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The paper considers repairable systems under imperfect repair. The failure rate of a new system is as- 

sumed to follow a Weibull distribution and the repair efficiency is characterized by a Kijima type II virtual 

age model named Arithmetic Reduction of Age with infinite memory. An analytical approach to obtain the 

distribution of the inter-failure times is presented. The existence of a stationary regime is highlighted and 

the limiting distributions are explicitly derived. In this context, an optimal age-based preventive mainte- 

nance policy can be implemented. Three approaches are proposed, considering a static, a dynamic or a 

failure limit policy. Numerical simulations are presented to illustrate the policies. 
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. Introduction 

During their operational life, industrial systems are subject to

epair actions when a failure occurs. A repair activity is aimed to

educe the failure rate of the system and to extend its useful life-

ime. The maintenance process has to take into account both the

ntrinsic aging of the system and the repair effectiveness. These

wo elements allow a better understanding of the system behav-

or in the short and long terms and the maintenance policy can be

dapted consequently. 

Repair efficiencies are commonly assumed to be either mini-

al or perfect. A minimal or As Bad As Old (ABAO) repair assumes

hat the system is restored to its operational condition just before

he failure. A perfect or As Good As New (AGAN) repair consists in

estoring the system to a new and identical one. Minimal repair

nd perfect repair can be characterized by a non-homogeneous

oisson process and a renewal p rocess ( Ascher & Feingold, 1984 ),

espectively. However, for a repairable system, these assumptions

re not always realistic as the system can be effectively repaired

ut is not renewed. This situation is described as imperfect main-

enance ( Pham & Wang, 1996 ). A thorough account of imper-

ect maintenance modeling for repairable systems is developed by

indqvist (2006) . In the context of imperfect repair, the implemen-
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ation of optimal maintenance policies have been developed by

akagawa (2005) and by Pham and Wang (2006) . The optimization

f imperfect maintenance policies are discussed considering reli-

bility block diagrams ( Levitin & Lisnianski, 20 0 0 ) and examples

f application to failure data are presented by Baker (2001) and

ijoux and Gaudoin (2014) . 

Virtual age models ( Kijima, Morimura, & Suzuki, 1988 ) are the

ost frequently used imperfect repair models. The principle is that

he wear-out does not depend on the chronological age of the sys-

em, but on a virtual age, commonly between zero and the elapsed

ime since the system was new. A virtual age model is entirely

haracterized by the failure rate of a new system and by the vir-

ual age assumptions. In particular, Kijima (1989) has proposed two

idespread classes of virtual age assumptions. He supposes that

ach repair efficiency is represented by a random variable sup-

orted on the interval [0,1]. A model under Kijima Type I assump-

ion is such that a repair rejuvenates the virtual age of a propor-

ional amount of the last inter-failure duration, whereas a model

nder Kijima Type II assumption supposes that the rejuvenated

mount is proportional to the virtual age just before the repair. A

articular case is to consider that the repair efficiency is a constant

∈ [0, 1], called restoration factor. The resulting models have been

eveloped by Malik (1979) and by Brown, Mahoney, and Sivazlian

1983) for the Kijima type I and II models, respectively. A unified

ersion of the last two models has been presented by Doyen and

audoin (2004) , called model of arithmetic reduction of age with

emory m , and denoted ARA m 

. The ARA 1 and ARA ∞ 

models are

pecial cases of the Kijima Type I and II models, respectively. The-

retical results on the ARA 1 model are developed in the literature

 Kijima & Sumita, 1986; Malik, 1979; Yevkin, 2012 ) and are applied
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in maintenance scheduling ( Dimitrakos & Kyriakidis, 2007; Jiang,

Makis, & Jardine, 2001; Kijima et al., 1988; Love, Zhang, Zitron,

& Guo, 20 0 0; Makis & Jardine, 1993 ). Similarly, some properties

of the ARA ∞ 

model are discussed when it is introduced ( Doyen &

Gaudoin, 2004; Kijima, 1989 ). These models are also developed in

the presence of different kinds of maintenance actions ( Dijoux &

Idée, 2013; Doyen & Gaudoin, 2011 ). 

Last and Szekli (1998) have proven the convergence of the Ki-

jima Type II model, and hence of the ARA ∞ 

model, to a steady-

state regime. Finkelstein (2008) has proven the convergence of the

ARA ∞ 

model to a steady-state regime when the repair efficiency

depends on the chronological age of the system. In contrast, Doyen

(2010) has proven that the ARA 1 model behaves asymptotically as

a non-homogeneous Poisson process. These properties highlight a

major difference between the ARA 1 and ARA ∞ 

models when the

restoration factor is in the interval ]0, 1[. If the failure rate of a

new system is increasing monotonically to infinity, the inter-failure

times converge to zero for the ARA 1 model and to a stationary dis-

tribution for the ARA ∞ 

model. 

This paper aims to solve a maintenance problem inspired by a

failure data set of electrical transformers given by French electrical

company (Électricité de France-EDF). Data consist of maintenance

dates without any information on type of maintenance and the age

of the system. The data concern systems running for a long and

unknown period of time. However, the failure data are available on

a short and recent time window even if the systems have been im-

plemented decades ago. The data could be assumed to correspond

to the system stable regime, but one needs appropriate tools to

take into account the lack of information on the system history.

In this framework, it is of essential interest to infer the system’s

behavior in order to improve the maintenance policy and to plan

efficient maintenance operations. Since the ARA ∞ 

model exhibits a

convergence property (existence of a stable regime), it is a suitable

candidate to model the data set. 

In fact the ARA models, in particular ARA 1 and ARA ∞ 

have been

intensively studied and in this framework many preventive main-

tenance policies are proposed. Nevertheless, in the literature, the

imperfect preventive maintenance in an infinite horizon is rarely

addressed. For instance 

• Dagpunar (1998) proposes block replacement policy with ARA ∞ 

corrective maintenance and perfect preventive maintenance.

The optimal duration between two preventive maintenance is

derived, based on the computation of mean number of correc-

tive maintenance actions during this period. 
• Kijima et al. (1988) study block replacement policy with ARA 1 

corrective maintenance and perfect preventive maintenance.

They develop an approach to compute the mean number of

ARA 1 corrective maintenance between two consecutive perfect

preventive maintenance actions. 
• Gilardoni, de Toledo, Freitas, and Colosimo (2015) study peri-

odic preventive maintenance policy using ARA 1 corrective main-

tenance and perfect preventive maintenance. The policy is

first built for finite horizon and then extended to an infinite

horizon. 
• Tsai, Liu, and Lio (2011) study planned preventive maintenance

policy. The preventive maintenance effect is similar to the ARA 1 

maintenance, whereas corrective maintenance is minimal. The

policy is optimized in a finite horizon. 
• Gilardoni and Colosimo (2007) propose a similar policy ( ARA 1 

preventive maintenance and minimal corrective maintenance)

optimized on an infinite horizon. 

The main contribution of our paper is first to derive original

theoretical properties of the WARA ∞ 

model and then to develop

original preventive maintenance policies. Regarding specifically the
ptimization of the preventive maintenance policy, our main con-

ributions are listed as follows: 

• For the first time, maintenance policies are derived on an in-

finite horizon considering imperfect CM and imperfect PM.

Therefore there is at no moment an as good as new (perfect,

renewal) replacement of the system during its operational life-

time. All the papers in the literature consider renewals under

an infinite horizon. 
• Thanks to the theoretical results in the stationary regime from

the first Section, efficient and analytical approximations of the

optimal maintenance policy are obtained without using Monte

Carlo simulations. 

The remainder of the paper is organized as follows. In Section 2 ,

roperties of the WARA ∞ 

are developed to obtain statistical distri-

utions of interest in both the transient and the stationary regimes.

ased on these distributions, planned preventive maintenance poli-

ies are proposed in Section 3 , along with numerical illustrations. 

