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Macroscopic models of epilepsy can deliver surprisingly realistic EEG simulations. In the present study, a prolific series of models
is evaluated with regard to theoretical and computational concerns, and enhancements are developed. Specifically, we analyze three
aspects of the models: (1) Using dynamical systems analysis, we demonstrate and explain the presence of direct current potentials
in the simulated EEG that were previously undocumented. (2)We explain how the systemwas not ideally formulated for numerical
integration of stochastic differential equations. A reformulated system is developed to support proper methodology. (3)We explain
an unreported contradiction in the published model specification regarding the use of a mathematical reduction method. We then
use the method to reduce the number of equations and further improve the computational efficiency. The intent of our critique is
to enhance the evolution of macroscopic modeling of epilepsy and assist others who wish to explore this exciting class of models
further.

1. Introduction

Significant attention has been given to computational models
of epilepsy that simulate the electroencephalogram (EEG) at
the level of a neuronal population [1–4]. Such models are
referred to by various names such as macroscopic, neural
mass, and mean field. These models are capable of synthe-
sizing realistic EEG time series with far less computational
effort than that of microscopic models that operate at the
scale of single neurons. In addition to being efficient, low-
dimensional macroscopic models are also amenable to math-
ematical analysis methods that can be used to understand key
properties of the system being simulated.

Most macroscopic models used in computational neu-
roscience today are derived, to some extent, from one of
three seminal formulations: Freeman [5], Wilson and Cowan
[6], and Lopes da Silva et al. [7]. In epilepsy modeling, the
approach of Lopes da Silva et al. is particularly prominent
and has led to important hypotheses about epileptogenesis
and the characteristics of the epileptiform EEG [4].

Wendling et al. have been the most prolific in using
the basic approach of Lopes da Silva, with at least 17

different studies during the years 2000–2013. A key feature of
their approach is the incorporation of synaptic interactions
between specific groups of neurons.This permits the study of
a broad class of mechanisms for epileptogenesis that depend
on the levels of network excitation and inhibition. Most of
their models are direct extensions of the previous work of
Jansen et al. [8, 9] that modeled evoked response potentials
in human cortical columns.

The earliest model of Wendling et al. used the same
structure as Jansen et al. and many of the same parame-
ter values [10]. Wendling et al. qualitatively compared the
model to depth-EEG recordings from the human neocortex,
hippocampus, and amygdala of patients with temporal lobe
epilepsy (TLE) [10–17]. Other models adhered to the same
methodology but increased the overall complexity in order
to achieve additional dynamical behaviors [18–26].

In the present work, the modeling approach of Wendling
et al. is critiquedwith regard to theoretical and computational
concerns, and enhancements are developed. Specifically, we
analyze three aspects of the models: (1) Using dynamical
systems analysis, we demonstrate and explain the presence
of direct current potentials in the simulated EEG that were
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previously undocumented. (2) We explain how the system
was not ideally formulated for numerical integration of
stochastic differential equations. A reformulated system is
developed to support proper methodology. (3)We explain an
unreported contradiction in the published model specifica-
tion regarding the use of a mathematical reduction method.
We then use the method to reduce the number of equations
and further improve the computational efficiency.

2. Methods

2.1. Mathematical Model. A basic diagram of the earliest
model [10] is provided in Figure 1(a) and shows three
neuronal subgroups: excitatory pyramidal cells, excitatory
interneurons, and inhibitory interneurons.The present study
used an extended version containing four subgroups [18], as
shown in Figure 1(b), that contains an additional subgroup of
inhibitory interneurons.

Figure 1(c) shows a detailed diagram of the specific
computational components of the extended model. A sub-
group is a collection of similar but unconnected neurons
acting in parallel. Inputs and outputs are represented as
firing rates or pulse densities. For each subgroup, two
types of conversion blocks work together to transform the
input signal into an output signal. The first is a pulse-to-
voltage block that represents the process that occurs at a
neuronal synapse. An afferent pulse density is converted
to postsynaptic potentials (PSPs) that are either excitatory
(EPSPs) or inhibitory (IPSPs). Mathematically, this block is
a linear transfer function implemented using a differential
equation. The second conversion block is a voltage-to-pulse
block that translates the summed input voltages into a
single representative pulse density. This block is a nonlinear
algebraic sigmoidal function.

