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Abstract. In this study, a lumped compartment cardiovascular model is developed to predict pulsatile pres-
sures in the systemic and pulmonary circulation as well as in finger arteries. Essential compartments of the
model include arterial and venous pulmonary, left and right ventricles, and arterial and venous systemic com-
partments. A pulsatile left ventricle is incorporated to be the source of pulse waves in the system. An aorta
compartment is included to indicate pressure variations detected by baroreceptors acting as sensors in the
cardiovascular system. Further, a finger artery is added as a typical site of pulsatile pressure measurements. In
order to model the stiffness of heart muscles during exercise, a sigmoidal function dependent on heart rate is
used to characterize the maximum left ventricular elastance. Numerical simulations of left-ventricular pres-
sure and volume curves depicted its physiological dynamics. Moreover, the pulsatile cardiovascular model
can be used to describe cardiovascular dynamics during rest and exercise conditions.
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1 Introduction

The cardiovascular system is a complex transport system providing various cells with the needed oxygen
and other substrates for metabolism simultaneously removing carbon dioxide and other waste products of
metabolism. Moreover, it transports hormones and enzymes which regulate cell functions. In general, its
function is to maintain an appropriate environment in all tissue fluids of the body for optimal survival and
function of the cells[21, 30, 33, 55, 65]. Since cardiovascular disease is the leading cause of deaths worldwide,
efforts on experimental studies aim to examine its mechanisms and therapies. Mathematical modeling finds
its way to analyze the cardiovascular system complementing experimental approach.

In the last decades, a large number of investigations regarding lumped parameter differential equation
models have been developed to study dynamics and control of the cardiovascular system. Included are in-
vestigations on behavior of blood pressures in the peripheral and systemic compartments, cardiac output,
ventricular elastance and contractility in the human circulatory system under various conditions. For instance,
a mathematical cardiovascular model has been developed by Kappel and Peer to describe the response of
the system to a constant workload[27]. It is based on the four-compartment model for the so-called mechan-
ical part of the cardiovascular system by Grodins[19, 20]. Incorporated in the model are essential subsystems
such as systemic and pulmonary circulation, left and right ventricles, baroreceptor loop, etc. Basic mecha-
nisms such as Starling’s law of the heart, the Bowditch effect, and autoregulation in peripheral regions are
also included. The model satisfactory provided an overall description of the reaction of the cardiovascular
system to a constant ergometric workload. Details on modeling issues, parameter estimation and simulations
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with this model can be found in Batzel et al.[2]. Further studies extended the model to include the respiratory
system[61] to describe the response of the cardiovascular-respiratory system under orthostatic stress situations
induced by lower body negative pressure, head-up-tilt and postural changes[17, 25, 48, 66]; and to understand the
underlying principles of congestive heart failure[3, 14]. These models typically predict blood pressure and flow
in and between compartments representing various parts of the cardiovascular system. In recent years, car-
diovascular system models increased its complexity to account more accurately the underlying physiological
dynamics. For example, complex nonlinear models have been developed to describe the pulsatile pumping of
the heart[7, 40, 44] and the blood flow and blood pressure regulation[15, 22, 40, 41, 62]. Furthermore, comprehensive
cardiorespiratory models have been developed[16, 34]. A survey on cardiovascular-respiratory system regarding
modeling, control issues and clinical problems arising from the control mechanisms can be found in Kappel
and related work[4, 24].