. Properties of the WARA ∞ 

model 

.1. The repair process 

A repairable system has been observed since it was new. The

bservations consist of the successive maintenance times { T i } i ≥ 0 .

he corresponding inter-maintenance times are denoted { X i } i ≥ 1 

nd the repair process can also be characterized by a counting pro-

ess { N t } t ≥ 0 where N t = 

∑ ∞ 

i =1 1 { T i <t} . By convention, T 0 and X 0 are

qual to zero and time can be either calendar or operational. The

istributions are obtained from the failure intensity defined in (1) ,

here H t − is the history of the repair process at time t −, com-

only the failure times before t . 

 t ≥ 0 , λt = lim 

�t→ 0 

1 

�t 
P (N t+�t − N t − = 1 |H t − ) (1)

The failure rate of a new system, called initial failure intensity

nd denoted λ( t ), is assumed to be a deterministic and continuous

unction of time. It corresponds to the hazard rate of T 1 . The cumu-

ative hazard rate function is denoted �(t) = 

∫ t 
0 λ(u ) du . f , F and R

re the corresponding probability density function, cumulative dis-

ribution function and survival function, respectively. As industrial

ystems are assumed to wear out, the initial failure intensity is tra-

itionally increasing. Consequently, the two-parameter Weibull dis-

ribution has been chosen as in (2) . For wearing-out systems, the

hape parameter β is greater than 1. 

 t ≥ 0 , λ(t) = αβt β−1 (2)

A virtual age model ( Kijima et al., 1988 ) assumes that after the

th repair, the system behaves as a new and unmaintained one of

ge A i . This age is called effective age . The assumption is mathe-

atically described in (3) , where Z is the time to failure of a new

ystem and has the same distrib ution as X 1 . 

 i ≥ 0 , ∀ t ≥ 0 , P (X i +1 > t| X 1 , . . . , X i ) = P (Z > A i + t| Z > A i ) (3)

The conditional survival function of the (i + 1) th inter-failure

ime in (3) is simply R (A i + t) / R (A i ) . The age of the system A 0 at

he beginning of the observation is zero if the system is as good

s new, and greater than 0 otherwise. At a given time t , the virtual

ge of the system V t is obtained from the latest effective age and

he elapsed time since the last repair as in (4) . 

 t = A N t − + t − T N t − (4)

The virtual age of the system just before the ith repair is de-

oted A 

−
i 

. The failure intensity can be derived from the initial fail-

re intensity as in (5) . The variation of the virtual age V t and of the

hronological time are identical between two consecutive failures.
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orado, Hollander, and Sethuraman (1997) have presented an ex-

ension of the virtual ages where this variation can be accelerated

r decelerated. 

t = λ(V t ) = λ(A N t − + t − T N t − ) (5) 

Many models have been developed from different assumptions

n the virtual ages ( Brown & Proschan, 1983; Dijoux & Idée, 2013;

oyen & Gaudoin, 2004; Kijima, 1989 ). In particular, a Kijima type

I model ( Kijima, 1989 ) assumes that regarding the i th repair, the

ffective age A i is proportional to A 

−
i 

. The model of arithmetic

eduction of age with infinite memory ARA ∞ 

( Doyen & Gaudoin,

004 ) assumes that this proportion is a constant ρ in the interval

0,1] as in (6) . ρ is called the repair efficiency or the restoration

actor. 

 i = (1 − ρ) A 

−
i 

= (1 − ρ)(A i −1 + X i ) (6) 

In particular, a minimal and a perfect maintenance can be

odeled with ρ = 0 and ρ = 1 , respectively. The effective age in

6) can be explicitly expressed in terms of the inter-failure times 

nd A 0 , as in (7) . One can find useful applications of the ARA ∞ 

odel in different situations ( Bartholomew-Biggs, Ming, & Xiaohu,

009; Brown et al., 1983; Clavareau & Labeau, 2009; Dijoux & Idée,

013; Kahle, 2007; Yun & Choung, 1999 ). 

 i = (1 − ρ) i A 0 + 

i ∑ 

j=1 

(1 − ρ) (i − j+1) X j (7) 

Combining (5) and (7) , a model under the ARA ∞ 

assumption

s defined by the initial age A 0 , the initial failure intensity λ(.) and

he repair efficiency ρ . The Weibull- ARA ∞ 

model , denoted WARA ∞ 

,

onsists of the ARA ∞ 

assumption, the Weibull initial failure defined

n (2) and a null initial age. 

Even if it seems very simple, the constant restoration factor is

idely used in the literature and can describe the maintenance ef-

ect in many real industrial cases. For instance Malik (1979) uses

he constant restoration factor to describe the effect of planned

aintenance on system’s virtual age. Guo and Love (1992) also use

 constant restoration factor to build their imperfect maintenance

odel. One can enumerate several other papers using the same as-

umption to quantify the maintenance effect ( Bartholomew-Biggs

t al., 2009; Love et al., 20 0 0; Yevkin, 2012; Yevkin & Krivtsov,

013 ). Furthermore, when maintenances are well in place, the

aintenance activities are relatively homogeneous and the con-

tant restoration factor seems appropriate. In practice, the num-

er of observations is usually not large during the analysis of a

aintenance data set. It is consequently necessary to find a com-

romise between the number of parameters of the model and a

igh-level of precision on the system. Considering a system un-

er one kind of maintenance only, the use of one parameter for

he maintenance efficiency allows to obtain a model which is flex-

ble enough and which approximately takes into account the global

aintenance efficiency on a system level. Naturally, in presence of

ultiple types of maintenances (preventive, corrective associated

ith different failure modes), a more general modeling can be pro-

osed as in Doyen and Gaudoin (2006) and Lindqvist (2006) , but

his approach is not considered in this paper. 

.2. Analytical developments of the WARA ∞ 

model 

In the following, properties of the WARA ∞ 

model are derived.

he restoration factor ρ is assumed to be in the open interval (0,

). Properties of the Weibull distributions have been developed in

he case of a renewal process ( ρ = 1 ) ( Lomnicki, 1966; Yannaros,

994 ) and in the case of a non-homogeneous Poisson processes

 ρ = 0 ) ( Crow, 1974; Rigdon & Basu, 20 0 0 ). The marginal distribu-

ions of A n , X n and A 

−
n are derived in the transient and the station-

ry regimes of the system. 
roposition 1. 

 n ≥ 1 , A n = (1 − ρ)�−1 ( �(A n −1 ) + ξn ) 

here �−1 is the inverse function of � and ξ n has an exponential

istribution with rate 1 and is independent of the previous random

ariables { ξ j } j=1 ... ... n −1 . 

Proposition 1 remains valid for other initial failure intensities,

iven that the inverse function �−1 can be defined. The proof is a

traightforward application of the standard method of simulation

y inversion of the cumulative distribution function. The details of

he proof can be found in Appendix A . In the case of the WARA ∞ 

odel, �−1 (t) = (t/α) 1 /β and the effective ages can be expressed

s in (8) . 

 n ≥ 1 , A n = (1 − ρ) α− 1 
β

(
αA 

β
n −1 

+ ξn 

) 1 
β

(8) 

roposition 2. 

 n ≥ 1 , A n = (1 − ρ) α− 1 
β

( 

n ∑ 

i =1 

(1 − ρ) β(n −i ) ξi 

) 

1 
β

n the case of the WARA ∞ 

model, where { ξi } i =1 ..n are n independent

xponential random variables with rate 1. 

Proposition 2 is a direct consequence of Proposition 1 . A proof

y induction is derived in Appendix B . Multiplying an exponen-

ial random variable by a positive constant preserves the exponen-

ial nature of the distribution. The summand in the expression of

he effective ages in Proposition 2 is therefore exponentially dis-

ributed. A sum of independent exponential random variables fol-

ows a hypo-exponential distribution ( Gaudoin & Ledoux, 2007 ).

he hypo-exponential distribution is a special case of the phase-

ype distribution ( Slud & Suntornchost, 2014 ). The effective ages A n 

an be regarded as a transformation from a hypo-exponential dis-

ribution. Let us introduce in (9) the q-Pochhammer operator, also

alled q-shifted factorial ( Mcintosh, 1999 ), which is a basic hyper-

eometric series ( Gasper & Rahman, 1990 ). 

q-shifted factorial) (a, q ) k = 

k −1 ∏ 

j=0 

(1 − aq j ) (9) 

roposition 3. Denoting q = (1 − ρ) β , the survival distribution of A n 

n the WARA ∞ 

model is: 

 n ≥ 1 , R A n (t) = 

n ∑ 

k =1 

1 

(q, q ) n −k ( 
1 
q 
, 1 

q 
) k −1 

e 
− αt β

q k 

The expression of the survival distribution of A n in

roposition 3 is derived from the survival function of a hypo-

xponential distribution. The complete solution of the proof is

erived in Appendix C . 

roposition 4. The survival function of X n +1 in the WARA ∞ 

model is

iven by: 

 X n +1 
(t) = 

⎧ ⎨ ⎩ 

∑ n 

k =1 

∫ ∞ 

0 αβx β−1 e −α(x + t) β+ α(1 −q −k ) x β dx 

q k (q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

, n ≥ 1 

e −αt β , n = 0 

Given A n , the conditional distribution of the consecutive inter-

ailure time X n +1 can be easily obtained. The distribution of X n +1 

s therefore computed by a conditioning on A n , when necessary.

dditional details of the proof are presented in Appendix D . 

roposition 5. By denoting the Gamma function 	(z) =
 ∞ 

0 t z−1 e −t dt, the expectations of A n and X n +1 in the WARA ∞ 

odel are: 
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∀ n ≥ 1 , E[ A n ] = α−1 /β	
(

1 

β
+ 1 

) n ∑ 

k =1 

q 
k 
β

(q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

∀ n ≥ 0 , E[ X n +1 ] = α−1 /β	
(

1 

β
+ 1 

) n +1 ∑ 

k =1 

q 
k −1 
β

(
1 − q 

1 
β + q n +1 −k + 1 

β

)
(q, q ) n +1 −k 

(
1 
q 
, 1 

q 

)
k −1 

The mean of both of the distributions are obtained by integrat-

ing the corresponding survival functions over the interval [0, ∞ [.

A proof is detailed in Appendix E . Another quantity of interest is

the virtual age of the system just before a failure. The distribution

of A 

−
n is presented in Proposition 6 . The proof follows directly from

the relation between A n and A 

−
n in (6) . 

