considering the temperature of cores [5], [19]. However, these ap-

proaches do not impose any thermal constraint in the allocation

process. Some approaches considering thermal constraint while op-

timizing for the performance have been reported [9], [20]. However,

in [9], heat conductance amongst the neighboring cores is ignored

to simply the problem and [20] considers only one application. In

general, there is lack of resource allocation approaches considering

multiple applications. Further, these thermal-aware resource alloca-

tion approaches do not consider dark silicon problem.

To address dark silicon problem while considering multiple ap-

plications, recently, some resource allocation approaches have been

introduced [16], [18]. The approach in [18] identifies the number,

location and voltage/frequency levels of active cores for each appli-

cation to optimize the overall system performance [18]. However,

static workload has been assumed, i.e., a fixed set of applications are

allocated at the same time and thus the number of active/dark cores

are fixed. For dynamic workloads, the number of active/dark cores

will vary depending upon the arrival and departure of the applications.
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Fig. 2. System model.

Further, applications containing dependent tasks are not considered

and thus communication overhead between the active cores contain-

ing the communicating tasks is ignored. In such cases, the appropriate

location of active cores not only help to optimize the peak temperature

but also the communication time/performance. In [16], [27], dynamic

workload is considered and the approach aligns active cores along

with dark cores that can evenly distribute heat dissipation across

the chip. However, the distribution of active/dark cores amongst

multiple applications at the same time is not considered, which

might degrade overall system throughput. Our approach addressed

above concerns by appropriately identifying the number and location

of active cores for the applications containing dependent tasks and

arriving at different moments of time as a dynamic workload.

III. SYSTEM MODEL AND PROBLEM DEFINITION

Figure 2 shows our target system model. The system contains a

many-core platform that executes a set of applications arriving at

different moments of time. The applications are submitted to the

platform resource manager that allocates resources to them. This

section provides a brief overview of the platform, workload and

thermal power capacity model along with the problem definition.

A. Many-core Platform Model
The many-core platform contains a set of cores connected by an

interconnection network, which is modeled as a 2D mesh network

with bidirectional links. The right hand side of Figure 2 shows an

example platform. Each core consists of a processing unit, a cache

and a network interface. It is represented as a directed graph G(T, L),
where T is the set of cores and L represents the connections amongst

the cores. The application allocation and resource management is

done by a centralized platform resource manager.

B. Application Model
Each application i is represented as a directed graph AGi =

(Ai, Ei), where Ai is the set of tasks of the application and Ei is the

set of directed edges representing dependencies amongst the tasks.

The left hand side of Figure 2 shows some example application graph

models. Each task a ∈ Ai has a weight: execution time (ExecTime),

when mapped onto a core. The ExecTime for each task is considered

as its worst-case execution-time (WCET) and remains fixed at a given

frequency. Each edge e ∈ Ei represents data volume communicated

between the dependent tasks.

A mapping function M(a) = t, for a ∈ Ai, t ∈ T binds tasks to

the cores, such that task a is mapped to core t. Each edge e ∈ Ei has

a weight of transmission time, when the two communicating tasks

are mapped. The transmission time between two tasks depends on

the communication distance between the cores on whom they are

mapped and the traffic volume. For each edge e = (ai, aj), the

transmission time T (e) = f(v(ai, aj), D(M(ai),M(aj))), where

v(ai, aj) is the traffic volume between the two tasks ai and aj , and

D(M(ai),M(aj)) is the distance (hop counts) between two cores

on whom tasks ai and aj are mapped. The function f(·, ·) models



the transmission time versus the traffic volume and the hop count

distance of the two tasks, which can be found by a linear regression

as follows.

T (e) = α · v(ai, aj) + β ·D(M(ai),M(aj)) (1)

where α and β are regression coefficients. The transmission time

model can be trained offline by transmitting packets to measure the

latencies. The execution time of each application i is the makespan

of task graph, denoted as ETi.

The set of all existing free cores in the system is denoted as Γ. A

set of bubbles Bi = {t1, t2, ...} are also associated with application

i, where t1, t2, ... are powered off cores for cooling.

