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1. Introduction

During their operational life, industrial systems are subject to
repair actions when a failure occurs. A repair activity is aimed to
reduce the failure rate of the system and to extend its useful life-
time. The maintenance process has to take into account both the
intrinsic aging of the system and the repair effectiveness. These
two elements allow a better understanding of the system behav-
ior in the short and long terms and the maintenance policy can be
adapted consequently.

Repair efficiencies are commonly assumed to be either mini-
mal or perfect. A minimal or As Bad As Old (ABAO) repair assumes
that the system is restored to its operational condition just before
the failure. A perfect or As Good As New (AGAN) repair consists in
restoring the system to a new and identical one. Minimal repair
and perfect repair can be characterized by a non-homogeneous
Poisson process and a renewal p rocess (Ascher & Feingold, 1984),
respectively. However, for a repairable system, these assumptions
are not always realistic as the system can be effectively repaired
but is not renewed. This situation is described as imperfect main-
tenance (Pham & Wang, 1996). A thorough account of imper-
fect maintenance modeling for repairable systems is developed by
Lindqvist (2006). In the context of imperfect repair, the implemen-
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tation of optimal maintenance policies have been developed by
Nakagawa (2005) and by Pham and Wang (2006). The optimization
of imperfect maintenance policies are discussed considering reli-
ability block diagrams (Levitin & Lisnianski, 2000) and examples
of application to failure data are presented by Baker (2001) and
Dijoux and Gaudoin (2014).

Virtual age models (Kijima, Morimura, & Suzuki, 1988) are the
most frequently used imperfect repair models. The principle is that
the wear-out does not depend on the chronological age of the sys-
tem, but on a virtual age, commonly between zero and the elapsed
time since the system was new. A virtual age model is entirely
characterized by the failure rate of a new system and by the vir-
tual age assumptions. In particular, Kijima (1989) has proposed two
widespread classes of virtual age assumptions. He supposes that
each repair efficiency is represented by a random variable sup-
ported on the interval [0,1]. A model under Kijima Type I assump-
tion is such that a repair rejuvenates the virtual age of a propor-
tional amount of the last inter-failure duration, whereas a model
under Kijima Type II assumption supposes that the rejuvenated
amount is proportional to the virtual age just before the repair. A
particular case is to consider that the repair efficiency is a constant
p € [0, 1], called restoration factor. The resulting models have been
developed by Malik (1979) and by Brown, Mahoney, and Sivazlian
(1983) for the Kijima type I and II models, respectively. A unified
version of the last two models has been presented by Doyen and
Gaudoin (2004), called model of arithmetic reduction of age with
memory m, and denoted ARAp. The ARA; and ARA., models are
special cases of the Kijima Type I and Il models, respectively. The-
oretical results on the ARA; model are developed in the literature
(Kijima & Sumita, 1986; Malik, 1979; Yevkin, 2012) and are applied
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in maintenance scheduling (Dimitrakos & Kyriakidis, 2007; Jiang,
Makis, & Jardine, 2001; Kijima et al., 1988; Love, Zhang, Zitron,
& Guo, 2000; Makis & Jardine, 1993). Similarly, some properties
of the ARA,, model are discussed when it is introduced (Doyen &
Gaudoin, 2004; Kijima, 1989). These models are also developed in
the presence of different kinds of maintenance actions (Dijoux &
Idée, 2013; Doyen & Gaudoin, 2011).

Last and Szekli (1998) have proven the convergence of the Ki-
jima Type II model, and hence of the ARA,, model, to a steady-
state regime. Finkelstein (2008) has proven the convergence of the
ARA, model to a steady-state regime when the repair efficiency
depends on the chronological age of the system. In contrast, Doyen
(2010) has proven that the ARA; model behaves asymptotically as
a non-homogeneous Poisson process. These properties highlight a
major difference between the ARA; and ARA., models when the
restoration factor is in the interval ]0, 1[. If the failure rate of a
new system is increasing monotonically to infinity, the inter-failure
times converge to zero for the ARA; model and to a stationary dis-
tribution for the ARA,, model.

This paper aims to solve a maintenance problem inspired by a
failure data set of electrical transformers given by French electrical
company (Electricité de France-EDF). Data consist of maintenance
dates without any information on type of maintenance and the age
of the system. The data concern systems running for a long and
unknown period of time. However, the failure data are available on
a short and recent time window even if the systems have been im-
plemented decades ago. The data could be assumed to correspond
to the system stable regime, but one needs appropriate tools to
take into account the lack of information on the system history.
In this framework, it is of essential interest to infer the system’s
behavior in order to improve the maintenance policy and to plan
efficient maintenance operations. Since the ARA,, model exhibits a
convergence property (existence of a stable regime), it is a suitable
candidate to model the data set.

In fact the ARA models, in particular ARA; and ARA,, have been
intensively studied and in this framework many preventive main-
tenance policies are proposed. Nevertheless, in the literature, the
imperfect preventive maintenance in an infinite horizon is rarely
addressed. For instance

e Dagpunar (1998) proposes block replacement policy with ARA,
corrective maintenance and perfect preventive maintenance.
The optimal duration between two preventive maintenance is
derived, based on the computation of mean number of correc-
tive maintenance actions during this period.

Kijima et al. (1988) study block replacement policy with ARA,
corrective maintenance and perfect preventive maintenance.
They develop an approach to compute the mean number of
ARA; corrective maintenance between two consecutive perfect
preventive maintenance actions.

Gilardoni, de Toledo, Freitas, and Colosimo (2015) study peri-
odic preventive maintenance policy using ARA;corrective main-
tenance and perfect preventive maintenance. The policy is
first built for finite horizon and then extended to an infinite
horizon.

Tsai, Liu, and Lio (2011) study planned preventive maintenance
policy. The preventive maintenance effect is similar to the ARA;
maintenance, whereas corrective maintenance is minimal. The
policy is optimized in a finite horizon.

Gilardoni and Colosimo (2007) propose a similar policy (ARA;
preventive maintenance and minimal corrective maintenance)
optimized on an infinite horizon.

The main contribution of our paper is first to derive original
theoretical properties of the WARA., model and then to develop
original preventive maintenance policies. Regarding specifically the

optimization of the preventive maintenance policy, our main con-
tributions are listed as follows:

o For the first time, maintenance policies are derived on an in-
finite horizon considering imperfect CM and imperfect PM.
Therefore there is at no moment an as good as new (perfect,
renewal) replacement of the system during its operational life-
time. All the papers in the literature consider renewals under
an infinite horizon.

Thanks to the theoretical results in the stationary regime from
the first Section, efficient and analytical approximations of the
optimal maintenance policy are obtained without using Monte
Carlo simulations.

The remainder of the paper is organized as follows. In Section 2,
properties of the WARA, are developed to obtain statistical distri-
butions of interest in both the transient and the stationary regimes.
Based on these distributions, planned preventive maintenance poli-
cies are proposed in Section 3, along with numerical illustrations.

2. Properties of the WARA,, model
2.1. The repair process

A repairable system has been observed since it was new. The
observations consist of the successive maintenance times {T;}; - o.
The corresponding inter-maintenance times are denoted {X;};. 4
and the repair process can also be characterized by a counting pro-
cess {Ne}; » o where Ny = 3% 17y By convention, Tp and Xp are
equal to zero and time can be either calendar or operational. The
distributions are obtained from the failure intensity defined in (1),
where #,- is the history of the repair process at time t~, com-
monly the failure times before t.

. 1

VEz 0, A= Alglo At

The failure rate of a new system, called initial failure intensity
and denoted A(t), is assumed to be a deterministic and continuous
function of time. It corresponds to the hazard rate of T;. The cumu-
lative hazard rate function is denoted A(t) = fék(u)du. f, Fand R
are the corresponding probability density function, cumulative dis-
tribution function and survival function, respectively. As industrial
systems are assumed to wear out, the initial failure intensity is tra-
ditionally increasing. Consequently, the two-parameter Weibull dis-
tribution has been chosen as in (2). For wearing-out systems, the
shape parameter f is greater than 1.

YVt >0, At) = afth! (2)

A virtual age model (Kijima et al., 1988) assumes that after the
ith repair, the system behaves as a new and unmaintained one of
age A;. This age is called effective age. The assumption is mathe-
matically described in (3), where Z is the time to failure of a new
system and has the same distrib ution as Xj.