Subgroups are connected using multiplier constants,
labeled 𝐶

1
–𝐶
7
in Figure 1(c). These constants represent the

relative numbers of synaptic connections. Parameters specific
to each subgroup include average dendritic time constants
and average synaptic gains. The synaptic gains correspond to
the relative magnitudes of PSPs and have typically been the
only parameters that were studied.

The full equations are shown below, using the original
variable indexing [18], and Table 1 lists the model parameters:
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where 𝑝(𝑡) is a normally distributed random variable with a
mean of 90 and a variance of 30, 𝑎 = 100 s, 𝑏 = 50 s, 𝑔 =

350 s, 𝐶
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0
= 2.5 s−1, 𝑟 = 0.56mV−1. 𝐴, 𝐵, and

𝐺 represent average synaptic gains, the values of which are
chosen to yield one of several possible types of model output.
The model output is defined as 𝑦out = 𝑦

1
− 𝑦
2
− 𝑦
3
.

Dynamical systems analysis was performed, based on the
above equations, using an approach described previously [27]
for analysis of the initial model of Wendling et al. [10]. To
the best of our knowledge, the present study is the first to
perform the analysis on the extendedmodel [18]. Equilibrium
points were solved numerically usingMathematica (Wolfram
Research, Champaign, Illinois) and the MATLAB Optimiza-
tion Toolbox (The MathWorks, Natick, MA). Stability of
selected points was determined using the system Jacobian
matrix and computing the corresponding eigenvalues, all
using the MATLAB Optimization Toolbox.

2.2. Numerical Integration. All simulations were performed
using MATLAB (The MathWorks, Natick, MA). Numeri-
cal integration was done using a fixed-step forward Euler
method. Source code for simulations will be made avail-
able publicly on ModelDB (https://senselab.med.yale.edu/
modeldb/).

As noted in Results, certain simulations used a stochastic
forward Euler numerical integration method [28]. The only
equation that contains a random variable is (7). For the
purpose of stochastic numerical integration, we redefined
𝑝(𝑡) and (7) as follows:
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(11)

where ℎ is the Euler integration step size and 𝑟(𝑡) is a normally
distributed random variable with a mean of 0 and a variance
of 1. The variable 𝑟(𝑡) is introduced so that ℎ can be seen
as an explicit model parameter for a given simulation. We
have chosen a “reference” step size of 0.001, as used in
previous studies, such that both the stochastic and classical
implementations will be identical for ℎ = 0.001 sec.
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Figure 1: Core models. (a) Initial model [10] showing pyramidal (P) and interneuron (I) subgroups with either excitatory or inhibitory
projections. 𝑟(𝑡) is a random input. (b) Extended model [18]. (c) Detailed diagram of computational components for pyramidal cells (solid
lines), excitatory interneurons (dotted lines), and inhibitory interneurons (dashed lines). Pulse-to-voltage blocks are labeled “𝑝 → V”, and
voltage-to-pulse blocks are labeled “V → 𝑝”.The IPSP block is distinguished from the EPSP blocks by awaveform showing negative deflection.

Table 1: Model parameters fromWendling et al. [18].

Param. Interpretation Value
𝐴 Average excitatory synaptic gain 5mV
𝐵 Average slow inhibitory synaptic gain See Figure 2
𝐺 Average fast inhibitory synaptic gain See Figure 2
𝑎 Dendritic average time constant in the feedback excitatory loop 100 s−1

𝑏 Dendritic average time constant in the slow feedback inhibitory loop 50 s−1

𝑔 Somatic average time constant in the fast feedback inhibitory loop 350 s−1

𝐶
1
, 𝐶
2 Mean number of synaptic contacts in the excitatory feedback loop 135, 0.8 × 𝐶

1

𝐶
3
, 𝐶
4 Mean number of synaptic contacts in the slow feedback inhibitory loop 0.25 × 𝐶

1

𝐶
5
, 𝐶
6 Mean number of synaptic contacts in the fast feedback inhibitory loop 0.3 × 𝐶

1
, 0.1 × 𝐶

1

𝐶
7

Mean number of synaptic contacts between slow and fast inhibitory
interneurons 0.8 × 𝐶

1

3. Results

We analyze three aspects of the models: (1) Using dynamical
systems analysis, we demonstrate and explain the presence of
direct current potentials in the simulated EEG that were pre-
viously undocumented. (2) We explain how the system was
not ideally formulated for numerical integration of stochastic
differential equations. A reformulated system is developed to
support proper methodology. (3) We explain an unreported
contradiction in the published model specification regarding
the use of a mathematical reduction method. We then use
the method to reduce the number of equations and further
improve the computational efficiency.