C. The Thermal Power capacity Model
We define the thermal power capacity (TPC) of a core as the

maximum power the core can consume given the power distribution

of other cores, such that the whole chip’s maximum temperature and

thermal gradient do not exceed their respective thresholds. The TPC

of each core can be determined at offline. In the rest of the paper,

we use PM (np) and PM (x, y) to denote the power capacity of the

core np at the location (x, y) interchangeably.

The TPC of a core is bounded by the cooling capacity of the

system, and the power consumption or temperature of other cores, i.e.,
thermal correlation. The cooling effect of the system can be modeled

by the thermal RC circuit as given in [12]. The thermal correlation,

indicating the inter-dependency of the temperature of different cores,

can be modeled by a linear regression [15]. The temperature T t+1
x,y

at time instance t+ 1 of a core located at (x, y) can be determined

by the temperature values of those cores located at (x± l, y ± l) at

time t [15],

T t+1
x,y = φ(T t

x±l,y±l) (2)

where φ(·) is a linear function, and l can be 0, 1, representing core

(x, y)’s neighboring cores.

Similarly, the TPC of a core np can be found as,

PM (x, y) = θ(P (x± l1, y ± l2)) =
∑
q

αq · P (nq) (3)

where P (x ± l1, y ± l2) is the power consumption of the core nq

located at (x ± l1, y ± l2), which is thermally correlated with np.

The function θ(·) can also be found by autoregressive model (AR),

using the lasso method [10]. In particular, for each core at (x, y)
we only keep the coefficients of adjacent cores as non-zero. That

is, (x ± l1, y ± l2) with l1 and l2 equal to 0, 1, i.e., cores that are

neighboring to the core (x, y). These cores have the highest thermal

correlations with the core (x, y). We set the coefficients of other cores

to be 0, for core i.
The frequency fj of a core j can be determined according to

the power-frequency profile of a specific CPU [23]. That is, given a

maximum power consumption threshold, select the highest frequency

such that the power consumption does not exceed the threshold.

When a core containing a task has increased frequency, the task’s

execution time changes accordingly. Since dynamic power consump-

tion is proportional to frequency, the increase in TPC PM (x, y) by

inserting a nearby bubble leads to the same percentage of decrease

in the execution time of the task running on core (x, y).

D. Problem Statement
Within a given time period, for N applications arriving at different

moments of time, the objective is to minimize the response time of

each application in order to optimize throughput that is computed as

the number of applications executed within a fixed amount of time.

The decision variables are the position and number of the bubbles

to be allocated to each application, together with the task-to-core

mapping of each application. The response time of each application

is computed as follows:

σi = Ai
finish −Ai

arrive (4)

where, σi is the response time of application Ai, Ai
arrive and Ai

finish

are the arrival time and the finishing time of application Ai.

For each application, its response time is related to both the execu-

tion time and the waiting time. Waiting occurs when an application

arrives at the system but there are no sufficient cores to run it.

Execution time is related to both the communication and computation

performances of the application.

The response time of running N applications within a given time

is then computed as:

σ = AN
finish (5)

where N is the number of applications arrived at the system within

a given time, and AN
finish represents finishing time of N th application

within this given time.

The objective is to

minσ (6)

The constraint is that, the temperature of the chip should be under

a threshold.

IV. PROPOSED DYNAMIC RESOURCE ALLOCATION APPROACH

A. Overview
Fig. 3 shows the overview of our proposed approach. Applications

dynamically arrive in the system. The bubble count (number of

bubbles) included in each application’s core region (the region

including active cores and bubbles) is used as a control variable,

which determines both the communication distance and the running

frequency of the active cores such that the system thermal constraint

is not violated. A virtual mapping process is first called to estimate

the performance of each application when using different number of

bubbles. For each application, core regions with different numbers of

bubbles are selected, such that the region’s core count is possibly

larger than the number of tasks in the application. The tasks of

the application are mapped virtually to this core region in order to

estimate the performances given different bubble counts (bn) for the

application, i.e., the table from the performance model achieved as

shown in Fig. 3. The running frequency of each active core can be

determined to confine to thermal constraint. During virtual mapping,

no task is running on the cores, i.e., the tasks are not actually

mapped to the cores. The waiting time model also generates a table

indicating the waiting time given different bubble counts. Finally,

during the real or final mapping, the bubble count for each application

is chosen which can result in the minimum application execution

time (including communication and computation performances) and

waiting time. Once the application finishes execution, the cores in

the region is released and send back to the available resource pool.