Vi= 0Vt >0, Py > tX1,....X) =PZ > A+ t|1Z>A)  (3)

P(Neiae = Ne- = 1|H;-) (1)

The conditional survival function of the (i+ 1)th inter-failure
time in (3) is simply R(A; + t)/R(A;). The age of the system Aj at
the beginning of the observation is zero if the system is as good
as new, and greater than 0 otherwise. At a given time ¢, the virtual
age of the system V; is obtained from the latest effective age and
the elapsed time since the last repair as in (4).

Vi=AN_ +t-Ty_ (4)

The virtual age of the system just before the ith repair is de-
noted A; . The failure intensity can be derived from the initial fail-
ure intensity as in (5). The variation of the virtual age V; and of the
chronological time are identical between two consecutive failures.
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Dorado, Hollander, and Sethuraman (1997) have presented an ex-
tension of the virtual ages where this variation can be accelerated
or decelerated.

Ae=A(Ve) =A(An_ +t Ty ) (5)

Many models have been developed from different assumptions
on the virtual ages (Brown & Proschan, 1983; Dijoux & Idée, 2013;
Doyen & Gaudoin, 2004; Kijima, 1989). In particular, a Kijima type
Il model (Kijima, 1989) assumes that regarding the ith repair, the
effective age A; is proportional to A;. The model of arithmetic
reduction of age with infinite memory ARA,, (Doyen & Gaudoin,
2004) assumes that this proportion is a constant p in the interval
[0,1] as in (6). p is called the repair efficiency or the restoration
factor.

Ai= (1 -p)A7 =1 - p)(Aig +X) (6)

In particular, a minimal and a perfect maintenance can be
modeled with p =0 and p =1, respectively. The effective age in
(6) can be explicitly expressed in terms of the inter-failure times
and A, as in (7). One can find useful applications of the ARA.
model in different situations (Bartholomew-Biggs, Ming, & Xiaohu,
2009; Brown et al., 1983; Clavareau & Labeau, 2009; Dijoux & Idée,
2013; Kahle, 2007; Yun & Choung, 1999).

1
Ai=(1=p)Ag+Y (1 - p)iTHx; (7)
j=1

Combining (5) and (7), a model under the ARA., assumption
is defined by the initial age Ag, the initial failure intensity A(.) and
the repair efficiency p. The Weibull-ARA., model , denoted WARA.,
consists of the ARA., assumption, the Weibull initial failure defined
in (2) and a null initial age.

Even if it seems very simple, the constant restoration factor is
widely used in the literature and can describe the maintenance ef-
fect in many real industrial cases. For instance Malik (1979) uses
the constant restoration factor to describe the effect of planned
maintenance on system’s virtual age. Guo and Love (1992) also use
a constant restoration factor to build their imperfect maintenance
model. One can enumerate several other papers using the same as-
sumption to quantify the maintenance effect (Bartholomew-Biggs
et al., 2009; Love et al., 2000; Yevkin, 2012; Yevkin & Krivtsov,
2013). Furthermore, when maintenances are well in place, the
maintenance activities are relatively homogeneous and the con-
stant restoration factor seems appropriate. In practice, the num-
ber of observations is usually not large during the analysis of a
maintenance data set. It is consequently necessary to find a com-
promise between the number of parameters of the model and a
high-level of precision on the system. Considering a system un-
der one kind of maintenance only, the use of one parameter for
the maintenance efficiency allows to obtain a model which is flex-
ible enough and which approximately takes into account the global
maintenance efficiency on a system level. Naturally, in presence of
multiple types of maintenances (preventive, corrective associated
with different failure modes), a more general modeling can be pro-
posed as in Doyen and Gaudoin (2006) and Lindqvist (2006), but
this approach is not considered in this paper.

2.2. Analytical developments of the WARA, model

In the following, properties of the WARA., model are derived.
The restoration factor p is assumed to be in the open interval (0,
1). Properties of the Weibull distributions have been developed in
the case of a renewal process (o = 1) (Lomnicki, 1966; Yannaros,
1994) and in the case of a non-homogeneous Poisson processes
(p =0) (Crow, 1974; Rigdon & Basu, 2000). The marginal distribu-
tions of Ay, X, and A, are derived in the transient and the station-
ary regimes of the system.

Proposition 1.
Yn>1, Ar=(1- ,O)Ai1 (A(An-1) +§n)

where A~ is the inverse function of A and &, has an exponential
distribution with rate 1 and is independent of the previous random

variables {&;};_1 _n_1.

Proposition 1 remains valid for other initial failure intensities,
given that the inverse function A~! can be defined. The proof is a
straightforward application of the standard method of simulation
by inversion of the cumulative distribution function. The details of
the proof can be found in Appendix A. In the case of the WARA
model, A~1(t) = (t/)V/P and the effective ages can be expressed
as in (8).

1

Vi1 A= (1= pot (arl +6)" (8)

Proposition 2.

1

n B
Vn > 1, An = (1 — p)of% (Z(] — IO)IS(””SI)

i=1

in the case of the WARA,, model, where {§;};_; , are n independent
exponential random variables with rate 1.

Proposition 2 is a direct consequence of Proposition 1. A proof
by induction is derived in Appendix B. Multiplying an exponen-
tial random variable by a positive constant preserves the exponen-
tial nature of the distribution. The summand in the expression of
the effective ages in Proposition 2 is therefore exponentially dis-
tributed. A sum of independent exponential random variables fol-
lows a hypo-exponential distribution (Gaudoin & Ledoux, 2007).
The hypo-exponential distribution is a special case of the phase-
type distribution (Slud & Suntornchost, 2014). The effective ages Ay
can be regarded as a transformation from a hypo-exponential dis-
tribution. Let us introduce in (9) the q-Pochhammer operator, also
called g-shifted factorial (Mcintosh, 1999), which is a basic hyper-
geometric series (Gasper & Rahman, 1990).

k-1
(q-shifted factorial) (a,q), =] [(1-ag’) (9)
j=0
Proposition 3. Denoting q = (1 — p)P, the survival distribution of Ay
in the WARA., model is:

n
1 b
Vn>1, Ry (t) = — e &
; (q. Q)n—k(%s %)k—]

The expression of the survival distribution of A, in
Proposition 3 is derived from the survival function of a hypo-
exponential distribution. The complete solution of the proof is
derived in Appendix C.

Proposition 4. The survival function of X, in the WARA~, model is
given by:

n fooo aﬂxﬁ*1 e~ (x+OP+a(1-g7 )P gy

Ry, (6) = L 0@ Dni(5: §), 4
eot” n=0

, n>1

Given A;, the conditional distribution of the consecutive inter-
failure time X;,; can be easily obtained. The distribution of X;
is therefore computed by a conditioning on A,, when necessary.
Additional details of the proof are presented in Appendix D.

Proposition 5. By denoting the Gamma function TI'(z)=
Joot¥letdt, the expectations of An and X, in the WARAs
model are:
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V=1, E[Ay] = a‘”ﬁ"(% + 1)

1 nel q F (1 — q% +q"“’k+%>
Vn >0, E[Xp1] = a_l/ﬂr(* + 1) Z
‘B k=1 (q’CI)nJrlfk(%y %)kfl

The mean of both of the distributions are obtained by integrat-
ing the corresponding survival functions over the interval [0, oof.
A proof is detailed in Appendix E. Another quantity of interest is
the virtual age of the system just before a failure. The distribution
of A, is presented in Proposition 6. The proof follows directly from
the relation between A, and A, in (6).

Proposition 6. In the WARA,, model, the distribution of the virtual
age just before the nth repair A, is given by:

n 1 atb

Vn>1, Ry (t) = — e T
é @ Dn k(5 5),_,

The expectation of A, has the following form:

n

1
Vnz 1 Ela ) =a (g e1) Y
' p g @ Dni(3- 1),

In a Markovian approach, the effective ages A, can be rep-
resented by a continuous-state discrete-time Markov chain. The
initial condition and the transition probabilities are presented in
Proposition 7. A proof is provided in Appendix F.

k-1
qﬁ

Proposition 7. The effective ages A, in the WARA., model can be
characterized by a Markov chain on the continuous state space R as
follows:

—0P(Aps1 > S|Ap =1t)

Ap = p(s.t) = s
aBst ! izt
=a-_ppc Lis>1-pyt)

It is already proven that a model based on the ARA. as-
sumption admits a stationary distribution under classical condi-
tions on the initial failure intensity (Last & Szekli, 1998). In par-
ticular, the WARA,, model converges to a steady-state regime. In
Proposition 8, another evidence of the convergence can be ob-
tained from Propositions 3 and 4. In addition, the limiting dis-
tributions of the effective ages and of the inter-failure times can
be derived analytically. The details of the proof are provided in
Appendix G.