The current study aims to develop a mathematical model capable of describing the response of the car-
diovascular system during rest and exercise conditions. In particular, the model seek to predict pressures in
the systemic and pulmonary circulation as well as pulsatile pressures in the finger arteries on different condi-
tions such as rest and exercise phase. Driven by the principle of keeping the mathematical model as simple as
possible and as complicated as necessary, a lumped parameter pulsatile cardiovascular system is developed.
It incorporates essential subsystems such as arterial and venous pulmonary, left and right ventricles, and ar-
terial and venous systemic compartments. An aorta compartment is included to indicate pressure variations
detected by baroreceptors acting as sensors in the system. This is an important aspect in studying control
regulatory mechanisms in the cardiovascular system[2, 3, 11, 17, 25, 27, 61] . Also, a finger artery compartment is
added in which pulsatile pressure measurements can be obtained. In the current model, adjacent compartments
are linked together by peripheral resistance. The cardiovascular model developed by Kappel and Peer[27] is
extended to model pulsatility of blood flow using Olufsen’s model of the left ventricle[40, 53]. Recently, the
current pulsatile model has been investigated to describe the reaction of this system to a submaximal constant
workload imposed on a person at a bicycle ergometer test after a period of rest[11]. Here, the focus is more on
the physiological dynamics of left ventricular elastance and pressures during rest and exercise conditions. It
has been observed that during exercise, the cardiovascular system responds with an elevated heart rate in order
to increase blood flow in the stressed muscles and accordingly satisfy its increased oxygen demand. Taking
into account the stiffness of heart muscles, maximum ventricular elastance is modelled as heart rate depen-
dent. Hence, heart rate is considered to be one of the controlled parameters to simulate pressures at rest and
during exercise. Numerical simulations also include the left ventricular volume and pressure during different
stages in a heart cycle.

The paper is organized as follows: Section 2 provides details on the development of a pulsatile cardiovas-
cular model. Numerical results, its interpretations and discussion are documented in Section 3. Conclusions
and future work directions are presented in the last section.

2 A pulsatile cardiovascular model

In order to develop a lumped pulsatile cardiovascular model, two existing models are utilized: a nonpul-
satile model adapted from Kappel and Peer[27] and a simplified pulsatile left heart developed by Olufsen et
al.[53]. It is mathematically formulated in terms of an electric circuit analog, see Fig. 1. Blood pressure differ-
ence plays the role of voltage, blood flow plays the role of current, stressed volume plays the role of an electric
charge, compliances of blood vessels play the role of capacitors, and resistors are the same in both analogies.
Pressures, compliances and resistances are denoted by P , c andR, respectively. In the right ventricle,Q stands
for the cardiac output and S for the contractility. The subscripts stand mainly for the name of compartments.
That is, ap, vp, lv, sa, fa, as, vs, and rv correspond respectively to the arterial pulmonary, venous pulmonary,
left ventricle, systemic aorta, finger arteries, arterial systemic, venous systemic and right ventricle compart-
ments. Also, subscripts mv and av denote the mitral valve, respectively aortic valve. Moreover, sa1 and sa2

as subscripts for R (i.e., Rsa1 and Rsa2) correspond to two different time-varying resistances connecting the
systemic aorta to finger arteries and systemic aorta to arterial systemic compartment, respectively.

A pulsatile cardiovascular system is governed by the following differential equations:
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Fig. 1. Electric analog of the pulsatile model depicting the blood flow in the pulmonary and systemic circuits
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(1)

The following principle is applied for the first 7 differential equations in system (1): the total volume
V (t) in each compartment assumes a linear relation with the transmural pressure P (t) as

V (t) = cP (t) + Vu, (2)

where c represents compliance of the compartment and Vu denotes the unstressed volume. Moreover, blood
flow follows a volume conservation and an analogue of Ohm’s law.

The blood flow out of venous systemic compartment is the cardiac output Qrv(t) which is the blood flow
into the arterial pulmonary given by
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Qrv(t) = HVstr(t), (3)

where H is the heart rate and Vstr(t) is the stroke volume, that is, the blood volume ejected by one beat of the
ventricle. Following Batzel et al.[2], the cardiac output of the right ventricle can be expressed as

Qrv(t) = H
crvPvp(t)arv(H)f(Srv(t), Pap(t))

arv(H)Pap(t) + krv(H)f(Srv(t), Pap(t))
, (4)

where

f(Srv(t), Pap(t)) = 0.5 (Sr(t) + Pap(t))− 0.5 ((Pap(t)− Sr(t)) + 0.01)1/2 (5)

is a smooth function taking the minimum value between Srv and Pap at a specific time point t. This has been
used in Timischl[61]. Also,

krv(H) = e−(crvRrv)−1td(H) and arv(H) = 1− krv(H) , (6)

and

td(H) =
1

H1/2

(
1

H1/2
− κ

)
, (7)

where κ is in the range of 0.3-0.4 when time is measured in seconds and in the range of 0.0387-0.0516 when
time is measured in minutes.