Proposition 6. In the WARA ∞ 

model, the distribution of the virtual

age just before the nth repair A 

−
n is given by: 

∀ n ≥ 1 , R A −n (t) = 

n ∑ 

k =1 

1 

(q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

e 
− αt β

q k −1 

The expectation of A 

−
n has the following form: 

∀ n ≥ 1 , E[ A 

−
n ] = α−1 /β	

(
1 

β
+ 1 

) n ∑ 

k =1 

q 
k −1 
β

(q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

In a Markovian approach, the effective ages A n can be rep-

resented by a continuous-state discrete-time Markov chain. The

initial condition and the transition probabilities are presented in

Proposition 7 . A proof is provided in Appendix F . 

Proposition 7. The effective ages A n in the WARA ∞ 

model can be

characterized by a Markov chain on the continuous state space R + as

follows: 

A 0 = p(s, t) = 

−∂P (A n +1 > s | A n = t) 

∂s 

= 

αβs β−1 

(1 − ρ) β
e −α(( s 

1 −ρ ) β−t β ) 1 { s ≥(1 −ρ) t} 

It is already proven that a model based on the ARA ∞ 

as-

sumption admits a stationary distribution under classical condi-

tions on the initial failure intensity ( Last & Szekli, 1998 ). In par-

ticular, the WARA ∞ 

model converges to a steady-state regime. In

Proposition 8 , another evidence of the convergence can be ob-

tained from Propositions 3 and 4 . In addition, the limiting dis-

tributions of the effective ages and of the inter-failure times can

be derived analytically. The details of the proof are provided in

Appendix G . 

Proposition 8. In the WARA ∞ 

model, the effective ages and the inter-

failure times converge to a stationary regime. The corresponding limit-

ing distributions A ∞ 

and X ∞ 

are characterized by their survival func-

tion and expectation as below. 

R A ∞ (t) = 

∞ ∑ 

k =1 

1 

(q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

e 
− αt β

q k 

R X ∞ (t) = 

∞ ∑ 

k =1 

[ 

1 

q k (q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

∫ ∞ 

0 

αβx β−1 e −α(x + t) β+ α(1 −q −k ) x β dx

E[ A ∞ 

] = α− 1 
β 	
(

1 

β
+ 1 

) ∞ ∑ 

k =1 

q 
k 
β

(q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

E[ X ∞ 

] = α− 1 
β 	
(

1 

β
+ 1 

) ∞ ∑ 

k =1 

q 
k 
β (q −

1 
β − 1) 

(q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 
The probability distribution functions of A 1 , A 2 , A 3 and A ∞ 

for

= 1 , β ∈ {1.5, 2.5, 3.5} and ρ ∈ {0.2, 0.4, 0.6} are depicted in

igs. 1 –3 . 

Furthermore, Finkelstein (2008) pointed out that if the distribu-

ion of the first inter-failure time X 1 is an IFR (Increasing Failure

ate) distribution, then the sequence of effective ages ( A 1 , A 2 ,...

 n ,...) is monotonically increasing and the sequence of inter-failure

imes ( X 1 , X 2 ,... X n ,...) is monotonically decreasing. In the particu-

ar case of the WARA ∞ 

model considered in this paper, since X 1 

ollows a IFR Weibull distribution, the sequence of effective ages

 A 1 , A 2 ,... A n ,...) is monotonically increasing. Therefore, E [ X 1 ] ≥ E [ X 2 ]

... ≥ E [ X ∞ 

] which means in average the system is not getting

ounger under imperfect maintenance actions. However, after a

ong operation time and a large number of maintenance actions,

he inter-failure times distribution will stabilize and in average

hey be equal to E [ X ∞ 

]. Moreover, the probability distribution func-

ion of A ∞ 

is very similar to the distributions of A 1 , A 2 ,... A n , ���. 

In the next section, the properties obtained for the WARA ∞ 

odel are used to implement optimal planned preventive main-

enance policies. 

. Optimization of planned preventive maintenance policies 

.1. Preventive maintenance scheduling 

One of the main objectives of failure data analysis is to predict

ossible future outcomes and to optimize maintenance actions

ccordingly. After the occurrence of multiple failures followed by a

orrective maintenance, it is natural to consider the implementa-

ion of a preventive maintenance policy. A preventive maintenance

an be either condition-based, performed according to the results

rom monitoring devices and from inspections or planned, per-

ormed at a scheduled time. The optimization of the policy can

e obtained with regard to reliability, cost, availability and safety.

onsidering imperfect maintenance, condition-based preventive

aintenance policies have been proposed for deteriorating sys-

ems when the degradation level of the system can be measured

 Do & Bérenguer, 2012; Mercier & Castro, 2013; Nicolai, Frenk, &

ekker, 2009; Zhang, Gaudoin, & Xie, 2015 ). For lifetime distribu-

ions, imperfect preventive maintenance policies have also been

eveloped ( Jiang et al., 2001; Kijima et al., 1988; Nakagawa, 1980;

ham & Wang, 2006 ). In particular, under a Weibull initial failure

ntensity, optimal preventive maintenance strategies have been

roposed using the ARA 1 ( Toledo, 2014 ) and the ARA ∞ 

( Scarsini

 Shaked, 20 0 0; Yevkin & Krivtsov, 2013 ) assumption. The vast

ajority of these models assume that the system is replaced by a

ew one after either a replacement, a certain number of repairs or

 period of time. This assumption is necessary if the inter-failure

imes converge to zero as for the majority of the Kijima type I

odels. However, for the Kijima type II models and in particular

he WARA ∞ 

model, the asymptotic behavior of the system allows

ot to have to replace the system by a new one at any given

ime. The proposed maintenance policies offer more flexibility to

he ARA ∞ 

model in maintenance scheduling, especially for stable

ystems with previously unobserved failures. 

In the following, based on the convergence properties of the

ARA ∞ 

model, three planned preventive maintenance policies are

resented and their implementation are optimized based on main-

enance costs. 

.2. Three planned preventive maintenance strategies for the WARA ∞ 

odel 

A repairable system which can be operated on an infinite hori-

on is considered. The assumption on the models are as follows: 
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Fig. 1. Density plots with the setting α = 1 , β = 1 . 5 , ρ ∈ { 0 . 2 , 0 . 4 , 0 . 6 } . 

Fig. 2. Density plots with the setting α = 1 , β = 2 . 5 , ρ ∈ { 0 . 2 , 0 . 4 , 0 . 6 } . 
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Fig. 3. Density plots with the setting α = 1 , β = 3 . 5 , ρ ∈ { 0 . 2 , 0 . 4 , 0 . 6 } . 
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(i) At the beginning of the observation, the system is in the

steady-state regime of the WARA ∞ 

model with parameters

( α, β , ρ) and the system has just been maintained. The time

scale starts at zero and the same notation as in Section 2.1 is

used. 

(ii) The system is hereafter subjected to corrective maintenance

(CM) and planned preventive maintenance (PM). 

(iii) After the ith maintenance (PM or CM, i ≥ 0), the system’s

virtual age is a i and the duration δ∗
i +1 

to the next preventive

maintenance is scheduled. 

(iv) The maintenance process is characterized by a virtual age

assumption on the maintenances and the intrinsic wear-out

is a Weibull distribution with the same parameters ( α, β). 

(v) CM still follows a ARA ∞ 

assumption with parameter ρ . 

(vi) PM follows a ARA ∞ 

assumption with the same restoration

factor ρ . 

(vii) The parameters of the model ( α, β , ρ) are known. 

(viii) Maintenance costs are known. Costs of CM and PM are C c 
and C p , respectively, with C c > C p . The cost of the ith mainte-

nance K ( i ) is obtained by comparing time-to-failures (10a) or

virtual ages (10b) . 

K(i ) = C p + (C c − C p ) 1 { X i <δ∗
i 
} (10a)

K(i ) = C p + (C c − C p ) 1 { a i −1 + X i <a ∗
i 
} (10b)

At time t , the total cost C ( t ) is simply C(t) = 

∑ N t 
i =1 

K(i ) . The per-

formance of a policy is measured by its long-run average cost per

unit of time as in (11) . 

 ∞ 

= lim 

t→∞ 

C(t) 

t 
(11)

Different preventive maintenance strategies are possible, char-

acterized by the choice of the durations { δ∗
i +1 

} i ≥0 . The three fol-

lowing preventive maintenance policies are developed: 

• A static policy assumes that the durations δ∗
i +1 

are constant. The

cost of one cycle is computed by comparing the actual time-to-
failure and the proposed PM duration (10a) . The optimal dura-

tion δ∗ minimizes the cost function (11) . δ∗ is either obtained

by Monte-Carlo simulations or approximated using the renewal

theory and properties of Section 2.2 . 
• A dynamic policy computes the duration δ∗

i +1 
by taking into ac-

count the past of the maintenance process. The optimal dura-

tion δ∗
i +1 

minimizes a mean cost per unit time of the (i + 1) th

cycle. The cost of one cycle is also computed with (10a) . 
• A failure limit policy defines an optimal virtual age s ∗ as a

threshold not to exceed by the system’s virtual age. The op-

timal value can be obtained by Monte-Carlo simulations. The

policy compares the actual virtual age to the optimal value s ∗

to derive the next PM duration (10b) . 