Proposition 8. In the WARA., model, the effective ages and the inter-
failure times converge to a stationary regime. The corresponding limit-
ing distributions A, and X, are characterized by their survival func-
tion and expectation as below.

oo 1 b
Ri()=Y — 7
O =L o

Re ()= !

_ — waﬂxﬁ—le—a(x+t)ﬁ+a(1—q*’<)xﬁdx
el AR N R

_11 > q*
ElAx] = ﬂr<f+1)z—
B o @D<(3.3),

1 1 ad
E[ X ]l=a (- +1
) =e i+ >§(q,q)m(

Q| ==

The probability distribution functions of A;, A,, A3 and A, for
a=1, B € {15, 2.5 3.5} and p € {0.2, 0.4, 0.6} are depicted in
Figs. 1-3.

Furthermore,Finkelstein (2008) pointed out that if the distribu-
tion of the first inter-failure time X; is an IFR (Increasing Failure
Rate) distribution, then the sequence of effective ages (Aq, Aj,...
Ap,...) is monotonically increasing and the sequence of inter-failure
times (X7, Xo,... Xn,...) is monotonically decreasing. In the particu-
lar case of the WARA,, model considered in this paper, since X;
follows a IFR Weibull distribution, the sequence of effective ages
(A1, As,... Ap,...) is monotonically increasing. Therefore, E[X;] > E[X5]
> .. > E[Xs] which means in average the system is not getting
younger under imperfect maintenance actions. However, after a
long operation time and a large number of maintenance actions,
the inter-failure times distribution will stabilize and in average
they be equal to E[X]. Moreover, the probability distribution func-
tion of A is very similar to the distributions of A;, Ay,... An, ---.

In the next section, the properties obtained for the WARA.
model are used to implement optimal planned preventive main-
tenance policies.

3. Optimization of planned preventive maintenance policies
3.1. Preventive maintenance scheduling

One of the main objectives of failure data analysis is to predict
possible future outcomes and to optimize maintenance actions
accordingly. After the occurrence of multiple failures followed by a
corrective maintenance, it is natural to consider the implementa-
tion of a preventive maintenance policy. A preventive maintenance
can be either condition-based, performed according to the results
from monitoring devices and from inspections or planned, per-
formed at a scheduled time. The optimization of the policy can
be obtained with regard to reliability, cost, availability and safety.
Considering imperfect maintenance, condition-based preventive
maintenance policies have been proposed for deteriorating sys-
tems when the degradation level of the system can be measured
(Do & Bérenguer, 2012; Mercier & Castro, 2013; Nicolai, Frenk, &
Dekker, 2009; Zhang, Gaudoin, & Xie, 2015). For lifetime distribu-
tions, imperfect preventive maintenance policies have also been
developed (Jiang et al., 2001; Kijima et al., 1988; Nakagawa, 1980;
Pham & Wang, 2006). In particular, under a Weibull initial failure
intensity, optimal preventive maintenance strategies have been
proposed using the ARA; (Toledo, 2014) and the ARA., (Scarsini
& Shaked, 2000; Yevkin & Krivtsov, 2013) assumption. The vast
majority of these models assume that the system is replaced by a
new one after either a replacement, a certain number of repairs or
a period of time. This assumption is necessary if the inter-failure
times converge to zero as for the majority of the Kijima type I
models. However, for the Kijima type Il models and in particular
the WARA., model, the asymptotic behavior of the system allows
not to have to replace the system by a new one at any given
time. The proposed maintenance policies offer more flexibility to
the ARA,, model in maintenance scheduling, especially for stable
systems with previously unobserved failures.

In the following, based on the convergence properties of the
WARA., model, three planned preventive maintenance policies are
presented and their implementation are optimized based on main-
tenance costs.

3.2. Three planned preventive maintenance strategies for the WARA«
model

A repairable system which can be operated on an infinite hori-
zon is considered. The assumption on the models are as follows:
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(i) At the beginning of the observation, the system is in the
steady-state regime of the WARA., model with parameters
(o, B, p) and the system has just been maintained. The time
scale starts at zero and the same notation as in Section 2.1 is
used.

(ii) The system is hereafter subjected to corrective maintenance
(CM) and planned preventive maintenance (PM).

(iii) After the ith maintenance (PM or CM, i > 0), the system’s
virtual age is ¢; and the duration §;, ; to the next preventive
maintenance is scheduled.

(iv) The maintenance process is characterized by a virtual age
assumption on the maintenances and the intrinsic wear-out
is a Weibull distribution with the same parameters («, 8).

(v) CM still follows a ARA., assumption with parameter p.

(vi) PM follows a ARA., assumption with the same restoration

failure and the proposed PM duration (10a). The optimal dura-
tion §* minimizes the cost function (11). 6* is either obtained
by Monte-Carlo simulations or approximated using the renewal
theory and properties of Section 2.2.

A dynamic policy computes the duration 5;*+1 by taking into ac-
count the past of the maintenance process. The optimal dura-
tion 51.*“ minimizes a mean cost per unit time of the (i+ 1)th
cycle. The cost of one cycle is also computed with (10a).

A failure limit policy defines an optimal virtual age s* as a
threshold not to exceed by the system’s virtual age. The op-
timal value can be obtained by Monte-Carlo simulations. The
policy compares the actual virtual age to the optimal value s*
to derive the next PM duration (10b).

Additional remarks on the assumptions of the model are dis-

f cussed below.
actor p.

(vii) The parameters of the model («, 8, p) are known.

(viii) Maintenance costs are known. Costs of CM and PM are C.
and Gy, respectively, with Cc > Cp. The cost of the ith mainte-
nance K(i) is obtained by comparing time-to-failures (10a) or
virtual ages (10b).

I((l) = Cp + (CC - Cp)]l{X,<§;‘}

o The vast majority of the research papers in preventive mainte-
nance optimization assumes that the parameters of the mod-
els are known, for instances (Chien & Sheu, 2006; Nakagawa,
2005; Pham & Wang, 2006; Sandve & Aven, 1999). Even if the
assumption that the parameters are known is simplistic in prac-
tice, it allows to identify the overall quality of a preventive
maintenance strategy and provides general directions in terms
of preventive maintenance optimization.

e As an additional PM strategy is adopted, the resulting model is
not a WARA,, model, unless 8;*“ = 4o00. However, as all main-

(10a)

K@) = Cp + (Cc — Cp)Lig, ,1x<ar)

At time t, the total cost C(t) is simply C(t) = Zfi K(i). The per-
formance of a policy is measured by its long-run average cost per tenances follow a ARA., assumption, the system will stay in a
unit of time as in (11). steady-state regime.

C(t) o In the static policy, the optimal duration §* is computed on an

(11) infinite horizon. This implies that the initial condition of the

system has no impact on §*. The Assumption (i) is consequently

not necessary and the system can be considered as good as new
at the beginning of the observation.

o In the case of perfect maintenances, the planned PM strategy

developed in the Assumption (iii) is called age-based preventive

maintenance policy. It implies that a PM is carried out when

(10b)

Different preventive maintenance strategies are possible, char-
acterized by the choice of the durations {8} ,}.o. The three fol-
lowing preventive maintenance policies are developed:

o A static policy assumes that the durations 8;;1 are constant. The
cost of one cycle is computed by comparing the actual time-to-
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Fig. 4. Trajectory of the maintenance process for the dynamic strategy.

the virtual age of the system reaches a predetermined age, if
no failure has occurred before. As maintenances are imperfect,
the PM policy described in the Assumption (iii) is not based
on the virtual age of the system, but on a duration since the
last maintenance. The terminology of age-based PM can still be
preserved (El-Ferik & Ben-Daya, 2008).

o The Assumption (vi) is conservative, as PM are generally more
efficient than CM.

o The Assumption (vii) is rather strong, as the wear-out of
the system and the maintenance efficiencies are not precisely
known in practice.

e As commonly postulated in the Assumption (viii), the cost of
a maintenance is independent of its efficiency. In practice, it
is possible that the corrective maintenance cost depend of the
restoration factor p (Yevkin & Krivtsov, 2013).

3.2.1. Policy 1: static policy

For the first strategy, the age-based PM is set to a constant
value §*. No analytical results allow to obtain the optimal dura-
tion §*. Monte Carlo simulations have been used to obtain the op-
timum. As the resulting cost functions are relatively smooth, a grid
optimization has been developed. A reasonable bound for &*, de-
noted dmax, has been set to the 95th percentile of the inter-failure
distribution X,, developed in Proposition 8. The simulated trajec-
tories run over a sufficiently long period Tmax so that the long-
run average cost per unit of time is convergent. As mentioned in
Section 3.2, the system can be considered as good as new at the
start. The corresponding Monte Carlo simulations have been de-
rived and commented in Algorithm 1 in Appendix H.