Opening and closing of the mitral and aortic valves are incorporated to model the left ventricle as a pump.
We adapt the time-varying resistances as follows

Rmv(t) = min
(
Rmv,open + e(−10(Pvp(t)−P`v(t))), N

)
,

Rav(t) = min
(
Rav,open + e(−10(P`v(t)−Psa(t))), N

)
,

(8)

where Rmv(t) and Rav(t) are the time-varying mitral valve and aortic valve resistances, respectively, and
N represents a large number. A small baseline resistance defines the “open” valve and a resistance which is
several orders of magnitude larger defines the “closed” state. For instance, when P`v(t) < Pvp(t), the mitral
valve opens and the blood enters the left ventricle. As P`v(t) increases and becomes greater than Pvp(t), the
resistance exponentially grows to a large value. The transition from open to closed valve is gradual. The value
N is chosen to ensure that there is no flow when the valve is closed and remains there for the duration of the
closed valve phase[15, 40, 41, 53]. We choose N = 10, 000 in our numerical simulations.

According to Ottesen et al.[46], the relationship between the left ventricular pressure P`v and the stressed
left ventricular volume V`v(t) is described by

P`v(t) = E`v(t) (V`v(t)− Vd) , (9)

where E`v(t) is the time-varying ventricular elastance and Vd (constant) is the ventricular volume at zero
diastolic pressure.

In Pope et al.[53], the time-varying elastance function E`v(t) is given by

E`v(t) =


Em +
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2

[
1− cos

(
πt
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)]
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Em +
EM − Em

2

[
cos

(
π
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(t− TM )

)
+ 1

]
, TM ≤ t ≤ TM + Tr

Em, TM + Tr ≤ t < T .

(10)

This is a modification of the model developed by Heldt et al.[22] based on the previous detailed works by
Danielsen and Ottesen[7, 44]. TM denotes the time of peak elastance, and Tr is the time for the start of diastolic
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relaxation, which are both functions of the length of cardiac cycle T . These parameters are set up as fractions
where TM,frac = TM/T and Tr,frac = Tr/T . Moreover, Em and EM are the minimum and maximum
elastance values, respectively. The above elastance function (10) is sufficiently smooth. Its derivative can be
easily computed as
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2
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(11)

The maximum elastanceEM can be interpreted as a measure of the contractile state of the ventricle[49, 59].
For normal resting heart, EM can be a constant parameter. However, during exercise state, the contractility
of heart muscles may increase as does the heart frequency. That is, heart rate and ventricular elastance are
controlled in a concordant fashion, a mechanism referred to as the Bowditch effect[6]. As further modification,
EM is considered as a function dependent on heart rate H . Such function must be positive-valued, bounded
and continuous. We choose the Gompertz function[18] for EM (H), a sigmoidal function given by

EM (H) = a exp(−b exp(−cH)), (12)

where a, b, c are positive constants. The constant a determines the upper bound of the function, b shifts the
graph horizontally and c is the measure of steepness of the curve. The constants a, b and c were estimated
obtaining EM = 2.4906[mmHg/mL] at H = 70/60 beats per second[46, 53].

Bazett’s formula[5] is used for TM as the time for systolic duration which is defined by

TM =
κ

H1/2
. (13)

A submodel for the local metabolic regulation process in the tissue region is modeled under the assump-
tion that arterial systemic resistance Ras depends on the venous oxygen concentration Cv,O2

[51]:

Ras = ApeskCv,O2 , (14)

where Apesk is a positive constant. This relationship is based on the work of Huntsman on autoregulation
[23] and was also used in other studies[3, 25, 27]. It describes the local constriction/relaxation mechanism acting
on small vascular elements in response to local oxygen concentration Cv,O2 (some tissues also respond to
Cv,CO2).