Additional remarks on the assumptions of the model are dis-

ussed below. 

• The vast majority of the research papers in preventive mainte-

nance optimization assumes that the parameters of the mod-

els are known, for instances ( Chien & Sheu, 2006; Nakagawa,

20 05; Pham & Wang, 20 06; Sandve & Aven, 1999 ). Even if the

assumption that the parameters are known is simplistic in prac-

tice, it allows to identify the overall quality of a preventive

maintenance strategy and provides general directions in terms

of preventive maintenance optimization. 
• As an additional PM strategy is adopted, the resulting model is

not a WARA ∞ 

model, unless δ∗
i +1 

= + ∞ . However, as all main-

tenances follow a ARA ∞ 

assumption, the system will stay in a

steady-state regime. 
• In the static policy, the optimal duration δ∗ is computed on an

infinite horizon. This implies that the initial condition of the

system has no impact on δ∗. The Assumption (i) is consequently

not necessary and the system can be considered as good as new

at the beginning of the observation. 
• In the case of perfect maintenances, the planned PM strategy

developed in the Assumption (iii) is called age-based preventive

maintenance policy. It implies that a PM is carried out when
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Fig. 4. Trajectory of the maintenance process for the dynamic strategy. 
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the virtual age of the system reaches a predetermined age, if

no failure has occurred before. As maintenances are imperfect,

the PM policy described in the Assumption (iii) is not based

on the virtual age of the system, but on a duration since the

last maintenance. The terminology of age-based PM can still be

preserved ( El-Ferik & Ben-Daya, 2008 ). 
• The Assumption (vi) is conservative, as PM are generally more

efficient than CM. 
• The Assumption (vii) is rather strong, as the wear-out of

the system and the maintenance efficiencies are not precisely

known in practice. 
• As commonly postulated in the Assumption (viii), the cost of

a maintenance is independent of its efficiency. In practice, it

is possible that the corrective maintenance cost depend of the

restoration factor ρ ( Yevkin & Krivtsov, 2013 ). 

.2.1. Policy 1: static policy 

For the first strategy, the age-based PM is set to a constant

alue δ∗. No analytical results allow to obtain the optimal dura-

ion δ∗. Monte Carlo simulations have been used to obtain the op-

imum. As the resulting cost functions are relatively smooth, a grid

ptimization has been developed. A reasonable bound for δ∗, de-

oted δmax , has been set to the 95th percentile of the inter-failure

istribution X ∞ 

developed in Proposition 8 . The simulated trajec-

ories run over a sufficiently long period Tmax so that the long-

un average cost per unit of time is convergent. As mentioned in

ection 3.2 , the system can be considered as good as new at the

tart. The corresponding Monte Carlo simulations have been de-

ived and commented in Algorithm 1 in Appendix H . 

A system under no PM follows the WARA ∞ 

model. In particular,

he inter-failure times converge to a limiting distribution X ∞ 

de-

ived in Proposition 8 . The resulting repair process can therefore be

oughly approximated by a renewal process with X ∞ 

as the generic

istribution of the inter-arrival times. The optimal age-based PM in

he corresponding renewal process ̂ δ∗ can be obtained by minimiz-

ng the mean cost per unit time as in (12) ( Gertsbakh, 20 0 0 ). 

̂ ∗ = arg min 

δ> 0 

C p + (C c − C p )(1 − R X ∞ (δ)) ∫ δ
0 R X ∞ (u ) du 

(12) 

Finkelstein (2015) shows that under the Static policy, the opti-

al value ̂ δ∗ of the WARA ∞ 

model exists. As for the optimal age-

ased PM in a Weibull renewal process ( Tadikamalla, 1980 ), there

s however no analytical results for ̂ δ∗ and the mean cost per unit

ime function is minimized numerically. 
.2.2. Policy 2: dynamic policy 

After a maintenance, the time to the next PM is scheduled ac-

ording to the wear-out of the system and the past of the main-

enance process. At the beginning of the observation, the system

s under the stationary regime of the WARA ∞ 

model. The effec-

ive age of the system is A with distribution A ∞ 

, presented in

roposition 8 . As discussed in Section 2.2 , this assumption is rea-

onable if the system has failed at least a few times in its history.

he optimal PM duration 

˜ δ∗
1 

for the first cycle is derived by min-

mizing (12) . Given the initial age A = u, the effective age of the

ystem A i after the ith maintenance (PM or CM) can be derived as

n (13) . 

 i (u ) = (1 − ρ) i u + 

i ∑ 

j=1 

(1 − ρ) i − j+1 x j (13) 

Let us denote by Z and Z i +1 the potential time to failure for a

ew system and the potential inter-failure time consecutive to the

th maintenance, respectively. Given the history of the maintenance

rocess, the conditional distribution of Z i +1 can be derived as in

14) by conditioning on A . Note that the initial age A is assumed to

e independent of the future of the process and that the effective

ge A i has been obtained in (13) . 

 (Z i +1 > z| X 1 , . . . , X i ) = 

∫ ∞ 

0 

P (Z i +1 > z| X 1 , . . . , X i , A = u ) − dR A ∞ (u ) 

= 

∫ ∞ 

0 

P (Z > A i (u ) + z| Z > A i (u )) − dR A ∞ (u ) 

= −
∫ ∞ 

0 

e −α(A i (u )+ z) β

e −αA i (u ) β
dR A ∞ (u ) (14) 

As the conditional distribution of the potential next inter-failure

ime is known, a preventive maintenance policy can be adjusted

ccordingly. The optimization of the implementation of the next

M is similar to the case of a renewal process discussed at the

nd of Section 3.2.1 . The optimal PM duration 

˜ δ∗
i +1 

for the (i + 1) th

ycle has been derived in (15) . As for ̂ δ∗ in Section 3.2.1 , ˜ δ∗
i +1 

is

btained numerically. 

˜ ∗
i +1 

= arg min 

δ> 0 

C p + (C c − C p )(1 − P (Z i +1 > δ| X 1 , . . . , X i )) ∫ δ
0 P (Z i +1 > u | X 1 , . . . , X i ) du 

(15) 

The actual inter-maintenance time x i +1 is associated with the

vent which occurs first x i +1 = min ( ̃  δ∗
i +1 

, z i +1 ) . An example of tra-

ectory of the maintenance process is presented in Fig. 4 . The aver-

ge cost C DYN of the dynamic policy on an infinite horizon can be
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Fig. 5. Density of inter-maintenance durations of static policy α = 1 , β = 3 , ρ = 0 . 2 . 
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Fig. 6. Density of inter-maintenance durations of static policy α = 1 , β = 3 , ρ = 0 . 5 . 

Fig. 7. Density of inter-maintenance durations of static policy α = 1 , β = 3 , ρ = 0 . 8 . 
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assessed from its empirical version as in (16) . 

 

DY N = 

C c 
∑ 

i ≥1 1 z i < ̃  δ∗
i 

+ C p 
∑ 

i ≥1 1 z i > ̃  δ∗
i ∑ 

i ≥1 1 z i < ̃  δ∗
i 

z i + 

∑ 

i ≥1 1 z i > ̃  δ∗
i 

˜ δ∗
i 

(16)

3.2.3. Policy 3: failure limit policy 

The policy uses the idea of a failure limit policy, in which a PM

is performed when the failure rate reaches a maximum level λ∗

( Jayabalan & Chaudhuri, 1992; Lie & Chun, 1986; Malik, 1979 ). This

allows to keep the system’s failure rate below an acceptable level.

To apply to the virtual age models, we first observe that the failure

rate at time t can be determined by the corresponding virtual age:

λt = λ(V t ) . It follows that a maximum (might be optimal) level

of failure rate λ∗ corresponds to a maximum level of virtual age

 

∗
t = s ∗. Considering the virtual age assumption, the failure limit

policy performs a PM when the virtual age of the system exceed

a maximum threshold s ∗. The PM duration of the (i + 1) th cycle is

determined by δi +1 = s ∗ − a i , if there is no failure. We propose an

algorithm using Monte-Carlo simulations in Appendix I to deter-

mine the optimal value s ∗ of the virtual age. The optimal threshold

aims to minimize the long-term average cost per unit of time. The

time limit Tmax is sufficiently large to ensure the convergence. 

3.2.3.1. Remark . Let us stress that in the maintenance policies un-

der consideration, there is a competing risks involved. For exam-

ple, in the static policy, if the i th time to failure is Z i , the current

time to maintenance is X i = min (Z i , δ) . As the preventive mainte-

nances are planned, this competing relationship can be modeled as

a deterministic censoring of the time to failure. The results from

Section 2 derive the properties in the steady-state regime under

one kind of maintenance. Considering two kinds of maintenances

and as the preventive maintenance are a constant and determinis-

tic censoring of the failure process, the resulting process will nat-

urally converge to a stationary regime. However, the distribution

of the limiting virtual age A ∞ 

will not be the same as for one

kind of maintenance. Theoretical results have been obtained for

the stationary regime under failure-limit or age-dependent pre-

ventive maintenance policy, but not in the case of the static and

dynamic policies from the paper. Through graphical presentation

in Figs. 5 –7 , we illustrate the stationary assumption after applying

ARA ∞ 

preventive maintenance actions. 
.3. Numerical simulations 

The implementation of the different PM strategies are discussed

n this section based on representing examples. Since the failure

ata set of electrical transformers given by French electrical com-

any (Électricité de France-EDF) is confidential, the proposed theo-

etical results are applied to simulated data with parameter setting

imilar to the original data set. Furthermore, simulated data with

ifferent parameters setting permit a better analyze of the mainte-

ance policies efficiency. 