A system under no PM follows the WARA,, model. In particular,
the inter-failure times converge to a limiting distribution X, de-
rived in Proposition 8. The resulting repair process can therefore be
roughly approximated by a renewal process with X, as the generic
distribution of the inter-arrival times. The optimal age-based PM in
the corresponding renewal process 6* can be obtained by minimiz-
ing the mean cost per unit time as in (12) (Gertsbakh, 2000).

Cp+ (Cc—Cp)(1 =Ry (8))
2 Ry (u)du

Finkelstein (2015) shows that under the Static policy, the opti-
mal value &+ of the WARA,, model exists. As for the optimal age-
based PM in a Weibull renewal process (Tadikamalla, 1980), there
is however no analytical results for §* and the mean cost per unit
time function is minimized numerically.

6* = arg min

§>0 (12)

3.2.2. Policy 2: dynamic policy

After a maintenance, the time to the next PM is scheduled ac-
cording to the wear-out of the system and the past of the main-
tenance process. At the beginning of the observation, the system
is under the stationary regime of the WARA,, model. The effec-
tive age of the system is A4 with distribution A, presented in
Proposition 8. As discussed in Section 2.2, this assumption is rea-
sonable if the system has failed at least a few times in its history.
The optimal PM duration §; for the first cycle is derived by min-
imizing (12). Given the initial age A = u, the effective age of the
system A; after the ith maintenance (PM or CM) can be derived as
in (13).

Aiw) = (1= p)lu+3 (1- p) ",
j=1

(13)

Let us denote by Z and Z;,; the potential time to failure for a
new system and the potential inter-failure time consecutive to the
ith maintenance, respectively. Given the history of the maintenance
process, the conditional distribution of Z;,; can be derived as in
(14) by conditioning on A. Note that the initial age A is assumed to
be independent of the future of the process and that the effective
age A; has been obtained in (13).

P(Ziy>2lX1, ..., X)) :/0 P(Zir > 2IXi. ... X, A= ) — dRa_ (u)

/Ooop(z - Aw) +21Z > Aw)) — dRa_ (1)

0 e—a(A,»(qu)f‘
- / T iRy ()
0

e—aA(w)f (14)

As the conditional distribution of the potential next inter-failure
time is known, a preventive maintenance policy can be adjusted
accordingly. The optimization of the implementation of the next
PM is similar to the case of a renewal process discussed at the
end of Section 3.2.1. The optimal PM duration 51‘:1 for the (i+ 1)th

cycle has been derived in (15). As for §* in Section 3.2.1, 5;*:1 is
obtained numerically.

~ . — 1-PZ X1y, X

B?H _ argrgn(r)l Co+ (G —Cp)( (Zip1 > 81X i) (15)

JEPZiy > ulXy, ..., X;)du

The actual inter-maintenance time x;,; is associated with the
event which occurs first x;,; = min(8;+1,zi+1). An example of tra-
jectory of the maintenance process is presented in Fig. 4. The aver-
age cost CPYN of the dynamic policy on an infinite horizon can be
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Fig. 5. Density of inter-maintenance durations of static policy « =1, =3, p =0.2.

assessed from its empirical version as in (16).
CXipr L, 5+ 2 L, 5 (16)
Zi21 ]lz,v<5:;‘zi + Zi21 ]lz,->¢‘§|.:‘8;k

CDYN —

3.2.3. Policy 3: failure limit policy

The policy uses the idea of a failure limit policy, in which a PM
is performed when the failure rate reaches a maximum level A*
(Jayabalan & Chaudhuri, 1992; Lie & Chun, 1986; Malik, 1979). This
allows to keep the system’s failure rate below an acceptable level.
To apply to the virtual age models, we first observe that the failure
rate at time t can be determined by the corresponding virtual age:
At = A(Vp). It follows that a maximum (might be optimal) level
of failure rate A* corresponds to a maximum level of virtual age
Vi = s*. Considering the virtual age assumption, the failure limit
policy performs a PM when the virtual age of the system exceed
a maximum threshold s*. The PM duration of the (i + 1)th cycle is
determined by §;, 1 = s* — a;, if there is no failure. We propose an
algorithm using Monte-Carlo simulations in Appendix [ to deter-
mine the optimal value s* of the virtual age. The optimal threshold
aims to minimize the long-term average cost per unit of time. The
time limit Tmax is sufficiently large to ensure the convergence.

3.2.3.1. Remark. Let us stress that in the maintenance policies un-
der consideration, there is a competing risks involved. For exam-
ple, in the static policy, if the ith time to failure is Z;, the current
time to maintenance is X; = min(Z;, §). As the preventive mainte-
nances are planned, this competing relationship can be modeled as
a deterministic censoring of the time to failure. The results from
Section 2 derive the properties in the steady-state regime under
one kind of maintenance. Considering two kinds of maintenances
and as the preventive maintenance are a constant and determinis-
tic censoring of the failure process, the resulting process will nat-
urally converge to a stationary regime. However, the distribution
of the limiting virtual age A, will not be the same as for one
kind of maintenance. Theoretical results have been obtained for
the stationary regime under failure-limit or age-dependent pre-
ventive maintenance policy, but not in the case of the static and
dynamic policies from the paper. Through graphical presentation
in Figs. 5-7, we illustrate the stationary assumption after applying
ARA preventive maintenance actions.
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Fig. 7. Density of inter-maintenance durations of static policy « =1,8 =3, p =0.8.

3.3. Numerical simulations

The implementation of the different PM strategies are discussed
in this section based on representing examples. Since the failure
data set of electrical transformers given by French electrical com-
pany (Electricité de France-EDF) is confidential, the proposed theo-
retical results are applied to simulated data with parameter setting
similar to the original data set. Furthermore, simulated data with
different parameters setting permit a better analyze of the mainte-
nance policies efficiency.

Different wear rates § and different restoration factors p are
considered. The pseudo-scale parameter « is set to 1. Nine config-
urations are chosen with 8 € {1.5, 3, 4.5} and p € {0.2, 0.5, 0.8}.
These choices cover slow to fast aging and poorly to fairly efficient
maintenances. Three different cost ratios C¢/C, € {10, 100, 1000}
are considered. The Nelder-Mead downhill simplex method is used
for the optimization procedure.The results for all the strategies are
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Table 1
Comparing costs of maintenance policies (o = 1, C. = 10Cy).
B P Static Failure limit Variant Dynamic No PM E[Xx]
Cost §* Cost s* Cost 5 P
1.5 0.2 17.72 018 17.69 0.85 20.81 0.84 20.76 22.01 0.45
15 0.5 1230 0.26 12.28 0.50 13.51 0.62 1311 15.68 0.64
1.5 0.8 9.71 0.33 9.71 0.41 9.97 0.48 9.71 12.74 0.78
3 0.2 15.50 0.09 15.48 0.48 25.00 0.23 23.64 40.70 0.24
3 0.5 7.54 0.20 7.54 0.40 8.02 0.26 7.62 20.72 0.48
3 0.8 492 0.30 492 0.38 4.92 0.30 492 13.90 0.72
45 0.2 12.51 0.10 12.51 0.51 16.51 0.15 16.10 46.87 0.21
4.5 0.5 5.49 0.23 5.48 0.46 5.51 0.22 5.49 21.39 0.47
45 0.8 3.46 0.37 3.46 0.46 3.49 0.34 3.46 13.68 0.73
Table 2
Optimal maintenance strategies in nine configurations with (« = 1,C. = 100C,).
B P Static Failure limit Variant Dynamic No PM
Cost 8* Cost s* Cost 5 P
15 0.2 87.46 0.03 87.46 017 88.92 0.05 88.65 220
15 0.5 60.52 0.05 60.50 0.10 6219 0.07 62.05 156
1.5 0.8 47.61 0.06 47.52 0.08 49.68 0.10 48.21 127
3 0.2 34.45 0.04 34.41 0.22 41.61 0.06 38.65 407
3 0.5 16.75 0.09 16.73 017 16.92 0.08 16.80 207
3 0.8 10.91 013 10.90 017 11.10 011 11.09 139
45 0.2 21.40 0.06 21.32 0.30 23.19 0.05 22.95 468
45 0.5 9.33 013 9.33 0.27 12.74 0.08 9.35 213
45 0.8 5.89 0.21 5.89 0.27 6.62 0.16 5.96 136
Table 3
Optimal maintenance strategies in nine configurations with (« =1, = 1000C}).
B P Static Failure limit Variant Dynamic policy No PM
Cost 8+ Cost s* Cost 5 o
15 0.2 408 0.007 407 0.03 501 0.03 471 2200
1.5 0.5 282 0.009 282 0.02 309 0.02 291 1568
1.5 0.8 221 0.012 221 0.01 233 0.02 223 1274
3 0.2 74.33 0.02 74.20 0.10 87.23 0.02 7715 4070
3 0.5 36.11 0.04 36.03 0.08 41.40 0.03 38.23 2072
3 0.8 23.52 0.06 23.52 0.08 28.32 0.04 25.02 1390
45 0.2 35.64 0.03 35.59 0.18 66.92 0.01 4016 4687
45 0.5 15.58 0.08 15.56 0.16 36.86 0.03 17.05 2139
45 0.8 9.85 0.13 9.85 0.16 14.17 0.07 9.91 1368
reported in Tables 1-3. The average cost when no PM is performed
(only repair at failure) for an infinite horizon is added for compari- 12 w w —
son purpose. In Table 1, the expectation of the inter-failure time in = 0 Static policy ®  Variant - ,2;0:5
stationary regime is also included. The result of the approximation p=0.8
by renewal theory for the static policy is referred as the Variant in 100
the table.
It is obvious to see that any maintenance policy without
planned preventive maintenance (only repair at failure) is the most 80)
costly. The PM clearly helps to lower the cost and extend the op- B
erating time. It is interesting to evaluate the impact of preventive o
maintenance on the average cost in different policies. g 60
The failure limit policy is the most cost-wise policy. We know Z