The reason to use the virtual mapping is as follows. The com-

munication performance of each edge depends on the distance of

the two cores running the communicating tasks, and the computation

performance of each task depends on the frequency and TPC of each

core, which is affected by the bubble count and location. Therefore,

the calculation of execution time of an application requires knowing

the task-to-core mapping scheme. To find the core region with the

optimal number of bubbles, we need to consider both the execution

time and waiting time of each application with different number

of bubbles (the decision variable). Virtual mapping serves for this

purpose. It iterates the bubble number 0, 1, ...,min{|Ai|,Γ} for each
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Fig. 3. Overview of the proposed approach.

application to generate the performance and waiting time models as

shown in Fig. 3. The waiting time and performance models are stored

in tables whose entries are < bn,WTi > and < bn,ETi >, respec-

tively. That is, given bn bubbles to be inserted into the application

i, the two tables return the corresponding expected waiting time and

execution time of the application. The mapping scheme with bn is

also stored in a database. Based on the two models, during the final

or real mapping, the system can choose the best bn value (bubble

number) in the core region and the corresponding mapping scheme

from the database for each incoming application, which can result in

the minimal expected response time.

The various steps of the proposed approach are introduced in

subsequent sub-sections and highlighted in Fig. 3.

B. Waiting Time Estimation
We target server systems whose workloads exhibit periodical

behaviours [7], such that we can predict the waiting time from history

data. In many server systems, there are some peak time when the CPU

utilization is close to 100%, and some off-peak time when there

are fewer running applications. In addition, waiting time depends

on various system parameters including the application arrival rate

(average number of applications arriving in the system per cycle),

system size, and how many free cores are used as bubbles.

The waiting time can thus be modeled by a polynomial regression

model as in Eqn. (7), where |T | is the network size, |Ai| is the average

number of tasks in each application, r is the average percentage of

bubble count in an application’s core region, defined as bubble count

divided by the core count in each application’s core region, h is the

average execution time of the tasks, and λ is the average application

arrival rate. Using this model, r can be a decision variable such that,

when the waiting time is estimated to be high, a smaller r is preferred.

ηi =

z∑
j=1

ci · |T |j +
z∑

j=1

dj · |Ai|j +
z∑

j=1

ej · rj +
z∑

j=1

fj · hj+

z∑
j=1

gj · λj + a0

(7)

To find the coefficients of c, d, e, f, g ’s, the maximum likelihood

methods can be used [10].

C. Performance Estimation
To estimate the performance of each application, we need know

the communication performances of the edges and the computation

performances of tasks in the task graph. These performances can

only be determined after the tasks are mapped to cores. The number

of bubbles in a core region is an important control variable which

is related to both the communication distance and the computation

power of each core/task. Given a virtual mapping of tasks to a

core region with j bubbles, the execution time of each task and

transmission time of each communication edge can be determined

as in Sections III-B and III-C. The execution time of each task is

related to the instructions to be executed and the running frequency

and power of the core while satisfying the thermal constraint, which

can be derived from Section III-C. The communication time of each

edge in task graph can be determined by Eqn. 1. The performance of

the application (referred as makespan) can be determined by finding

the maximum execution path along the application’s task graph.

Therefore, the performance estimation needs the virtual mapping

algorithms which will be introduced in Section IV-D.

The output of the performance model as shown in Fig. 3 is a table

ET where each item ET[j] is the execution time with j bubbles.

D. Virtual Mapping Algorithms
During the mapping process, we virtually find core regions

whose core count equals to |Ai| plus j bubbles, where j =
0, 1, 2, ...,min{|Ai|,Γ}. At each iteration with j bubbles, the appli-

cations are virtually mapped to the core region and the execution time

is stored in the performance model table. Once the iteration stops,

the performance model generates a table indicating the execution

times with j bubbles, where j = 0, 1, 2, ...,min{|Ai|,Γ}. The

corresponding mapping schemes with up to j bubbles are also stored

in a database. Note that, this process only virtually maps the tasks to

the cores to get the performance model table and the mapping scheme

database as shown in Fig. 3. Tasks are not actually bound to and run

on the cores. No migration is involved. Other running application is

intact.