Different wear rates β and different restoration factors ρ are

onsidered. The pseudo-scale parameter α is set to 1. Nine config-

rations are chosen with β ∈ {1.5, 3, 4.5} and ρ ∈ {0.2, 0.5, 0.8}.

hese choices cover slow to fast aging and poorly to fairly efficient

aintenances. Three different cost ratios C c / C p ∈ {10, 100, 10 0 0}

re considered. The Nelder–Mead downhill simplex method is used

or the optimization procedure.The results for all the strategies are
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Table 1 

Comparing costs of maintenance policies (α = 1 , C c = 10 C p ) . 

β ρ Static Failure limit Variant Dynamic No PM E [ X ∞ ] 

Cost δ∗ Cost s ∗ Cost ̂ δ∗ C DYN 

1 .5 0 .2 17 .72 0 .18 17 .69 0 .85 20 .81 0 .84 20 .76 22 .01 0 .45 

1 .5 0 .5 12 .30 0 .26 12 .28 0 .50 13 .51 0 .62 13 .11 15 .68 0 .64 

1 .5 0 .8 9 .71 0 .33 9 .71 0 .41 9 .97 0 .48 9 .71 12 .74 0 .78 

3 0 .2 15 .50 0 .09 15 .48 0 .48 25 .00 0 .23 23 .64 40 .70 0 .24 

3 0 .5 7 .54 0 .20 7 .54 0 .40 8 .02 0 .26 7 .62 20 .72 0 .48 

3 0 .8 4 .92 0 .30 4 .92 0 .38 4 .92 0 .30 4 .92 13 .90 0 .72 

4 .5 0 .2 12 .51 0 .10 12 .51 0 .51 16 .51 0 .15 16 .10 46 .87 0 .21 

4 .5 0 .5 5 .49 0 .23 5 .48 0 .46 5 .51 0 .22 5 .49 21 .39 0 .47 

4 .5 0 .8 3 .46 0 .37 3 .46 0 .46 3 .49 0 .34 3 .46 13 .68 0 .73 

Table 2 

Optimal maintenance strategies in nine configurations with (α = 1 , C c = 100 C p ) . 

β ρ Static Failure limit Variant Dynamic No PM 

Cost δ∗ Cost s ∗ Cost ̂ δ∗ C DYN 

1 .5 0 .2 87 .46 0 .03 87 .46 0 .17 88 .92 0 .05 88 .65 220 

1 .5 0 .5 60 .52 0 .05 60 .50 0 .10 62 .19 0 .07 62 .05 156 

1 .5 0 .8 47 .61 0 .06 47 .52 0 .08 49 .68 0 .10 48 .21 127 

3 0 .2 34 .45 0 .04 34 .41 0 .22 41 .61 0 .06 38 .65 407 

3 0 .5 16 .75 0 .09 16 .73 0 .17 16 .92 0 .08 16 .80 207 

3 0 .8 10 .91 0 .13 10 .90 0 .17 11 .10 0 .11 11 .09 139 

4 .5 0 .2 21 .40 0 .06 21 .32 0 .30 23 .19 0 .05 22 .95 468 

4 .5 0 .5 9 .33 0 .13 9 .33 0 .27 12 .74 0 .08 9 .35 213 

4 .5 0 .8 5 .89 0 .21 5 .89 0 .27 6 .62 0 .16 5 .96 136 

Table 3 

Optimal maintenance strategies in nine configurations with (α = 1 , C c = 10 0 0 C p ) . 

β ρ Static Failure limit Variant Dynamic policy No PM 

Cost δ∗ Cost s ∗ Cost ̂ δ∗ C DYN 

1 .5 0 .2 408 0 .007 407 0 .03 501 0 .03 471 2200 

1 .5 0 .5 282 0 .009 282 0 .02 309 0 .02 291 1568 

1 .5 0 .8 221 0 .012 221 0 .01 233 0 .02 223 1274 

3 0 .2 74 .33 0 .02 74 .20 0 .10 87 .23 0 .02 77 .15 4070 

3 0 .5 36 .11 0 .04 36 .03 0 .08 41 .40 0 .03 38 .23 2072 

3 0 .8 23 .52 0 .06 23 .52 0 .08 28 .32 0 .04 25 .02 1390 

4 .5 0 .2 35 .64 0 .03 35 .59 0 .18 66 .92 0 .01 40 .16 4687 

4 .5 0 .5 15 .58 0 .08 15 .56 0 .16 36 .86 0 .03 17 .05 2139 

4 .5 0 .8 9 .85 0 .13 9 .85 0 .16 14 .17 0 .07 9 .91 1368 
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Fig. 8. Average cost of age-based policy with α = 1 , β = 1 . 5 . 
eported in Tables 1 –3 . The average cost when no PM is performed

only repair at failure) for an infinite horizon is added for compari-

on purpose. In Table 1 , the expectation of the inter-failure time in

tationary regime is also included. The result of the approximation

y renewal theory for the static policy is referred as the Variant in

he table. 

It is obvious to see that any maintenance policy without

lanned preventive maintenance (only repair at failure) is the most

ostly. The PM clearly helps to lower the cost and extend the op-

rating time. It is interesting to evaluate the impact of preventive

aintenance on the average cost in different policies. 

The failure limit policy is the most cost-wise policy. We know

hat, by definition of the policy, the PM durations are not constant.

owever, when obtaining numerical results, we observe that al-

ost all of the PM durations are of the same length. The small

ortion of different lengths is meant to adjust the system’s virtual

ge to its optimal value. We believe that this behavior is due to

he particularity of the ARA ∞ 

model. 

As for the static policy, the cost functions for all the configura-

ions are derived from Algorithm 1 and are presented in Figs. 8 –

0 . The optimal solution δ∗ and its approximation from the re-

ewal process theory (Variant) ̂ δ∗ are indicated. For large values

f β (3,4.5), the Variant proposes good approximation of the op-
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Fig. 9. Average cost of age-based policy with α = 1 , β = 3 . 

Fig. 10. Average cost of age-based policy with α = 1 , β = 4 . 5 . 
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Fig. 11. Comparison of dynamic optimal PM durations and optimal PM duration of 

static policy with (β = 1 . 5 , ρ = 0 . 8) . 

0.29 0.295 0.3 0.305 0.31 0.315 0.32 0.325 0.33
0

200

400

600

800

1000

1200

1400

PM duration

 

 
Static policy

a∗

Fig. 12. Comparison of dynamic optimal PM durations and optimal PM duration of 

static policy with (β = 3 , ρ = 0 . 8) . 

Fig. 13. Comparison of dynamic optimal PM durations and optimal PM duration of 

static policy with (β = 4 . 5 , ρ = 0 . 8) . 
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timal solution obtained by Monte-Carlo simulations. In particular,

when repair is effective ( ρ = 0 . 8 ), the Variant returns fairly correct

approximation of the average cost and the optimal PM duration.

From numerical results, we observe that the static policy, though

simpler, is almost as effective as the failure limit policy. 

The dynamic policy is better than the approximation from re-

newal theory (Variant), but is outperformed by the static policy

with Monte-Carlo simulations when repair is inefficient. For large

values of β and ρ , the dynamic policy seems to approach to the

static policy’s level. The dynamic policy is locally optimal, but is no

longer optimal in the infinite horizon. An example of the empirical

distribution of the PM durations under dynamic policy comparing

to the static policy is given in Figs. 11 –13 . 

In conclusion, the failure limit policy is the most cost efficient

policy but it is also the most difficult to apply because one has to

measure the system’s virtual age, not the real age. The static policy

is almost as efficient as the first policy, with one major advantage

in its implementation: the PM durations are fixed and can be de-

termined in advance. The dynamic policy is not as effective as the

static one in infinite horizon, but it is locally optimal. It suggests

that the dynamic policy could be of interest for systems with lim-
ted number of failures before a replacement. This criteria could be

mposed, for instance, by design or by safety measure. 

Let us note that, the computations in the dynamic case are

uch more important and it is actually necessary to constantly

pdate the virtual age of the system. However, these computa-

ions are not implying intensive Monte Carlo simulations and can

e done rapidly and extremely efficiently. Furthermore, in practice,

he computational time to obtain the optimal solution is matter

f milliseconds, which is a different order of magnitude from the

ime to planned preventive maintenance. Moreover, it has been

ighlighted that the static policy offers much better results than
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he dynamic one. The static policy does not require to compute

he virtual age of the system after each maintenance and is con-

equently very simple to implement. The only reason to ”update”

he static maintenance policy would be during an on-line analysis

f the system where the parameters of the models are unknown.

s inference is presented as an important prospect but is not taken

nto account in this paper, the resulting computational issues will

e the object of future research. 