that, by definition of the policy, the PM durations are not constant.
However, when obtaining numerical results, we observe that al-
most all of the PM durations are of the same length. The small
portion of different lengths is meant to adjust the system’s virtual
age to its optimal value. We believe that this behavior is due to
the particularity of the ARA., model.

As for the static policy, the cost functions for all the configura-
tions are derived from Algorithm 1 and are presented in Figs. 8-
10. The optimal solution §* and its approximation from the re-
newal process theory (Variant) §* are indicated. For large values
of B (3,4.5), the Variant proposes good approximation of the op-

40
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4 05 06
PM duration

Fig. 8. Average cost of age-based policy with o =1, 8 =1.5.
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Fig. 9. Average cost of age-based policy with « =1, 8 = 3.
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Fig. 10. Average cost of age-based policy with o« =1, 8 =4.5.

timal solution obtained by Monte-Carlo simulations. In particular,
when repair is effective (p = 0.8), the Variant returns fairly correct
approximation of the average cost and the optimal PM duration.
From numerical results, we observe that the static policy, though
simpler, is almost as effective as the failure limit policy.

The dynamic policy is better than the approximation from re-
newal theory (Variant), but is outperformed by the static policy
with Monte-Carlo simulations when repair is inefficient. For large
values of B and p, the dynamic policy seems to approach to the
static policy’s level. The dynamic policy is locally optimal, but is no
longer optimal in the infinite horizon. An example of the empirical
distribution of the PM durations under dynamic policy comparing
to the static policy is given in Figs. 11-13.

In conclusion, the failure limit policy is the most cost efficient
policy but it is also the most difficult to apply because one has to
measure the system’s virtual age, not the real age. The static policy
is almost as efficient as the first policy, with one major advantage
in its implementation: the PM durations are fixed and can be de-
termined in advance. The dynamic policy is not as effective as the
static one in infinite horizon, but it is locally optimal. It suggests
that the dynamic policy could be of interest for systems with lim-
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Fig. 11. Comparison of dynamic optimal PM durations and optimal PM duration of
static policy with (8 = 1.5, p = 0.8).
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Fig. 12. Comparison of dynamic optimal PM durations and optimal PM duration of
static policy with (8 =3, p = 0.8).
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Fig. 13. Comparison of dynamic optimal PM durations and optimal PM duration of
static policy with (8 = 4.5, p = 0.8).

ited number of failures before a replacement. This criteria could be
imposed, for instance, by design or by safety measure.

Let us note that, the computations in the dynamic case are
much more important and it is actually necessary to constantly
update the virtual age of the system. However, these computa-
tions are not implying intensive Monte Carlo simulations and can
be done rapidly and extremely efficiently. Furthermore, in practice,
the computational time to obtain the optimal solution is matter
of milliseconds, which is a different order of magnitude from the
time to planned preventive maintenance. Moreover, it has been
highlighted that the static policy offers much better results than
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the dynamic one. The static policy does not require to compute
the virtual age of the system after each maintenance and is con-
sequently very simple to implement. The only reason to "update”
the static maintenance policy would be during an on-line analysis
of the system where the parameters of the models are unknown.
As inference is presented as an important prospect but is not taken
into account in this paper, the resulting computational issues will
be the object of future research.

It can be highlighted that the parameters estimation is an im-
portant issue and is a crucial step in the course of the analysis of a
maintenance data set. The inference in presence of virtual age as-
sumptions has been well discussed in the literature (Dijoux & Idée,
2013; Doyen & Gaudoin, 2004, 2006; Lindqvist, 2006) considering
one or multiple kinds of maintenance. The quality of the ML esti-
mators for Arithmetic Reduction of Age models have been specifi-
cally discussed in Doyen (2010); Doyen and Gaudoin (2004). As our
paper does not focus on inference procedures, we have not pro-
vided extensive details on how to estimate the parameters of the
model but we give a brief outline of the procedure in Appendix J.

4. Conclusion

In this paper, we analyze the imperfect repair model with
Weibull failure distribution under ARA., assumption. We develop
the marginal distributions of effective ages and inter-failure times
and show the existence of a steady state. When the model reaches
this state, the effective ages and the inter-failure times converge to
its limiting distributions. The results are then applied to propose a
static, a dynamic and a failure limit maintenance policy. Numeri-
cal simulations are presented to illustrate the policies. It is shown
that the failure limit policy is the most cost effective, but it is the
most difficult to implement. The static policy is almost as powerful
as the first policy, with one major advantage in its application. We
also observe that the dynamic policy is more effective under finite
horizon planning. Heuristic algorithms are introduced to derive op-
timal cost and preventive maintenance durations for the policies.
In all applications, the preventive maintenance and the corrective
maintenance are assumed to have the same efficiency, but it is
rarely the case in practice. In further research, we plan to drop
this assumption in order to provide a more general framework and
we believe that the convergence property of the model is still pre-
served. It is also interesting to investigate the ARA., model with
other failure distribution than the Weibull distribution. It seems
that optimal maintenance policies exist for other failure distribu-
tions, although explicit distributions for reliability quantities might
not be derived. We expect to determine a class of failure distribu-
tions that allows us to build optimal maintenance policies for the
ARA,, model.

In short, the paper develops the analytical expression of the dis-
tribution of effective ages and inter-failure times during the tran-
sient and steady-state regime. In particular, these expressions con-
firm and detail the convergence in law of the effective ages and of
the inter-failure times to a steady regime.

It is possible to derive the Residual Useful Life (RUL) of the sys-
tem if the number of maintenance in the past is known or un-
known and without the knowledge of the previous maintenance
times. In other papers with virtual ages, the RUL is usually com-
puted if all the maintenance history is known, which is in practice
not always the case.

The results can be also applied in statistical inference frame-
work. The maximum likelihood methods from a system observed
in a time interval requires to know the initial (virtual) age of the
system. Our paper allows to derive the maximum likelihood func-
tion analytically and without using burdensome Monte Carlo simu-
lations to compute and maximize the likelihood function. The esti-
mation of the parameters is the next natural development from the

current paper (sensitivity analysis from the estimation and mainte-
nance costs, estimation over an interval, etc) and can (will) be the
subject of future works.

Moreover, the expressions of the limiting distributions allow to
approximate analytically and relatively efficiently the optimal static
policy. The use of virtual age is extremely convenient as the mod-
els take into account the maintenance efficiency and allow to carry
out Monte Carlo simulations and numerical computations very eas-
ily. The theoretical development of particular virtual age models
is important for future relevant topics in imperfect maintenance
analysis. The notion of confidence interval is poorly addressed con-
sidering virtual age models. Also, there is no statistical test for vir-
tual age model selection. In future works we can invertigate more
analytical results on the behavior of imperfect maintenance model
in order to bring new contributions in statistical tests and confi-
dence intervals.
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Appendix A. Proof of Proposition 1.

The conditional distribution of X;,; in (3) can be reformulated
as in (A.1).