The virtual mapping process has two objectives, i.e., minimizing

the communication distance and maximizing the computation fre-

quency/performance of the tasks. These two objectives might be con-

tradicting in the sense that, communication distance is minimal when

tasks are mapped in close proximity, while each task’s frequency

or computation performance is maximized when the temperature is

low indicating hot tasks are distant from each other. We propose a

heuristic based virtual mapping algorithm, where the two optimiza-

tion objectives are tried to be achieved simultaneously.

Algorithm 1 shows the virtual mapping flow. At each iteration with

j bubbles, the tasks are mapped to a core region of size |Ai|+j. The

results are the two lookup tables ET and MS, where ET[j] returns

the execution time when inserting j bubbles and MS[j] returns the

best virtual mapping scheme when inserting j bubbles, respectively.

Our proposed virtual mapping algorithm has the following steps.

1) Determine the computation to communication rate (CCR), which

is defined as the average computation workload (instructions

to be executed) divided by the data volume to be sent in one

application.

2) If CCR is over a threshold, call the computation biased virtual

mapping sub-routine. Otherwise, call the communication biased

virtual mapping sub-routine.

A larger CCR indicates each task computation performance con-

tributes more to the overall application performance, while a small

CCR means communication has more contribution to the applica-

tion performance. Based on the CCR value, two virtual mapping

sub-routines are called which are computation and communication

biased, respectively. Both of the two mappings have two steps as

follows. An initial mapping is set up first, followed by an iterative



ALGORITHM 1: Online Virtual Mapping

Input: j: The bubble number.

Output: ET[j]: The execution time when inserting j bubbles.

MS[j]: the best mapping scheme when inserting j bubbles.

Function: Find the best virtual mapping scheme and the

execution time for an incoming application given the bubble

number is j, where 0 ≤ j ≤ min{|Ai|,Γ}.

begin
if CCR < Threshold then

Call the Communication Biased Virtual
Mapping Sub-routine;

end
else

Call the Computation Biased Virtual
Mapping Sub-routine;

end
end

replacement procedure to optimize computation and communica-

tion performances. The inputs to both of the virtual mapping sub-

routines are 1) the task graph of the incoming application, 2) the

available cores in the system, and 3) the bubble number j, where

j = 0, 1...,min{|Ai|,Γ}.

1) Communication Biased Virtual Mapping Sub-routine: Algo-

rithm 2 shows the communication biased virtual mapping sub-routine.

a) Initial Mapping: In the initial mapping, the objective is set

to be minimal communication distance. A convex core region is first

found, followed by tasks with larger communication volume mapped

in closer proximity virtually. The mapping algorithm in [8] is used

as the initial mapping with minimal communication distance as the

optimization objective.

b) Inserting Bubbles: In each iteration, j bubbles are virtually

inserted into the core region of this application to boost the compu-

tation performance of certain tasks, where j = 0, 1...,min{|Ai|,Γ}.

The application’s core region is bounded by a convex hull. At each

iteration with j bubbles, first, a location (x1, y1) inside the current

convex hull is found, then a location (x2, y2) outside the convex

hull is found that is adjacent to its boundary, and has the minimum

distance to (x1, y1). The bubble is virtually moved from (x2, y2) to

(x1, y1) using the path migration algorithm in [22]. As an example,

Fig. 4 shows the process of inserting two bubbles iteratively. At

each iteration, when a new bubble is to be inserted, each task is

selected as the candidate to be replaced by the bubble. A bubble

with the minimal distance to each task is virtually replaced with

the task. Then, the maximum power/thermal budget and frequencies

of the cores running the tasks are updated following the thermal

power capacity model. After determining the frequency of each core

and the communication distance of each edge in task graph, the

computation and communication performances are updated following

the application model in Section III. The task replacement with the

minimal execution time is recorded. For example, in Fig. 4, in the first

step to insert one bubble, suppose replacing task 1 with a bubble leads

to the minimal execution time. So task 1 is moved to the location of

the bubble. The region is enlarged each time a bubble is inserted.