It can be highlighted that the parameters estimation is an im-

ortant issue and is a crucial step in the course of the analysis of a

aintenance data set. The inference in presence of virtual age as-

umptions has been well discussed in the literature ( Dijoux & Idée,

013; Doyen & Gaudoin, 20 04, 20 06; Lindqvist, 20 06 ) considering

ne or multiple kinds of maintenance. The quality of the ML esti-

ators for Arithmetic Reduction of Age models have been specifi-

ally discussed in Doyen (2010) ; Doyen and Gaudoin (2004) . As our

aper does not focus on inference procedures, we have not pro-

ided extensive details on how to estimate the parameters of the

odel but we give a brief outline of the procedure in Appendix J . 

. Conclusion 

In this paper, we analyze the imperfect repair model with

eibull failure distribution under ARA ∞ 

assumption. We develop

he marginal distributions of effective ages and inter-failure times

nd show the existence of a steady state. When the model reaches

his state, the effective ages and the inter-failure times converge to

ts limiting distributions. The results are then applied to propose a

tatic, a dynamic and a failure limit maintenance policy. Numeri-

al simulations are presented to illustrate the policies. It is shown

hat the failure limit policy is the most cost effective, but it is the

ost difficult to implement. The static policy is almost as powerful

s the first policy, with one major advantage in its application. We

lso observe that the dynamic policy is more effective under finite

orizon planning. Heuristic algorithms are introduced to derive op-

imal cost and preventive maintenance durations for the policies.

n all applications, the preventive maintenance and the corrective

aintenance are assumed to have the same efficiency, but it is

arely the case in practice. In further research, we plan to drop

his assumption in order to provide a more general framework and

e believe that the convergence property of the model is still pre-

erved. It is also interesting to investigate the ARA ∞ 

model with

ther failure distribution than the Weibull distribution. It seems

hat optimal maintenance policies exist for other failure distribu-

ions, although explicit distributions for reliability quantities might

ot be derived. We expect to determine a class of failure distribu-

ions that allows us to build optimal maintenance policies for the

RA ∞ 

model. 

In short, the paper develops the analytical expression of the dis-

ribution of effective ages and inter-failure times during the tran-

ient and steady-state regime. In particular, these expressions con-

rm and detail the convergence in law of the effective ages and of

he inter-failure times to a steady regime. 

It is possible to derive the Residual Useful Life (RUL) of the sys-

em if the number of maintenance in the past is known or un-

nown and without the knowledge of the previous maintenance

imes. In other papers with virtual ages, the RUL is usually com-

uted if all the maintenance history is known, which is in practice

ot always the case. 

The results can be also applied in statistical inference frame-

ork. The maximum likelihood methods from a system observed

n a time interval requires to know the initial (virtual) age of the

ystem. Our paper allows to derive the maximum likelihood func-

ion analytically and without using burdensome Monte Carlo simu-

ations to compute and maximize the likelihood function. The esti-

ation of the parameters is the next natural development from the
urrent paper (sensitivity analysis from the estimation and mainte-

ance costs, estimation over an interval, etc) and can (will) be the

ubject of future works. 

Moreover, the expressions of the limiting distributions allow to

pproximate analytically and relatively efficiently the optimal static

olicy. The use of virtual age is extremely convenient as the mod-

ls take into account the maintenance efficiency and allow to carry

ut Monte Carlo simulations and numerical computations very eas-

ly. The theoretical development of particular virtual age models

s important for future relevant topics in imperfect maintenance

nalysis. The notion of confidence interval is poorly addressed con-

idering virtual age models. Also, there is no statistical test for vir-

ual age model selection. In future works we can invertigate more

nalytical results on the behavior of imperfect maintenance model

n order to bring new contributions in statistical tests and confi-

ence intervals. 
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ppendix A. Proof of Proposition 1 . 

The conditional distribution of X i +1 in (3) can be reformulated

s in (A.1) . 

 i ≥ 0 , ∀ t ≥ 0 , P (X i +1 > t| X 1 , . . . , X i ) = e −�(A i + t)+�(A i ) (A.1) 

Let us denote U i +1 a random variable uniformly distributed be-

ween 0 and 1 and independent of the past of the repair process.

rom the inverse transformation method, a simulation of X i +1 con-

itionally to the past can be obtained from (A.1) as in (A.2) . 

 i +1 = �−1 ( �(A i ) − ln (U i +1 ) ) − A i (A.2) 

The random variable ξi +1 defined by ξi +1 = −ln (U i +1 ) has an

xponential distribution with rate 1, independent of the past of the

epair process. A simulation of A i +1 can then be derived from (6) as

n (A.3) . 

 i +1 = (1 − ρ)(A i + X i +1 ) 

= (1 − ρ)(A i + �−1 ( �(A i ) + ξi +1 ) ) − A i ) 

= (1 − ρ)�−1 ( �(A i ) + ξi +1 ) (A.3) 

This concludes the proof of Proposition 1 . �

ppendix B. Proof of Proposition 2 . 

The initial effective age of the system A 0 is zero. The base case

or A 1 is obtained by applying Proposition 1 as in (B.1) . 

 1 = (1 − ρ)�−1 [�(A 0 ) + ξ1 ] = (1 − ρ) α− 1 
β ξ

1 
β

1 
(B.1) 

Let us assume that the proposition holds for n ≥ 1. The induc-

ion step can be derived as in (B.2) . 

 n +1 = (1 − ρ)�−1 [�(A n ) + ξn +1 ] 

 (1 − ρ) α− 1 
β

⎡ ⎢ ⎣ 

α

⎡ ⎣ (1 − ρ) α− 1 
β

( 

n ∑ 

i =1 

(1 − ρ) β(n −i ) ξi 

) 

1 
β

⎤ ⎦ 

β

+ ξn +1 

⎤ ⎥ ⎦ 

1 
β

 (1 − ρ) α− 1 
β

[ 

αα−1 (1 − ρ) β
n ∑ 

i =1 

(1 − ρ) β(n −i ) ξi + ξn +1 

] 

1 
β
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= (1 − ρ) α− 1 
β

( 

n +1 ∑ 

i =1 

(1 − ρ) β(n +1 −i ) ξi 

) 

1 
β

(B.2)

This completes the proof of Proposition 2 . �

Appendix C. Proof of Proposition 3 . 

Let us denote q = (1 − ρ) β , θi = q i −n and Y n = 

∑ n 
i =1 θ

−1 
i 

ξi . The

effective ages from Proposition 2 can be expressed as in (C.1) . 

A n = (1 − ρ) α− 1 
β

( 

n ∑ 

i =1 

θ−1 
i 

ξi 

) 

1 
β

= (1 − ρ) α− 1 
β Y 

1 
β

n (C.1)

As ξ i follows an exponential distribution with rate 1, θ−1 
i 

ξi fol-

lows an exponential distribution with rate θ i . A sum of n inde-

pendent exponential random variables follows a hypo-exponential

distribution. The distribution of Y n follows therefore a hypo-

exponential distribution and its reliability can be obtained from

Gaudoin and Ledoux (2007) and is expressed in (C.2) . 

R Y n (t) = 

n ∑ 

i =1 

μi 

θi 

e −θi t (C.2)

where μi = 

∏ n 
i =1 θi ∏ n 

j =1 , j � = i (θ j −θi ) 
. 

Using the q -shifted factorial defined in (9) , a synthetic expres-

sion of μi can be derived as in (C.3) . 

μi = 

∏ n 
i =1 θi ∏ n 

j =1 , j � = i (θ j − θi ) 
= 

∏ n 
i =1 θi ∏ n 

j =1 , j � = i θ j 

(
1 − θi 

θ j 

) = 

θi ∏ n 
j =1 , j � = i 

(
1 − θi 

θ j 

)
= 

θi ∏ i −1 
j=1 

(
1 − θi 

θ j 

)∏ n 
j= i +1 

(
1 − θi 

θ j 

)
= 

q i −n ∏ i −1 
j=1 (1 − q i − j ) 

∏ n 
j= i +1 (1 − q i − j ) 

= 

1 

q n −i 

1 ∏ i −1 
j=1 (1 − q j ) 

1 ∏ n −i 
j=1 

(
1 − 1 

q j 

)
= 

1 

q n −i 

1 

(q, q ) i −1 

1 (
1 
q 
, 1 

q 

)
n −i 

(C.3)

The survival function of Y n can be expressed as in (C.4) . Based

on (C.1) , A n is a basic transformation of the random variable Y n and

its expression is derived in (C.5) . 

R Y n (t) = 

n ∑ 

i =1 

1 

(q, q ) i −1 

(
1 
q 
, 1 

q 

)
n −i 

e 
− t 

q n −i (C.4)

R A n (t) = 

n ∑ 

k =1 

1 

(q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

e 
− αt β

q k (C.5)

This completes the proof of Proposition 3 . �

Appendix D. Proof of Proposition 4 . 