Vi>0,Vt >0, P(Xiyq > t]Xq, ..., X;) = e” AA+D+AGA)

(A1)

Let us denote U;,; a random variable uniformly distributed be-
tween 0 and 1 and independent of the past of the repair process.
From the inverse transformation method, a simulation of Xj,; con-
ditionally to the past can be obtained from (A.1) as in (A.2).

Xie1 = AN (AA) - In(Upy1)) — A (A2)

The random variable &;,; defined by &;,; = —In(U; ;) has an
exponential distribution with rate 1, independent of the past of the
repair process. A simulation of A;,; can then be derived from (6) as
in (A.3).

Aipr = (1= p)(Ai + Xiy1)
=(1-p)Ai+ A" (AA) +&11) —A)
=(1-p)A " (AA) +E&i1)

This concludes the proof of Proposition 1. O

(A3)

Appendix B. Proof of Proposition 2.

The initial effective age of the system Aq is zero. The base case
for Ay is obtained by applying Proposition 1 as in (B.1).
1k
Ar=(1-p)A[AAY) +&]=(1—-p)a 7E] (B.1)

Let us assume that the proposition holds for n > 1. The induc-
tion step can be derived as in (B.2).

A1 = (1= ) A [AAD) + &nia]
i B B
=(1- p)a‘% a1 - ,O)ot_% Z(l _ P)ﬂ("‘i)fi T Enit

i=1

=

1
B

™=

aa™! (1- p)ﬂ Z(l - p)ﬁ(nii)’i:i +&ni1

i=1

=1-pla”
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n+1 %
—(1-pa’7 (Z(l - p)ﬁ(”*“)&-) (B.2)
i=1
This completes the proof of Proposition 2. O
Appendix C. Proof of Proposition 3.
Let us denote g = (1—p)#, 6;=¢"" and Y, = Y[, 6. '&;. The
effective ages from Proposition 2 can be expressed as in (Cl)
1 n % 14
Av=(1=p)a 7|3 07 =1 -p)a 7Y/ (c1)
i=1

As &; follows an exponential distribution with rate 1, 9,.*1& fol-
lows an exponential distribution with rate 6;. A sum of n inde-
pendent exponential random variables follows a hypo-exponential
distribution. The distribution of Y, follows therefore a hypo-
exponential distribution and its reliability can be obtained from
Gaudoin and Ledoux (2007) and is expressed in (C.2).

n
Ry () = Y Llen (c2)
i=1 !
where p; = mr— =L~ L
! j= 11#(0 ="

Using the g-shifted factorial defined in (9), a synthetic expres-
sion of w; can be derived as in (C.3).

Wi = 1_[?:1 91 _ 1_[:'1:1 91‘ _ 91‘

L n PRp— . - n . - n .
[T1.j4(65 = ) [Tjz1,ji 91(1 - %) [Tt (1 - %)
M (1) M (1- %)

qi—n
T =g [T (1 - givd)
_ 1 1
¢S (- ¢) [ (1 - %)
1 1 1
D (C.3)
@ (5

The survival function of Y, can be expressed as in (C.4). Based
on (C.1), Ay is a basic transformation of the random variable Y, and
its expression is derived in (C.5).

n

1 ot
Ry, (t) =) ——————e @7 (C4)
= @D (3 E)H
-y e ¥ )
RA,, t) = — a (CS
o1 (@ On- k(% %)
This completes the proof of Proposition 3. O

Appendix D. Proof of Proposition 4.

Given Ay, the distribution of X,,; can be easily derived from
(3). The reliability of X1 is consequently obtained by conditioning
with respect to A, as in (D.1).

oo
PGui = 0 = [ PO > 1Ay =0dFs, ()

:f P(Z > x+1|Z > x)dFs, (X)
0

_ /0“ R(x+1t) dFy, ()

R(x)
_ /OC e—a(x+t)ﬂ+ax»“aﬁxﬂ—l
0
n 1 _af
X o dx
S F@ D5 Dy
. 1

=

o 0@ Duk(§ 7)e s

« /oo aﬂxﬁ—le—a(x+t)ﬁ+a(l—q*")xﬁdx
0

(D.1)
This completes the proof of Proposition 4. O
Appendix E. Proof of Proposition 5.

The Gamma function I'(z)
pute integrals such as in (E.1).

0 b 1 &
/ Fdt — r(f + l)qﬂ (E1)
0 B

The expectation of A, can be obtained by combining results
from Proposition (3) and (E.1). Its expression is developed in
(E.2).

1
Elad = [ R/‘"(”‘“‘/ T .

o ath

= > t*"le~tdt can be used to com-

,M
& dt

B kX:; . q)ﬂ-k(%’ %)IH /0

n

= a—uﬂr(% + 1) > qgl)k_]

k=1 (q’ q)n—k(%s q

The expectation of X, can be obtained by integrating the as-
sociated reliability function developed in Proposition 4. A different
approach is considered, based on the relationship between X,
and the virtual ages A, and A, 1. An expression of E[X,,{] can be
derived from (6) as in (E.3).

E[Xo11] = q7 E[Ans1] — E[Aq]

*”ﬁr‘(l + l)

n+1 1 n q%
(q Q)n+1 k(%’ %)k_l o (@ q)"*k(%’ %)k—l

(E.2)
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(E.3)

This completes the proof of Proposition 5. O

Appendix F. Proof of Proposition 7.

The distribution of an effective age A, is characterized by the
knowledge of the previous effective age A,, independently of n. The
sequence {Ap}, > 1 is @ Markov chain on the continuous state space
R., defined by the initial age Ag = 0 and the Markov kernel as in
(E1).

P(Api1 > slAn=t) = P((1 = p)(An + Xpy1) > S|Ap =1)

s
=P(Xn+1>?—t|An=t)
) ifs<(1-p)t
- P(Z>]%|Zzt) ifs>0-p)t

R(+35)
)
= RO Lis>a-pyty + Lis<a-p)

(S _th
= e D g + ey (B1)
The transition density p(s, t) is obtained by taking the derivative
with respect to s and by modifying the sign. This completes the
proof of Proposition 7. O

Appendix G. Proof of Proposition 8.

Regarding the limiting distribution of the effective age, the exis-
tence of the survival function R4 will be proven. Then the conver-
gence in distribution of the effective ages to Ay, will be obtained.
Basic considerations are first introduced and will be helpful for the
proof.

(I) The particular g-shifted factorial (g, q), converges in the in-
terval (0, 1) to the Euler function (q, q)s.
(1) |(%, %)k_1| is increasing in k and tends to infinity when q is
in the interval (0, 1).
() Vx>0, xe™* < 1.
(IV) Timy oo Y5y [Tk (1 —¢9) = 1]gk =0

The convergence of the partial sum Ry, (t) to the infinite sum
R4 (t) is proven in two steps: the first step consists of proving the
infinite series R4 (t) is convergent, and the second step consists of
proving the convergence of Ry, (t) to Ry (1).

We prove the convergence of the infinite series Ry (t). As (q,
()0 is positive and bounded and |(%, %),{_1| increases towards in-

finity, | | has an upper bound M. The absolute value of

1
@Doo( iy
the general term of the series R4 can be bounded as in (G.1) using
(1I1). The upper and lower bounds are general terms of convergent
series, which proves the existence of Ry for t positive. The func-
tion is also naturally defined in 0.

] atB
<—¢
@ Do (3 7).,

As for the convergence in distribution, the difference between
R4, and R4 are expressed in (G.2).

[Ra, () = Ra_ ()]

ath ath
e ad o
- g (q’ Q)n—k(é’ %)k7 ;

(G.1)

q q)oo(q CI)k 1

b b
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(G.2)

The first sum converges to zero from (IV). The second sum
is the remainder of a convergent series and also converges to
zero. Therefore, Vt > 0, limp_, o Ry, (t) — R4 (t) = 0. The case t =0
is trivial. The effective ages A, are consequently convergent in dis-
tribution to As.

We apply the same procedure to prove the convergence of the
partial sum Ry, (t) to the infinite and convergent sum Rx_ (t).

In the first step, the convergence of the infinite series Ry_ (t)
is obtained by proving that it is absolutely convergent. Considering
the sum of the absolute summand:

—
; (a0 D (5 §),_,
where

I, = /OoXﬁ—le—a(x+t)3+a(1—q”‘)xﬁdx, k>1
0

Since t > 0, the integral I, is bounded by:

oo oo
0 0
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1
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= gt
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Applying the inequality to the previous series gives:
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R 0= 2, W
’ -1

%

1 (4, Do

(% i

As the term |(%, %)k,1| tends to infinite after the condition (II),
. | > 2. This gives:

there exists ko < oo such that Vk > ko, [1 — L
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Since the second term of the right hand side is a convergent series,
the infinite sum of the absolute summand is convergent, hence the
infinite series Ry_ (t) is convergent absolutely. Il implies that the
series Ry_ (t) is convergent.