In order to model the cardiovascular system response to a constant ergometric workload W imposed on
a test person on a bicycle ergometer, the following empirical formula for the metabolic rate is used:

MT = M0 + ρW , (15)

whereM0 is the metabolic rate in the systemic tissue region corresponding to zero workload and ρ is a positive
constant. As in Kappel and Peer’s work[27], we have the relation:

MT = Fs (Ca,O2 − Cv,O2) +Mb , (16)

where Fs denotes the blood flow in the arterial systemic region and Ca,O2 denotes the concentration of O2 in
the arterial blood which is assumed to be constant. Moreover, for the biochemical energy flow, we assume that
it is directly proportional on the rate of change of Cv,O2 ,

Mb = −K d

dt
Ca,O2 , (17)

where K is a positive constant. Eq. (17) suggests that a positive amount of Mb is supplied whenever Ca,O2

is lowered. Differentiating Eq. (14) and combining it with Eq. (16), Eq. (17), and the flow equation to the
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peripheral systemic region, we obtain the 8th equation in system (1). In our model, we do not consider an
autoregulation mechanism in finger arteries. This is due to the idea that in an ergometer bicycle test, the arms
are held in a fixed position and hence, not directly involved in an exercise activity.

For the right ventricle, we consider the Bowditch effect of heart mechanism. The variations of the con-
tractilities can be described by the following second order differential equation

d2Sr

dt2
+ γr

dSr

dt
+ αrSr = βrH, (18)

where αr, βr and γr are constants. This set-up guarantees that the contractility Sr varies in the same direction

as the heart rate H . Introducing the state variable σr =
Sr

dt
and transforming (18) into systems of first order

differential equations lead to the last two equations in system (1) [2, 27].
Further details in modeling development can be found in de los Reyes[10] and related works[9, 12].

3 Results and discussion

The parameters, its meaning and corresponding units used in the simulations can be found in Tab. 1.
Most of the values are taken from the literature[2, 27] and some are estimated. Tab. 2 provides the controlled
parameters which we vary to capture dynamics during rest and exercise simulations.

Table 1. Table of parameter values

Compliance Meaning Value Unit
csa Compliance in systemic aorta 1.75 mL/mmHg
cfa Compliance in finger arteries 0.05 mL/mmHg
cas Compliance in arterial systemic 3.25 mL/mmHg
cvs Compliance in venous systemic 850.95 mL/mmHg
crv Compliance in relaxed right ventricle 44.131 mL/mmHg
cap Compliance in arterial pulmonary 25.15 mL/mmHg
cvp Compliance in venous pulmonary 200.75 mL/mmHg
c`v Compliance in relaxed left ventricle 25 mL/mmHg
Rmv,open Resistance when the mitral valve is open 0.0025 mmHg sec/mL
Rav,open Resistance when the aortic valve is open 0.0025 mmHg sec/mL
Rsc1 Resistance between systemic aorta and finger arteries 0.4745 mmHg sec/mL
Rsc2 Resistance between systemic aorta and arterial systemic 0.25 mmHg sec/mL
Rspf

Resistance between finger and venous systemic compartment 9.75 mmHg sec/mL
Rrv Inflow resistance of the right ventricle 0.002502 mmHg sec/mL
Rpp Resistance in the peripheral region of the pulmonary circuit 0.1097 mmHg sec/mL
αrv Coefficient of Srv in the differential equation for Srv 0.003969 sec−2

γrv Coefficient of dSrv

dt in the differential equation for Srv 0.021125 sec−1

βrv Coefficient of H in the differential equation for Srv 0.01841 mmHg/sec
a Constant in the Gompertz function 3 mmHg/mL
b Constant in the Gompertz function 10 1
c Constant in the Gompertz function 3.415 sec−1