Given A n , the distribution of X n +1 can be easily derived from

(3) . The reliability of X n +1 is consequently obtained by conditioning

with respect to A n as in (D.1) . 

P (X n +1 > t) = 

∫ ∞ 

0 

P (X n +1 > t| A n = x ) dF A n (x ) 

= 

∫ ∞ 

P (Z > x + t| Z > x ) dF A n (x ) 

0 
= 

∫ ∞ 

0 

R (x + t) 

R (x ) 
dF A n (x ) 

= 

∫ ∞ 

0 

e −α(x + t) β+ αx βαβx β−1 

×
n ∑ 

k =1 

1 

q k (q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

e 
− αx β

q k dx 

= 

n ∑ 

k =1 

1 

q k (q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

×
∫ ∞ 

0 

αβx β−1 e −α(x + t) β+ α(1 −q −k ) x β dx (D.1)

This completes the proof of Proposition 4 . �

ppendix E. Proof of Proposition 5 . 

The Gamma function 	(z) = 

∫ ∞ 

0 t z−1 e −t dt can be used to com-

ute integrals such as in (E.1) . 
 ∞ 

0 

e 
− αt β

q k dt = α− 1 
β 	
(

1 

β
+ 1 

)
q 

k 
β (E.1)

The expectation of A n can be obtained by combining results

rom Proposition (3) and (E.1) . Its expression is developed in

E.2) . 

[ A n ] = 

∫ ∞ 

0 

R A n (t) dt = 

∫ ∞ 

0 

n ∑ 

k =1 

1 

(q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

e 
− αt β

q k dt 

= 

n ∑ 

k =1 

1 

(q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

∫ ∞ 

0 

e 
− αt β

q k dt 

= α−1 /β	
(

1 

β
+ 1 

) n ∑ 

k =1 

q 
k 
β

(q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

(E.2)

The expectation of X n +1 can be obtained by integrating the as-

ociated reliability function developed in Proposition 4 . A different

pproach is considered, based on the relationship between X n +1 

nd the virtual ages A n and A n +1 . An expression of E[ X n +1 ] can be

erived from (6) as in (E.3) . 

[ X n +1 ] = q 
−1 
β E[ A n +1 ] − E[ A n ] 

= α−1 /β	
(

1 

β
+ 1 

)
×
( 

n +1 ∑ 

k =1 

q 
k −1 
β

(q, q ) n +1 −k 

(
1 
q 
, 1 

q 

)
k −1 

−
n ∑ 

k =1 

q 
k 
β

(q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

) 

= α−1 /β	
(

1 

β
+ 1 

)
×
( 

n ∑ 

k =1 

q 
k −1 
β(

1 
q 
, 1 

q 

)
k −1 

[ 

1 

(q, q ) n +1 −k 

− q 
1 
β

(q, q ) n −k 

] 

+ 

q 
n 
β(

1 
q 
, 1 

q 

)
n 

) 

= α−1 /β	
(

1 

β
+ 1 

)
×
( 

n ∑ 

k =1 

q 
k −1 
β(

1 
q 
, 1 

q 

)
k −1 

[ 

1 − q 
1 
β (1 − q n +1 −k ) 

(q, q ) n +1 −k 

] 

+ 

q 
n 
β(

1 
q 
, 1 

q 

)
n 

) 

= α−1 /β	
(

1 

β
+ 1 

)
×

⎛ ⎝ 

n ∑ 

k =1 

q 
k −1 
β

(
1 − q 

1 
β + q n +1 −k + 1 

β

)
(q, q ) n +1 −k 

(
1 
q 
, 1 

q 

)
k −1 

+ 

q 
n 
β(

1 
q 
, 1 

q 

)
n 

⎞ ⎠ 

= α−1 /β	
(

1 

β
+ 1 

)
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q 
k −1 
β

(
1 − q 

1 
β + q n +1 −k + 1 

β

)
(q, q ) n +1 −k 

(
1 
q 
, 1 

q 

)
k −1 

⎞ ⎠ (E.3) 

This completes the proof of Proposition 5 . �

ppendix F. Proof of Proposition 7 . 

The distribution of an effective age A n +1 is characterized by the

nowledge of the previous effective age A n , independently of n . The

equence { A n } n ≥ 1 is a Markov chain on the continuous state space

 + , defined by the initial age A 0 = 0 and the Markov kernel as in

F.1) . 

 (A n +1 > s | A n = t) = P ((1 − ρ)(A n + X n +1 ) > s | A n = t) 

= P (X n +1 > 

s 

1 − ρ
− t | A n = t ) 

= 

{
1 if s < (1 − ρ) t 
P (Z > 

s 
1 −ρ | Z ≥ t) if s ≥ (1 − ρ) t 

= 

R 

(
s 

1 −ρ

)
R (t) 

1 { s ≥(1 −ρ) t} + 1 { s< (1 −ρ) t} 

= e −α(( s 
1 −ρ ) β−t β ) 1 { s ≥(1 −ρ) t} + 1 { s< (1 −ρ) t} (F.1) 

The transition density p ( s , t ) is obtained by taking the derivative

ith respect to s and by modifying the sign. This completes the

roof of Proposition 7 . �

ppendix G. Proof of Proposition 8 . 

Regarding the limiting distribution of the effective age, the exis-

ence of the survival function R A ∞ 

will be proven. Then the conver-

ence in distribution of the effective ages to A ∞ 

will be obtained.

asic considerations are first introduced and will be helpful for the

roof. 

(I) The particular q-shifted factorial ( q , q ) k converges in the in-

terval (0, 1) to the Euler function ( q , q ) ∞ 

. 

(II) | ( 1 q , 
1 
q ) k −1 | is increasing in k and tends to infinity when q is

in the interval (0, 1). 

(III) ∀ x ≥ 0 , xe −x ≤ 1 . 

(IV) lim n →∞ 

∑ n 
k =1 

[∏ ∞ 

j= n −k +1 (1 − q j ) − 1 
]
q k = 0 

The convergence of the partial sum R A n (t) to the infinite sum

 A ∞ 

(t) is proven in two steps: the first step consists of proving the

nfinite series R A ∞ 

(t) is convergent, and the second step consists of

roving the convergence of R A n (t) to R A ∞ 

(t) . 

We prove the convergence of the infinite series R A ∞ 

(t) . As ( q ,

 ) ∞ 

is positive and bounded and | ( 1 q , 
1 
q ) k −1 | increases towards in-

nity, | 1 

(q,q ) ∞ 

( 1 q , 
1 
q ) k −1 

| has an upper bound M . The absolute value of

he general term of the series R A ∞ 

can be bounded as in (G.1) using

III). The upper and lower bounds are general terms of convergent

eries, which proves the existence of R A ∞ 

for t positive. The func-

ion is also naturally defined in 0. 

 ≤ 1 

(q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

e 
− αt β

q k ≤ M 

q k 

αt β
(G.1) 

As for the convergence in distribution, the difference between

 A n and R A ∞ 

are expressed in (G.2) . 

 

R A n (t) − R A ∞ (t) | 

= 

∣∣∣∣∣ n ∑ 

k =1 

e 
− αt β

q k 

(q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

−
∞ ∑ 

k =1 

e 
− αt β

q k 

(q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

∣∣∣∣∣
= 

∣∣∣∣∣ n ∑ 

k =1 

(
1 

(q, q ) n −k 

− 1 

(q, q ) ∞ 

)
e 

− αt β

q k (
1 
q 
, 1 

q 

)
k −1 

−
∞ ∑ 

k = n +1 

e 
− αt β

q k 

(q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

∣∣∣∣∣
= 

∣∣∣∣∣∣
n ∑ 

k =1 

[∏ ∞ 

j= n −k +1 (1 − q j ) − 1 

]
e 

− αt β

q k 

(q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

−
∞ ∑ 

k = n +1 

e 
− αt β

q k 

(q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

∣∣∣∣∣∣
≤ M 

αt β

∣∣∣∣∣ n ∑ 

k =1 

[ 

∞ ∏ 

j= n −k +1 

(1 − q j ) − 1 

] 

q k 

∣∣∣∣∣+ 

∣∣∣∣∣ ∞ ∑ 

k = n +1 

e 
− αt β

q k 

(q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

∣∣∣∣∣
(G.2) 

The first sum converges to zero from (IV). The second sum

s the remainder of a convergent series and also converges to

ero. Therefore, ∀ t > 0 , lim n →∞ 

R A n (t) − R A ∞ 

(t) = 0 . The case t = 0

s trivial. The effective ages A n are consequently convergent in dis-

ribution to A ∞ 

. 

We apply the same procedure to prove the convergence of the

artial sum R X n (t) to the infinite and convergent sum R X ∞ 

(t) . 