To show the convergence of the partial sum Ry, (t) to the infi-
nite sum Ry_ (t), we evaluate the following term:

n
Z 05,3] 1 I

o 4. q)"—k(a' E)IH

i o8 . g o (1) Kk
q

o 440 Do (3
. 1
Iy
( (9. Dn-k (q,q)m)

I k

<

k=1 (4. o

[Rx, (t) — Ry, ()| =

n
1
I
pm 1q’< % 3 ((q Dk (q,q)oo)

+ —1C
Eﬂ @ D5 ),
n 1 1 1
- ,;(% D ((q Dk (q,q)oo)‘

i 1

+ e —
k=n+1 (. q)°°( )k 1

The first sum converge to zero after the condition (IV). The sec-
ond sum is the rest of the a convergent series. Consequently, the
partial sum Ry, (t) converges to the infinite sum Ry_ (t). The case
where t = 0 is trivial.

As in Proposition 5, the expectations of Ay, and X, are obtained
by integrating their respective survival function. This completes the
proof of Proposition 8.

Appendix H. Algorithm for the static policy

Algorithm 1 Static policy: optimization by Monte Carlo simula-
tions.
1: for § € [€, dmax] with step € do

> € > 0, precision of the

algorithm
2: Cost(6) =0; age=0; time=0;
3: while (time < Tmax) do
4: £ = —log(RAND) > Exponential distribution, rate 1
5: 2= A"1(A(age) + &) — age > Potential time to next failure
6: U=l 5 > Maintenance type
7: Cost(8) = Cost(8) + Cp + (Cc —Cp)u > Update of the total cost
8: time = time + min (4, z) > Update of the current time
9: age = (1 — p)(age +min(8,z)) > Update of the effective age
10: end while
11: Cost(8) = Cost (8)/time > Long-run average cost
12: end for
13: §* = arg Mingc(e smax] (Cost(8))

Appendix 1. Algorithm for the failure limit policy

Algorithm 2 Failure limit policy: optimization by Monte Carlo
simulations.
1: for s € [€,Smax] with step € do

> € > 0, precision of the

algorithm
2: Cost(s) =0; age=0; time=0;
3: while (time < Tmax) do
4: & = —log(RAND) > Exponential distribution, rate 1
5: z=A"1(A(age) + &) — age > Potential time to next failure
6: U= yggeizrs) > Maintenance type
7. Cost(s) = Cost(s) +Cp + (Cc —Cp)u > Update of the total cost
8: time = time + min(z, s — age) > Update of the current time
9: age = (1 — p) x min(age +z, s) > Update of the effective age
10: end while
11: Cost(s) = Cost(s) /time > Long-run average cost
12: end for
13: §* = arg MiNg ¢ smax (COst(s))

Appendix J. Estimation procedure

We provide here main steps for estimating parameters of the
WARA~, model by the maximum likelihood method. Suppose that
the model is observed in the interval [0, t] with n failure times

t; < ty < ... < ty, the associated likelihood function is given as
follows:

n
L. B.pitrty ... ta) = [[A(ais + 1t —tiy)

i=1
x e~ T A@ -t 1) —A(ai)
with the convention t,,; = t. Replacing A(-) and A(-) by their ex-
pression and passing to logarithm yields:
I(Ol, ﬂ, P, t], tz, .. ,tn) = ln(E(oe, ,B, P tl, tz, ey tn))
n
nin(aB) + (B —1) ) In@iq +t; —ti_q)

i=1

n+1
—a Y (@ +G—ti)f —dl |
i=1
We note that each g; is a function of p as in (7):

1
ai = Z(] -
j=1

One of the advantages of the WARA,, model is that it allows
us to model a system in its steady state regime. Suppose that the
WARA, is observed in this state, i.e. the observation window is of
the form [s, s + t]. The n failure times 7; < 7, < --- < T in the fol-
lowing likelihood function are the times elapsed from the starting
point s to the failure instants. The associated likelihood function
of the WARA,, model under this configuration is given as follows
(Nguyen, Dijoux, & Fouladirad, Pau, France, June 2014):

L£2(e, B, p; Tl T, ..., Tn)

/ 1_[)"(‘111"“[1_771 1) *

1-p)n i3

PNt —tj 1), i >

x e~ pan [A(ai—l+ri_fi—1)_A(ai—l)]dﬁqx (X)

The virtual age a; now becomes a function of the maintenance effi-
ciency p and the initial virtual age Vs = ag = x at the starting point
s:
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i
gG=x+Y (1-p) (1t —tiy). i=1
j=1

Three parameters («, 8, p) are estimated by the maximum like-
lihood method. Even though explicit expression of the estimators
are not available, they are can be easily obtained by general op-
timization methods, for instances the Nelder-Mead downhill sim-
plex, interior point method etc.

References

Ascher, H., & Feingold, H. (1984). Repairable systems reliability: modelling, inference,
misconceptions and their causes. New York: Dekker.

Baker, R. D. (2001). Data-based modeling of the failure rate of repairable equip-
ments. Lifetime Data Analysis, 7(1), 65-83.

Bartholomew-Biggs, M., Ming, J. Z., & Xiaohu, L. (2009). Modelling and optimizing
sequential imperfect preventive maintenance. Reliability Engineering and System
Safety, 94(1), 53-62.

Brown, J., Mahoney, J., & Sivazlian, B. (1983). Hysteresis repair in discounted replace-
ment problems. IIE Transactions, 15(2), 156-165.

Brown, M., & Proschan, F. (1983). Imperfect repair. Journal of Applied Probability,
20(4), 851-859.

Chien, Y.-H., & Sheu, S.-H. (2006). Extended optimal age-replacement policy with
minimal repair of a system subject to shocks. European Journal of Operational
Research, 174(1), 169-181.

Clavareau, J., & Labeau, P-E. (2009). Maintenance and replacement policies un-
der technological obsolescence. Reliability Engineering and System Safety, 94(2),
370-381.

Crow, L. (1974). Reliability analysis for complex repairable systems. In F. Proschan,
& R. Serfling (Eds.), Reliability and biometry (pp. 379-410). Philadelphia: SIAM.

Dagpunar, J. (1998). Some properties and computational results for a general repair
process. Naval Research Logistics, 45, 391-405.

Dijoux, Y., & Gaudoin, O. (2014). Generalized random sign and alert delay models
for imperfect maintenance. Lifetime Data Analysis, 20(2), 185-209.

Dijoux, Y., & Idée, E. (2013). Classes of virtual age models adapted to systems with
a burn-in period. IEEE Transactions on Reliability, 62(4), 754-763.

Dimitrakos, T. D., & Kyriakidis, E. G. (2007). An improved algorithm for the compu-
tation of the optimal repair/replacement policy under general repairs. European
Journal of Operational Research, 182(2), 775-782.

Do, V. P, & Bérenguer, C. (2012). Condition-based maintenance with imperfect pre-
ventive repairs for a deteriorating production system. Quality and Reliability En-
gineering International, 28(6), 624-633.

Dorado, C., Hollander, M., & Sethuraman, J. (1997). Nonparametric estimation for a
general repair model. The Annals of Statistics, 25(3), 1140-1160.

Doyen, L. (2010). Asymptotic properties of imperfect repair models and estimation
of repair efficiency. Naval Research Logistics, 57(3), 296-307.

Doyen, L., & Gaudoin, O. (2004). Classes of imperfect repair models based on reduc-
tion of failure intensity or virtual age. Reliability Engineering and System Safety,
84, 45-56.

Doyen, L., & Gaudoin, O. (2006). Imperfect maintenance in a generalized competing
risks framework. Journal of Applied Probability, 43(3), 825-839.

Doyen, L., & Gaudoin, O. (2011). Modelling and assessment of aging and efficiency of
corrective and planned preventive maintenance. [EEE Transactions on Reliability,
60(4), 759-769.

El-Ferik, S., & Ben-Daya, M. (2008). Model for imperfect age-based preventive main-
tenance with age reduction. Journal of the Operational Research Society, 59(12),
1644-1651.

Finkelstein, M. (2008). Failure rate modelling for reliability and risk. London:
Springer-Verlag.

Finkelstein, M. (2015). On the optimal degree of imperfect repair. Reliability Engi-
neering and System Safety, 138, 54-58.

Gasper, G., & Rahman, M. (1990). Basic hypergeometric series. Cambridge: Cambridge
University Press.