3.1. DC Offset. Models are not expected to be perfect replica-
tions, but knowledge of the underlying inaccuracies is critical

to proper usage [29]. The model analyzed here exhibits a
nonzero mean potential that is different for each parameter
configuration. To the best of our knowledge, this has never
been reported in any studies by Wendling et al. This direct
current (DC) offset is demonstrated in Figure 2 which shows
a simulation similar to that of Wendling et al. [18]. Using
different parameter combinations, the simulation consisted
of a progression of five phases of behavior: (1) background
activity, (2) sporadic spiking, (3) sustained spiking, (4)
gamma activity, and (5) ictal activity. For each phase, the
simulation used a unique combination of values for the
parameters 𝐵 and 𝐺, while 𝐴 remained fixed with a value of
5. The inset of Figure 2 shows the values used for 𝐵 and 𝐺.

The DC offset was present in a predecessor model [9]
but did not appear in studies by Wendling et al. that were
based on that model.Through personal communication with
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Figure 2: Example of DC offset in the model. (Left) Recreation of simulation of five different dynamical behaviors shown in Wendling et al.
[18]. The inset shows values for parameters 𝐵 and 𝐺 that vary for each phase while 𝐴 is fixed at 5. (Right) A bifurcation diagram showing
the nullcline that predicts the DC offset based on the inhibitory gain, 𝐵, for three different values (8, 38, and 45). Filled circles are stable
equilibrium points that correspond to similar mean values in the simulated EEG on the left (dashed lines). Open circles indicate bifurcations
between stability and instability on the nullcline.Thedark line between the open circles represents a continuous region of unstable equilibrium
points.

the author, we learned that this DC potential was removed
from simulations by either applying a high-pass filter or
subtracting the mean value.

We used dynamical systems analysis to study the
observed DC offset values. To the best of our knowledge,
the present study is the first to perform such analysis on the
model. For an accessible treatment of dynamical systems the-
ory, see Strogatz [30]. For a specific discussion of the analysis
of neural models, see Milton et al. [31]. We computed the
equilibrium points for Phases 1–4, where only the inhibitory
gain 𝐵 was changed. Phase 5 was not studied because it
involved an additional parameter change for the inhibitory
gain𝐺. However, Phases 3 and 5 could be studied in a similar
manner.

Using the approach of Grimbert and Faugeras [27], we
derived the nullcline for the system �̇� = 𝑓(𝑌) = 0. The
equilibrium points were calculated by assigning �̇� = 0 and
rearranging the resulting algebraic equations as follows:
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Note that low-amplitude output fluctuations in the simula-
tion are due to the random drive 𝑝(𝑡). For the dynamical
systems analysis, the mean of 𝑝(𝑡) was used (𝑝 = 90). The
model output is defined as 𝑦out = 𝑦

1
− 𝑦
2
− 𝑦
3
. Substituting

this into the equations above yields the following combined
equation:
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Figure 2 (right) shows the nullcline for the system output
𝑦out as determined by the above equation. The nullcline
includes stable equilibrium points (filled circles) that cor-
respond to similar mean values in the simulated EEG (see
dashed lines). A continuous region of unstable equilibrium
points (dark line) is also shown in Figure 2 between two
bifurcations (open circles).

Table 2 lists the equilibrium points and their stabilities
for specific phases. Stability is based on the eigenvalues of
the system Jacobian matrix. For stable points, the real parts
of all eigenvalues are negative. For unstable points, at least
one eigenvalue has a positive real part. Tables 3, 4, and 5 list
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Table 2: Equilibrium points and their stabilities for specific phases.
𝑦out = 𝑦

1
− 𝑦
2
− 𝑦
3
. For each equilibrium point, 𝑦

5
= 𝑦
6
= 𝑦
7
= 𝑦
8
=

𝑦
9
= 0. Stability is based on eigenvalues in Tables 3, 4, and 5.