In the first step, the convergence of the infinite series R X ∞ 

(t)

s obtained by proving that it is absolutely convergent. Considering

he sum of the absolute summand: 

∞ 

 

k =1 

∣∣∣∣∣ αβ

q k (q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

I k 

∣∣∣∣∣
here 

 k = 

∫ ∞ 

0 

x β−1 e −α(x + t) β+ α(1 −q −k ) x β dx, k ≥ 1 

ince t > 0, the integral I k is bounded by: 

 k < 

∫ ∞ 

0 

x β−1 e −αx β+ α(1 −q −k ) x β dx = 

∫ ∞ 

0 

x β−1 e −αq −k x β dx 

= − 1 

αq −k 
e −αq −k x β

∣∣∣∣∞ 

0 

= 

1 

αq −k 

pplying the inequality to the previous series gives: 

 

R X ∞ (t) | ≤
∞ ∑ 

k =1 

∣∣∣∣∣ αβ

q k (q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

I k 

∣∣∣∣∣
≤

∞ ∑ 

k =1 

1 

(q, q ) ∞ 

∣∣∣( 1 
q 
, 1 

q 

)
k −1 

∣∣∣
s the term | ( 1 q , 

1 
q ) k −1 | tends to infinite after the condition (II),

here exists k 0 < ∞ such that ∀ k ≥ k 0 , | 1 − 1 
q k 

| ≥ 2 . This gives: 

∞ 

 

k =1 

∣∣∣∣∣ αβ

q k (q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

I k 

∣∣∣∣∣
≤

k 0 ∑ 

k =1 

1 

(q, q ) ∞ 

∣∣∣( 1 
q 
, 1 

q 

)
k −1 

∣∣∣ + 

1 

(q, q ) ∞ 

∞ ∑ 

k = k 0 +1 

∣∣∣∣∣ 1 (
1 
q 
, 1 

q 

)
k −1 

∣∣∣∣∣
= 

k 0 ∑ 

k =1 

1 

(q, q ) ∞ 

∣∣∣(1 
q 
, 1 

q 

)
k −1 

∣∣∣
+ 

1 

(q, q ) ∞ 

∣∣∣∣∣ 1 (
1 
q 
, 1 

q 

)
k 0 

∣∣∣∣∣ ∞ ∑ 

k = k 0 

∣∣∣∣∣∣ 1 ∏ k 
i = k 0 

(
1 − 1 

q i 

)
∣∣∣∣∣∣
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≤
k 0 ∑ 

k =1 

1 

(q, q ) ∞ 

∣∣∣(1 
q 
, 1 

q 

)
k −1 

∣∣∣ + 

1 

(q, q ) ∞ 

∣∣∣∣∣ 1 (
1 
q 
, 1 

q 

)
k 0 

∣∣∣∣∣ ∞ ∑ 

i =1 

1 

2 

i 

Since the second term of the right hand side is a convergent series,

the infinite sum of the absolute summand is convergent, hence the

infinite series R X ∞ 

(t) is convergent absolutely. Il implies that the

series R X ∞ 

(t) is convergent. 

To show the convergence of the partial sum R X n (t) to the infi-

nite sum R X ∞ 

(t) , we evaluate the following term: 

| R X n (t) − R X ∞ (t) | = 

∣∣∣∣ n ∑ 

k =1 

αβ

q k (q, q ) n −k 

(
1 
q 
, 1 

q 

)
k −1 

I k 

−
∞ ∑ 

k =1 

αβ

q k (q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

I k 

∣∣∣∣
= 

∣∣∣∣ n ∑ 

k =1 

αβ

q k 
(

1 
q 
, 1 

q 

)
k −1 

(
1 

(q, q ) n −k 

− 1 

(q, q ) ∞ 

)
I k 

−
∞ ∑ 

k = n +1 

αβ

q k (q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

I k 

∣∣∣∣
≤
∣∣∣∣ n ∑ 

k =1 

αβ

q k 
(

1 
q 
, 1 

q 

)
k −1 

(
1 

(q, q ) n −k 

− 1 

(q, q ) ∞ 

)
I k 

∣∣∣∣
+ 

∣∣∣∣ ∞ ∑ 

k = n +1 

αβ

q k (q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

I k 

∣∣∣∣
≤
∣∣∣∣ n ∑ 

k =1 

1 (
1 
q 
, 1 

q 

)
k −1 

(
1 

(q, q ) n −k 

− 1 

(q, q ) ∞ 

)∣∣∣∣
+ 

∣∣∣∣ ∞ ∑ 

k = n +1 

1 

(q, q ) ∞ 

(
1 
q 
, 1 

q 

)
k −1 

∣∣∣∣
The first sum converge to zero after the condition (IV). The sec-

ond sum is the rest of the a convergent series. Consequently, the

partial sum R X n (t) converges to the infinite sum R X ∞ 

(t) . The case

where t = 0 is trivial. 

As in Proposition 5 , the expectations of A ∞ 

and X ∞ 

are obtained

by integrating their respective survival function. This completes the

proof of Proposition 8 . 

Appendix H. Algorithm for the static policy 

Algorithm 1 Static policy: optimization by Monte Carlo simula-

tions. 

1: for δ ∈ [ ε, δmax ] with step ε do � ε > 0 , precision of the

algorithm 

2: Cost(δ) = 0 ; age = 0 ; time = 0 ; 

3: while ( time < T max ) do 

4: ξ = −log(RAND ) � Exponential distribution, rate 1

5: z = �−1 (�(age ) + ξ ) − age � Potential time to next failure

6: u = 1 { z<δ} � Maintenance type

7: Cost(δ) = Cost(δ) + C p + (C c − C p ) u � Update of the total cost

8: time = time + min (δ, z) � Update of the current time

9: age = (1 − ρ)(age + min (δ, z)) � Update of the effective age

10: end while 

11: Cost(δ) = Cost (δ) /t ime � Long-run average cost

12: end for 

13: δ∗ = arg min δ∈ [ ε,δmax ] (Cost(δ)) 
ppendix I. Algorithm for the failure limit policy 

lgorithm 2 Failure limit policy: optimization by Monte Carlo

imulations. 

1: for s ∈ [ ε, Smax ] with step ε do � ε > 0 , precision of the

algorithm 

2: Cost(s ) = 0 ; age = 0 ; time = 0 ; 

3: while ( time < T max ) do 

4: ξ = −log(RAND ) � Exponential distribution, rate 1

5: z = �−1 (�(age ) + ξ ) − age � Potential time to next failure

6: u = 1 { age + z<s } � Maintenance type

7: Cost(s ) = Cost(s ) + C p + (C c − C p ) u � Update of the total cost

8: time = time + min (z, s − age ) � Update of the current time

9: age = (1 − ρ) × min (age + z, s ) � Update of the effective age

10: end while 

11: Cost(s ) = Cost (s ) /t ime � Long-run average cost

12: end for 

13: s ∗ = arg min s ∈ [ ε,Smax ] (Cost(s )) 

ppendix J. Estimation procedure 

We provide here main steps for estimating parameters of the

ARA ∞ 

model by the maximum likelihood method. Suppose that

he model is observed in the interval [0, t ] with n failure times

 1 < t 2 < … < t n , the associated likelihood function is given as

ollows: 

 (α, β, ρ; t 1 , t 2 , . . . , t n ) = 

n ∏ 

i =1 

λ(a i −1 + t i − t i −1 ) 

× e −
∑ n +1 

i =1 �(a i −1 + t i −t i −1 ) −�(a i −1 ) 

ith the convention t n +1 = t . Replacing λ( ·) and �( ·) by their ex-

ression and passing to logarithm yields: 

(α, β, ρ; t 1 , t 2 , . . . t n ) = ln (L (α, β, ρ; t 1 , t 2 , . . . , t n )) 

= n ln (αβ) + (β − 1) 
n ∑ 

i =1 

ln (a i −1 + t i − t i −1 )

−α
n +1 ∑ 

i =1 

(a i −1 + t i − t i −1 ) 
β − a 

β
i −1 

e note that each a i is a function of ρ as in (7) : 

 i = 

i ∑ 

j=1 

(1 − ρ) i − j+1 (t j − t j−1 ) , i ≥ 1 

One of the advantages of the WARA ∞ 

model is that it allows

s to model a system in its steady state regime. Suppose that the

ARA ∞ 

is observed in this state, i.e. the observation window is of

he form [ s, s + t] . The n failure times τ1 < τ2 < · · · < τn in the fol-

owing likelihood function are the times elapsed from the starting

oint s to the failure instants. The associated likelihood function

f the WARA ∞ 

model under this configuration is given as follows

 Nguyen, Dijoux, & Fouladirad, Pau, France, June 2014 ): 

 

∞ (α, β, ρ; τ1 , τ2 , . . . , τn ) 

= 

∫ ∞ 

(1 −ρ) τ1 

n ∏ 

i =1 

λ(a i −1 + τi − τi −1 ) ∗

× e −
∑ n +1 

i =1 [ �(a i −1 + τi −τi −1 ) −�(a i −1 ) ] dF A ∞ (x ) 

he virtual age a i now becomes a function of the maintenance effi-

iency ρ and the initial virtual age V s = a 0 = x at the starting point

 : 
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 i = x + 

i ∑ 

j=1 

(1 − ρ) i − j+1 (t j − t j−1 ) , i ≥ 1 

Three parameters ( α, β , ρ) are estimated by the maximum like-

ihood method. Even though explicit expression of the estimators

re not available, they are can be easily obtained by general op-

imization methods, for instances the Nelder–Mead downhill sim-

lex, interior point method etc. 
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