2) Computation Biased Virtual Mapping Sub-routine: Algorithm 3

shows the computation biased virtual mapping sub-routine.

a) Initial Mapping: If the task computation performance con-

tributes more to the application performance, the initial mapping

begins with a region of min{2×|Ai|,Γ} cores, where |Ai| or Γ cores

are powered off as bubbles. The tasks are sorted by their weight (each
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ALGORITHM 2: Communication Biased Virtual Mapping Sub-

routine

Output: ET[j]: The execution time when inserting j bubbles.

MS[j]: the best mapping scheme when inserting j bubbles.

Function: Find the best mapping scheme and the execution

time for an incoming application given the bubble number is j,

where 0 ≤ j ≤ min{|Ai|,Γ}.

begin
/* Inital Mapping */
Map the tasks with communication-awareness by using [8]

without bubble insertion;

ET[j] = INFINITY; // Recording the best
performance

/* Inserting Bubbles */
for j = 0, ...,min{|Ai|,Γ} do

for each active core tk inside the core region do /* k
= 0, 1, ...,min{|Ai|,Γ}, start with the
hotest location */

Find a bubble b on the boundary of the core region

returned by the mapping with the minimal distance

to tk;

Virtually move b to tk using [22];

Update the performance Ex;

if Ex < ET[j] then
ET[j] = Ex;

Virtually migrate b to tk using [22] and update

MS[j];
end

end
end

end

node’s worst case execution time in the task graph) in descending

order. The tasks are mapped as distant as possible to each other. The

mapping can be done as follows. For each unmapped task ai in the

sorted list, find a core t with maximal distance to the mapped tasks,

i.e.,
∑i−1

k=1 D(M(ak), t). D(M(ak), t) is the distance of the core to

a previous virtually mapped task. This equation finds the core that has

the maximum distance to those running the virtually mapped tasks.



ALGORITHM 3: Computation Biased Virtual Mapping Sub-

routine

Output: ET[j]: The execution time when inserting j bubbles.

MS[j]: the best mapping scheme when inserting j bubbles.

Function: Find the best mapping scheme and the execution

time for an incoming application given the bubble number is j,

where 1 ≤ j ≤ |Ai|.
begin

/* Inital Mapping */
Find a core region with size of min{2× |Ai|,Γ};

for each unmapped task ak do
Virtually map ak to core t such that t has the maximum

distance to other mapped tasks;
end
ET[j] = INFINITY; // Recording the best

performance
/* Removing Bubbles */
for j = 1, ..., |Bi| do

for edge ek = (am, an) do
Virtually move an to tk, i.e., a core clostest to

M(am) using [22];

Update the performance ET;

if ET < ET[j] then
ET[j] = ET;

Virtually migrate an to tk using [22] and

Update MS[j];
end

end
end

end

4

1

2

3

4

3 1

2

4

3

2

1

Initial mapping

Edge 1 3, fix task 1

4

3 1

2

Moving 2 toward 4

Edge 2 4, fix task 4
Moving 3 toward 1

bubbles

Fig. 5. Migrating bubbles virtually to optimize the communication distance.

b) Removing Bubbles: To get the performances with different

bubble counts for each application, the bubbles are virtually migrated

out from the initial mapping region one by one at each iteration.

The communication edges in the task are sorted by their volume in

descending order. For each edge e = (am, an), an is migrated to a

free core virtually and the application performance is recalculated.

If the performance is improved, an is virtually migrated to that free

core and the bubble is migrated to the original location of an. Then,

the bubble is excluded from the application. Fig. 5 shows two steps

of virtually migrating task 3 towards task 1, and tasks 2 towards task

3, respectively. After virtually migrating one task to a bubble, the

original core hosting it is excluded from the region of this application.

Then, the computation and communication performances are updated

following the application model at each iteration.