Phase 𝐵 Stability 𝑦out 𝑦
0

𝑦
1

𝑦
2

𝑦
3

𝑦
4

1 45
Stable –0.124 0.008 6.097 5.882 0.339 0.174

Unstable 2.526 0.031 11.777 8.962 0.290 0.266
Unstable 5.087 0.094 30.864 25.749 0.028 0.763

2 38
Stable 1.018 0.014 7.037 5.600 0.419 0.166

Unstable 1.781 0.022 8.553 6.358 0.415 0.188
Unstable 5.416 0.105 31.220 25.768 0.036 0.764

3 37 Unstable 5.466 0.106 31.254 25.750 0.037 0.763
4 8 Stable 10.004 0.226 31.500 19.258 2.238 0.571

Table 3: Eigenvalues for Phase 1, 𝐵 = 45.

𝑦out −0.124 2.53 5.09
Stability Stable Unstable Unstable
𝜆
0

−178.1 −241.4 −181.9

𝜆
1

−65.9 −60.7 −78.5

𝜆
2

−50.0 −50.0 −50.0

𝜆
3

−50.0 −50.0 −50.0

𝜆
4

−24.0 + 24.5𝑖 −30.3 −134.4 + 98.9𝑖

𝜆
5

−352.4 + 24.5𝑖 48.7 15.9 − 78.8𝑖

𝜆
6

−24.0 − 24.5𝑖 −99.5 − 156.0𝑖 −134.4 − 98.9𝑖

𝜆
7

−352.4 − 24.5𝑖 −358.7 − 42.7𝑖 −351.3 − 19.0𝑖

𝜆
8

−101.7 − 83.1𝑖 −99.5 + 156.0𝑖 15.9 + 78.8𝑖

𝜆
9

−101.7 + 83.1𝑖 −358.7 + 42.7𝑖 −351.3 + 19.0𝑖

Table 4: Eigenvalues for Phase 2, 𝐵 = 38.

𝑦out 1.02 1.78 5.42
Stability Stable Unstable Unstable
𝜆
0

−197.9 −216.7 −142.3

𝜆
1

−63.2 −61.8 −84.0

𝜆
2

−50.0 −50.0 −50.0

𝜆
3

−50.0 −50.0 −50.0

𝜆
4

−100.0 + 107.1𝑖 −25.0 −155.6 + 91.8𝑖

𝜆
5

−14.2 − 14.0𝑖 17.1 −351.5 − 21.4𝑖

𝜆
6

−100.0 − 107.1𝑖 −357.6 − 42.5𝑖 −155.6 − 91.8𝑖

𝜆
7

−355.2 − 35.9𝑖 −99.2 − 129.5𝑖 20.3 + 89.2𝑖

𝜆
8

−355.2 + 35.9𝑖 −99.2 + 129.5𝑖 20.3 − 89.2𝑖

𝜆
9

−14.2 + 14.0𝑖 −357.6 + 42.5𝑖 −351.5 + 21.4𝑖

the eigenvalues that correspond to the eight equilibrium
points listed in Table 2.The eigenvalues were computed from
the system Jacobianmatrix using theMATLAB Symbolic and
Optimization Toolboxes (The MathWorks, Natick, MA). For
all tables, 𝑦out corresponds to the ordinate (vertical axis) in
Figure 2 (right) and can be used to identify each unique
equilibrium point. For stable points, the real parts of all
eigenvalues are negative. For unstable points, at least one
eigenvalue has a positive real part.

In Figure 2 and Table 2, it can be seen that Phases 1 and 2
each have one stable and two unstable equilibrium points. As

Table 5: Eigenvalues for Phase 3 (𝐵 = 37) and Phase 4 (𝐵 = 8).

Phase 3
𝐵 = 37

Phase 4
𝐵 = 8

𝑦out 5.47 10.00
Stability Stable Unstable
𝜆
0 −137.8 −172.0

𝜆
1 −84.7 −59.3

𝜆
2 −50.0 −50.0

𝜆
3 −50.0 −50.0

𝜆
4 −157.9 + 91.9𝑖 −352.2 + 23.6𝑖

𝜆
5 −351.6 − 21.9𝑖 −32.6 + 9.8𝑖

𝜆
6 −157.9 − 91.9𝑖 −352.2 − 23.6𝑖

𝜆
7 20.7 + 90.2𝑖 −99.5 − 77.1𝑖

𝜆
8 20.7 − 90.2𝑖 −32.6 − 9.8𝑖

𝜆
9 −351.6 + 21.9𝑖 −99.5 + 77.1𝑖

𝐵 decreases, a bifurcation occurs at 𝐵 = 37.3, where a stable
point and one unstable point both disappear. This saddle-
node bifurcation corresponds to the emergence of a stable
limit cycle that is present in Phase 3, where one unstable
equilibrium point remains. As 𝐵 decreases further, another
bifurcation occurs at which the limit cycle disappears, and
one stable equilibrium point remains. We determined that
this bifurcation occurs in the range 9.21 < 𝐵 < 9.22, based
on a systematic stability analysis of equilibrium points in that
region.