Gaudoin, 0., & Ledoux, ]. (2007). Modélisation aléatoire en fiabilité des logiciels. Paris:
Hermés Science Publications.

Gertsbakh, 1. (2000). Reliability theory with applications to preventive maintenance.
Springer-Verlag.

Gilardoni, G., & Colosimo, E. (2007). Optimal maintenance time for repairable sys-
tems. Journal of Quality Technology, 39(1), 48-53.

Gilardoni, G. L., de Toledo, M. L. G., Freitas, M. A., & Colosimo, E. A. (2015). Dynamics
of an optimal maintenance policy for imperfect repair models. European Journal
of Operational Research, available on line 4 August 2015, ISSN 0377-2217. doi:10.
1016/j.ejor.2015.07.056.

Guo, R, & Love, C. E. (1992). Statistical analysis of an age model for imperfectly
repaired systems. Quality and Reliability Engineering International, 8(2), 133-146.

Jayabalan, V., & Chaudhuri, D. (1992). Optimal maintenance-replacement policy
under imperfect maintenance. Reliability Engineering and System Safety, 36(2),
165-169.

Jiang, X., Makis, V., & Jardine, A. K. S. (2001). Optimal repair/replacement policy for
a general repair model. Advances in Applied Probability, 33(1), 206-222.

Kahle, W. (2007). Optimal maintenance policies in incomplete repair models. Relia-
bility Engineering and System Safety, 92, 563-565.

Kijima, M. (1989). Some results for repairable systems with general repair. Journal
of Applied Probability, 26(1), 89-102.

Kijima, M., Morimura, H., & Suzuki, Y. (1988). Periodical replacement problem
without assuming minimal repair. European Journal of Operation Research, 37,
194-203.

Kijima, M., & Sumita, U. (1986). A useful generalization of renewal theory: count-
ing process governed by non-negative Markovian increments. Journal of Applied
Probability, 23, 71-88.

Last, G., & Szekli, R. (1998). Asymptotic and monotonicity properties of some re-
pairable systems. Advances in Applied Probability, 30(4), 1089-1110.

Levitin, G., & Lisnianski, A. (2000). Optimization of imperfect preventive main-
tenance for multi-state systems. Reliability Engineering and System Safety, 67,
193-203.

Lie, C., & Chun, Y. (1986). An algorithm for preventive maintenance policy. IEEE
Transactions on Reliability, R-35(1), 71-75.

Lindqvist, B. (2006). On the statistical modeling and analysis of repairable systems.
Statistical Science, 21(4), 532-551.

Lomnicki, Z. A. (1966). A note on the weibull renewal process. Biometrika, 53(3),
375-381.

Love, C. E., Zhang, Z. G., Zitron, M. A., & Guo, R. (2000). A discret semi-markov de-
cision model to determine the optimal repair/replacement policy under general
repairs. European Journal of Operational Research, 125, 398-409.

Makis, V., & Jardine, A. K. S. (1993). A note on optimal replacement policy under
general repair. European Journal of Operational Research, 69, 75-82.

Malik, M. (1979). Reliable preventive maintenance scheduling. AIIE Transactions,
11(3), 221-228.

Mcintosh, R. (1999). Some asymptotic formulae for g-shifted factorials. The Ramanu-
jan Journal, 3(2), 205-214.

Mercier, S., & Castro, I. T. (2013). On the modelling of imperfect repairs for a con-
tinuously monitored gamma wear process through age reduction. Journal of Ap-
plied Probability, 50(4), 1057-1076.

Nakagawa, T. (1980). A summary of imperfect preventive maintenance policies with
minimal repair. RAIRO - Operations research - Recherche Opérationnelle, 14(3),
249-255.

Nakagawa, T. (2005). Imperfect preventive maintenance. In Maintenance theory of re-
liability. In Springer Series in Reliability Engineering (pp. 171-199). Springer Lon-
don.

Nguyen, D., Dijoux, Y., & Fouladirad, M. (2014). Virtual age distribution and statisti-
cal inference of an imperfect repair model. In Proceedings of the 5th international
conference on accelerated life testing and degradation models, ALT 2014.

Nicolai, R,, Frenk, J., & Dekker, R. (2009). Modelling and optimizing imperfect main-
tenance of coatings on steel structures. Structural Safety, 31(3), 234-244.

Pham, H., & Wang, H. (1996). Imperfect maintenance. European Journal of Opera-
tional Research, 94, 425-438.

Pham, H., & Wang, H. (2006). Reliability and optimal maintenance. Springer series in
reliability engineering. London: Springer.

Rigdon, S., & Basu, A. (2000). Statistical methods for the reliability of repairable sys-
tems. Wiley.

Sandve, K., & Aven, T. (1999). Cost optimal replacement of monotone, repairable
systems. European Journal of Operational Research, 116(2), 235-248.

Scarsini, M., & Shaked, M. (2000). On the value of an item subject to general repair
or maintenance. European Journal of Operational Research, 122(3), 625-637.
Slud, E., & Suntornchost, J. (2014). Parametric survival densities from phase-type

models. Lifetime Data Analysis, 20(3), 459-480.

Tadikamalla, P. R. (1980). Age replacement policies for Weibull failure times. IEEE
Transactions on Reliability, R-29(1), 88-90.

Toledo, M. L. G. (2014). Determination of the optimal periodic maintenance policy
under imperfect repair assumption. Ph.D. thesis, Universidade Federal de Minas
Gerais, Brazil.

Tsai, T.-R., Liu, P-H., & Lio, Y. (2011). Optimal maintenance time for imperfect main-
tenance actions on repairable product. Computers and Industrial Engineering,
60(4), 744-749.

Yannaros, N. (1994). Weibull renewal processes. Annals of the Institute of Statistical
Mathematics, 46(4), 641-648.

Yevkin, O. (2012). A monte carlo approach for evaluation of availability and failure
intensity under g-renewal process model. In C. Bérenguer, A. Grall, & C. Guedes
Soares (Eds.), Advances in safety, reliability and risk management. Taylor & Francis.

Yevkin, O., & Krivtsov, V. (2013). Comparative analysis of optimal maintenance poli-
cies under general repair with underlying Weibull distributions. IEEE Transac-
tions on Reliability, 62(1), 82-91.

Yun, W., & Choung, S. (1999). Estimating maintenance effect and parameters of
intensity function for improvement maintenance model. In Proceedings of the
5th international conference reliability and quality in design, ISSAT , Las vegas
(pp. 164-166).

Zhang, M., Gaudoin, O., & Xie, M. (2015). Degradation-based maintenance decision
using stochastic filtering for systems under imperfect maintenance. European
Journal of Operational Research, 245(2), 531-541.


http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0025
http://dx.doi.org/10.1016/j.ejor.2015.07.056
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0031
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0031
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0036
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0036
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0036
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0036
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0037
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0037
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0038
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0038
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0040
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0040
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0040
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0040
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0041
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0041
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0042
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0042
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0044
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0044
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0045
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0045
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0046
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0046
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0046
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0046
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0046
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0047
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0047
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0047
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0047
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0047
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0048
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0048
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0048
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0048
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0049
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0049
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0049
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0049
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0050
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0050
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0050
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0050
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0051
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0051
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0051
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0051
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0052
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0052
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0052
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0052
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0053
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0053
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0053
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0053
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0054
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0054
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0055
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0055
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0056
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0056
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0056
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0056
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0056
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0057
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0057
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0058
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0058
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0059
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0059
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0059
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0059
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0060
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0060
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0060
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0060
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0061
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0061
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0061
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0061
http://refhub.elsevier.com/S0377-2217(16)30446-5/sbref0061

	Analytical properties of an imperfect repair model and application in preventive maintenance scheduling
	1 Introduction
	2 Properties of the WARA model
	2.1 The repair process
	2.2 Analytical developments of the WARA model

	3 Optimization of planned preventive maintenance policies
	3.1 Preventive maintenance scheduling
	3.2 Three planned preventive maintenance strategies for the WARA model
	3.2.1 Policy 1: static policy
	3.2.2 Policy 2: dynamic policy
	3.2.3 Policy 3: failure limit policy

	3.3 Numerical simulations

	4 Conclusion
	 Acknowledgments
	Appendix A Proof of Proposition1.
	Appendix B Proof of Proposition2.
	Appendix C Proof of Proposition3.
	Appendix D Proof of Proposition4.
	Appendix E Proof of Proposition5.
	Appendix F Proof of Proposition7.
	Appendix G Proof of Proposition8.
	Appendix H Algorithm for the static policy
	Appendix I Algorithm for the failure limit policy
	Appendix J Estimation procedure
	 References