Em Minimum elastance value of the left heart 0.029 mmHg/mL

Tr,frac Quotient between Tr and T , i.e. Tr,frac =
Tr

T
0.15 1

Vd Unstressed blood volume in the left ventricle 10 mL
κ Constant in the Bazett’s formula 0.35 sec
Ca,O2 O2 concentration in arterial systemic blood 0.2 1
K Constant in the formula for the biochemical energy flow 5465.9 mL
M0 Metabolic rate in the systemic tissue region with zero workload 5.83 mL/sec
ρ Coefficient of W in MT = M0 + ρW exer 0.183 mL/(sec Watt)
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26 A. Reyes: Pulsatile cardiovascular dynamics.

Table 2. Controlled parameters

State Meaning Value UnitRest Exercise
H Heart rate 70/60 95/60 beat/sec
W Workload 0 50 Watt
Apesk Peskin’s constant 7.2276 12.25 mmHg sec/mL

In this model, the left ventricle is the source of pulse waves in the cardiovascular system. It is an important
factor in describing pulsatility of blood flow. Let us first describe relevant features of the left ventricular
pressure and volume during normal rest condition.

Starting at the relaxation phase, the pressure in the left ventricle, P`v drops to the level of the venous
pressure, Pvp. Then, the mitral valve opens which is the start of the filling process. P`v continues to decrease
in a short while and start to increase until it again reaches Pvp. Here, the filling process ends and the mitral
valve closes. At this point, we can measure the end-diastolic left ventricular pressure. P`v continues to increase
until it reaches the systemic aortic pressure, Psa. The aortic valve opens and the ejection process starts. P`v

continues to increase along with Psa and after some time it decreases to the same level of Psa in which the
aortic valve closes. This time, we can measure the end-systolic left ventricular pressure which is the end of
the ejection process. Then, P`v decreases to the level of Pvp and the cycle continues. To simulate the above
scenario we first need to determine four important time points for a complete heart cycle, namely, the time
when filling process starts, when it ends, when ejection process starts and when it ends. To find these time
points, we incorporated in the option for the odesolver a function called ‘Events’ (see Matlab for detatils). In
this function, we specify the four instances we want to determine. Fig. 2 shows the dynamics of left ventricular
(blue), venous (green) and aortic (red) pressures depicting the relevant points in a heart cycle. The simulation
runs for 1500 seconds and the plots are taken from the last two full heart cycle.
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Fig. 2. Left ventricular (blue), venous (green) and aortic (red) pressures showing the time points for start and end of
filling and ejection processes

Fig. 3 illustrates the computed left ventricular pressure (top panel) and volume (bottom panel) showing
its behavior during phases of isovolumetric contraction and isovolumetric relaxation. Notice that during iso-
volumetric contraction, the pressure in the left ventricle is increasing while volume remains constant. During
isovolumetric relaxation, pressure is decreasing while volume remains the same. The time points for these
phases are numerically obtained using the Events specified earlier. The simulations are taken from one of the
last complete pressure and volume cycles running for 1500 seconds.
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Fig. 3. Left ventricular pressure (top panel) and volume (bottom panel) depicting phases of isovolumetric contraction
and isovolumetric relaxation

Let us summarize the left ventricular dynamics by providing the pressure-volume diagram, see Fig. 4.
It depicts phases of a full heart cycle. At the end of ejection process, the pressure drops quickly while the
volume remains constant. This is the phase of isovolumic relaxation (I). Then the mitral valve opens and the
left ventricle is filled with blood, that is, phase of filling process (II). It is followed by a phase of isovolumetric
contraction characterized by increasing left ventricular pressure while volume is constant. Then, the aortic
valve opens and blood is propelled to the aorta with increasing pressure decreasing the volume in the left
ventricle. The aortic valve closes at a point when the aortic pressure exceeds the left ventricular pressure. This
completes the ejection phase (IV). Then the cycle continues. As in the previous plots, the red dots in the figure
are obtained numerically using the specified events.
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Fig. 4. Pressure-Volume diagram of the left ventricle showing the different phases in a complete heart cycle