3) Complexity Analysis: The worst case complexity of the virtual

mapping process can be analyzed as follows. In the communication

biased virtual mapping algorithm, the initial mapping step has a

complexity of O(|Ai|2·|Ei|·|T |) [8]. In the second step, the algorithm

has to iterate up to |Ai| times, corresponding to the bubble count. For

each bubble count j, it takes O(|Ai|2) steps to virtually migrate the

tasks. In the computation biased virtual mapping algorithm, the initial

mapping step has a complexity of O(|Ai|2 ·|T |). In the second step, it

also has to iterate up to |Ai| times, corresponding to the bubble count.

For each bubble count j, it takes O(|Ei|) steps to virtually migrate the

tasks. Overall, the worse case complexity is O(max ‖Ai|2 ·|Ei|·|T |).
E. Choosing the Best Number of Bubbles

Given the waiting time and the performance models versus bubble

count, we can determine the number and locations of bubbles for

each incoming application such that the overall system performance

is optimized. To achieve the same, the following two steps are

performed. First, using the above two models, we can select the

number of bubbles |Bi| for each application i with the minimum

sum of execution time and waiting time, i.e., min{ETi + ηi}, with

0 ≤ |Bi| ≤ min{|Ai|, |Γ|}, where |Γ| is the total number of free

cores. Second, with a bubble count of |Bi|, the mapping results can

be retrieved from the database MS[|Bi|] as shown in Fig. 3.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup
Experiments are performed on an event-driven C++ simulator, with

DSENT integrated as the power model and Hotspot is used as the

temperature simulator. Task graphs are modeled in this simulator,

which can dynamically arrive at the system. The simulator system has

a network simulator which can model the package delay and energy

of the communications in a cycle accurate manner. The configuration

of the network-on-chip is listed in Table I. The many-core system

floorplanning can be found in [26]. The temperature threshold is 60
oC.

We compare our approach with the following two runtime thermal-

aware mapping algorithms that aim to dark silicon era, (1) DsRem
[18], where the cores on/off patterning are identified followed by

tasks mapped to active cores, and (2) PAT [16], where a core region

including inactive cores is found for each application.

Both random and real applications are used in the experiments

as tabulated in Table I in order to evaluate the performance of

the proposed and relevant algorithms considered for comparison. In

particular, we compare throughput (defined as the average number

of applications finished within a time unit), communication cost,

and average waiting time for each application which occurs when

there is insufficient cores to run the tasks that arrive in the system

at run-time. The communication cost is defined as the network

energy consumption, which is be measured by DSENT. The run-time

execution costs of the algorithms are also evaluated.

B. Validation of the Estimations
For errors in the waiting time estimation, Fig. 6 compares the linear

regression and polynomial regression models. Fifty experiments are

run with |T |, |Ai|, r, h and λ set randomly. The error of a single

experiment is defined as,

ε =
|WT − ŴT |

WT
× 100% (8)

where WT and ŴT are the waiting times obtained from the

simulator and the waiting time estimate model, respectively.

From this figure, one can see that quartic regression has the lowest

error. Therefore, in the following experiments, we use the quartic

regression model as the waiting time estimation. This indicates that

the maximum order of the terms in Eqn. 7 is four.



TABLE I
SIMULATION CONFIGURATIONS

Network parameters
Flit size 128 bits
Latency Router 2 cycles, link 1 cycle
Buffer depth 4 flits
Routing algorithm XY routing
Baseline topology 8× 8

Random benchmark parameters
Number of tasks [15, 45]
Communication volume [10, 200] (Kbits)
Degree of tasks [1, 15]
Task number distribution Bimodal, uniform

Real benchmarks
AES enc, AES dec [28], E3S [1]

linear quadratic cubic quartic quintic
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40
Errors of the waiting time estimation model (%)

Fig. 6. Errors of different regression models

C. Finding the CCR Threshold
Our approach (Algorithm 1) calls different sub-routines based on

the CCR threshold and we have identified its value. Fig. 7 evaluates

the CCR threshold which is used to classify an application as

computation or communication biased. The communication volumes

of the applications range from 20 to 1000 Kbits. CCR is defined

as the sum of edge weights divided by the sum of node weights in

each application’s task graph. From this figure, one can see that, a

CCR threshold of 1 generates the best performance. Therefore, in the

following experiments, we set CCR threshold to be 1.