Suppose at rest, heart rate is H = 70/60 beats per second and during exercise as in bicycle-ergometer
test with minimal workload of 50 W, H = 95/60. Using Eqs. (10), (12), and (13), we obtain the elastance
curves as depicted in Fig. 5. The blue and red dashed curves reflect the elastance at rest and exercise condition,
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respectively. As can be observed, increasing heart rate leads to increased maximum elastance value, decreased
in time for peak and smaller support of elastance curve.
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Fig. 5. Elastance function with varying heart rates

Now let us describe the reaction of the cardiovascular system under an imposed submaximal workload.
As before, let us assume a bicycle-ergometer exercise with a workload of 50 W. Fig. 6 provides the time
course of aortic (red) and left ventricular (blue) pressures during rest (dashed) and exercise (solid) conditions.
As expected, pressures are increased during exercise. Phase shift and increased pulsatility are also observable.
These are due to the modified time-varying elastance, which is dependent on heart rate as in previous section.
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Fig. 6. Time course of the aortic and left ventricular pressures during rest and exercise phases

For this model, we can also compute the mean pressure given by

Pmean = Pdias +
1
3

(Psys − Pdias) , (19)

where Pdias and Psys are the end-diastolic and end-systolic pressures, respectively, and Pmean denotes the
computed mean pressure[30]. End-systolic and end-diastolic pressures are specifed using the Events specified
above. In Fig. 7, we have the finger arterial pressure during rest (dashed) and exercise (solid) conditions. The
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red (dashed/solid) lines are the computed mean pressure using Eq. (19). Notice as well the increased pressure
and pulsatility during exercise state.
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Fig. 7. Time course of finger arterial pressure during rest and exercise phases

4 Conclusion

A large number of mathematical cardiovascular models have been investigated from different perspec-
tives depending on purposes and goals to be achieved. It vary from simple to complex and complicated models.
In this paper, we presented a lumped compartment model, sufficiently simple to contain all essential subsys-
tems such as arterial and venous pulmonary, left and right ventricles, and arterial and venous systemic com-
partments. However, it is complex enough to include heart rate dependent left ventricle elastance and capture
pulsatile blood flow that can be measured in finger arteries. In this model, an aorta compartment is included
to indicate pressure variations detected by baroreceptors which plays a role in describing regulation processes
acted upon by baroreceptor loop. The latter is responsible for the increased heart rate and maximum elastance
during exerise conditions and other stress-related activities imposed on the cardiovascular system.

An elaborate left ventricular dynamics is presented capturing its relevant physiological behaviour such as
phases of heart cycle including isovolumetric contraction and relaxation. In pulsating pressures, timing for end
of filling and end of ejection processes are numerically specified. This leads to determining end-diastolic and
end-systolic pressures from which mean arterial pressure can be obtained. Another feature of the model is its
capability of simulating exercise condition as in bicycle-ergometer by varying heart rate and other controlled
parameters. An application of the current model include the design of feedback control described by the
baroreceptor loop providing information on the transition dynamics of the cardiovascular system from rest to
exercise phase[10, 11].

Patient-specific information can be obtained by parameter estimation via solving inverse problem and
sensitivity analysis[1], given real-time data from performing bicycle ergometer test experiments. The current
pulsatile model can be used to investigate transition dynamics of cardiovascular system under orthostatic
stress. In particular, upper and lower parts of the arterial systemic and venous systemic compartments can
be incorporated giving room to the rib and hips compartment in which orthostatic stress induced by lower
body negative pressure can be studied. Furthermore, respiratory system and a brain compartment with the
corresponding control regulations can be further included to have a more holistic global pulsatile circulatory
model. Considering these regulatory mechanisms under several conditios, safer exercise protocols can be
designed for individuals at risk especially for cardiac rehabilitation.
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