D. Performance Comparison
1) Evaluation on Random Benchmarks: Fig. 8 compares the

throughput, waiting time, and communication cost at different net-

work sizes, for the three methods. One can see that, when the

network size is large, e.g., 12 × 12, our approach can improve

throughput by 1.5× and 3× over DsRem and PAT, respectively. The

reason is that, our approach can optimize both the communication

and computation intensive applications. For communication intensive

applications, tasks with high traffic volumes are mapped closer, while

for computation intensive applications, more bubbles are inserted.

Therefore, our approach can achieve better performance. Fig. 8 also

shows that the waiting time of our approach is shorter than the

other two approaches because our approach balances the waiting time

and the execution time of each application when inserting bubbles.

The other two approaches only consider the performance of each

individual application. Among the three approaches, DsRem has the

worst communication cost, since it does not take the communications

among the tasks into account.

Fig. 9 compares the considered metrics at different application

communication volumes when the three methods are employed. It

can be seen that when each application’s average communication

volume increases, e.g., 150Kbits, our approach’s throughput is about

1.52× and 1.7× over DsRem and PAT, respectively. As DsRem does

not consider communications among the tasks, it’s performance gets
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Fig. 7. CCR threshold selection.
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Fig. 8. The throughput, waiting time, and communication cost comparison
at different network sizes.

worse when communication volume is large. Although PAT considers

communication among the tasks, it does not consider budgeting the

bubbles that affects the waiting time of future applications. Therefore,

the waiting time of PAT is worse than ours, as in Fig. 9, leading to

a degraded throughput performance.

2) Evaluation on Real Benchmarks: Fig. 10 compares the through-

put, waiting time, and communication cost at different average

number of tasks when the three methods are employed. When each

application’s average number of tasks is large, e.g., 32 tasks, our

approach’s throughput is about 1.67× and 1.5× over DsRem and

PAT, respectively. Our approach also reduces waiting time by 50%
and 44% over DsRem and PAT,respectively.

Fig. 11 compares the considered metrics at different arrival rates for

the three methods. When the arrival rate is high, e.g., 1 application

arrives in the system per 100 cycles, our approach’s throughput is

about 2.15× and 2.15× over DsRem and PAT, respectively. A higher

arrival rates means more applications arrive at the system, indicating

the system workload is high. In such cases, DsRem and PAT might

lead to long waiting time when applications arrive, since the free

cores are used as coolers for currently running applications. Further,

DsRem and PAT optimize only for each individual application’s

performance. On the other hand, when the system workload is high,

our approach budgets fewer bubbles to currently running applications

and thus more free cores can be used to run the incoming applications,

reducing their waiting time.

E. Cost Analysis
The runtime cost of our algorithm is in the order of 1M cycles.

This is averaged by running the algorithm fifty times with different

system parameters. After the evaluation, it has been observed that

the running times of DsRem and PAT are also in the order of 1M

cycles. Therefore, the runtime overhead of the proposed algorithm is

acceptable.

VI. CONCLUSION

We proposed an online algorithm to budget free cores (referred as

bubbles) to each application so as to optimize the system throughput.

The system throughput is related to each application’s communication

and computation performances, as well as the waiting time incurred
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Fig. 9. The throughput, waiting time, and communication cost comparison
at various communication volumes (in K bits).
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Fig. 10. The throughput, waiting time, and communication cost comparison
at different average number of tasks in each application.

when it finds insufficient cores to run its tasks. Performance and

waiting time models are first set up for the applications. An online

algorithm was proposed to find the best number and locations of the

bubbles to each application, according to whether the new application

is computation or communication intensive. The algorithm also

trades the execution performance of each running application with

the waiting time of new applications. Our experiments confirmed

that, compared with two existing runtime resource management

approaches, our approach can improve the system throughput by

as much as 50%. The runtime overhead of our approach is mod-

erate, making it a suitable runtime resource management approach

to achieve high system throughput for many-core systems running

dynamic workloads.
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Fig. 11. The throughput, waiting time, and communication cost comparison at
various application arrival rate (defined as the number of applications arrived
per 100 cycle)