Of particular interest in the above analysis is the DC
offset that is different for each phase. High-pass filtering is
commonly used in EEG acquisition to eliminate DC and
improve dynamic range. DC offset in the physiological EEG
is still poorly understood, but studies have shown that it
coincides with ictal activity in some circumstances. Contrary
to the simulation in Figure 2, most studies show that the
shift is invariably negative with respect to the baseline [32–
35] though the opposite has also been observed [36]. Of these
studies, the maximum shift reported was 2.3mV, in contrast
to a shift of 10mV in the simulations.

Clearly, the model was not designed to accurately sim-
ulate the DC shift because electrochemical effects are not
directly accounted for. Electrochemical changes are the most
likely mechanism responsible for the DC offset that is
seen in the EEG. To the best of our knowledge, only one
epilepsy model has specifically addressed EEG offset [34, 35].
However, that model is not based on physiology and does
not specifically account for electrochemical dynamics. In fact,
the authors state that the model output was circumstantially
chosen as the sum of two state variables because of its visual
resemblance to the EEG [35]. Furthermore, the study does not
suggest any physiological significance of the DC offset.

Note that Labyt et al. [22] described studying what
they called “stability” properties for a significantly more
complex model with twelve neuronal subgroups. However,
that analysis was a Monte Carlo procedure in which the term
“stable” was used to distinguish nonictal behavior from ictal
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Figure 3: Examples of using the 4th-order Runge-Kutta method, as in Wendling et al. [18]. (a) For integration step size of 1ms, the variance
(𝜎2) of the output is 0.0751. (b) For integration step size of 0.1ms, 𝜎2 is 0.0065. (c) For integration step size of 0.01ms, 𝜎2 is 0.0006. Variances
were computed using 10 seconds of output. Model parameters: 𝐴 = 5, 𝐵 = 40, and 𝐺 = 20.

behavior. It did not address the DC offset, and it was not an
analysis of dynamical stability.

3.2. Numerical Integration. The literature indicates that the
model has historically been simulated as a set of ordinary
differential equations. This was verified by source code that
is publicly available on ModelDB (https://senselab.med.yale
.edu/modeldb/). Aproblemarises because the systemactually
consists of stochastic differential equations (SDEs) due to
the inclusion of the random variable 𝑝(𝑡) in (7). Classical
numerical integration methods are not appropriate for SDEs
because they scale random variables by the integration step
size. For a practical introduction to SDEs, see [28, 37, 38].

An undesirable consequence is that, as the integration
step size becomes smaller (e.g., 1ms, 0.1ms, and 0.01ms), the
accuracy of the simulated output actually decreases. Figure 3
shows examples of simulating the model with a 4th-order
Runge-Kutta method, as described in Wendling et al. [18],
using different integration step sizes. Notice that the relative
peak-to-peak amplitude and variance of the signal continue
to decrease as the integration step size decreases, instead of
converging to stable values. The variance actually changes
by the same order of magnitude as the step size, suggesting
a direct relationship between the two. The graphs show 1-
second simulations in order to visually compare the similarity
in waveform shapes. However, the variances were calculated
using 10-second simulations in order to obtain values that
were consistent across multiple simulations for the same step
size.

We addressed the issue by reformulating (7) such that the
stochastic term is not scaled by the integration step size (see
Section 2). Figure 4 shows examples of using this approach.
Using this revised formulation, there is still a slight decrease
in variance, but it is greatly improved in comparison to
Figure 3. Note that each simulation in Figure 4 is a unique
solution because each change in step size involves a different

number of random input samples. For a step size of 1ms, the
simulations in Figures 3 and 4 are identical. This is due to a
careful reformulation of the equations prior to implementing
the SDE numerical method. In the following section, we will
provide the reformulation in the context of the full set of
equations. Technically, all of the simulations published by
Wendling et al. could be duplicated using this approach.

3.3. Equation Reduction. Lastly, we present a discrepancy in
the published models that, to the best of our knowledge,
has never been addressed. In Wendling et al. [18], the
structure of themodel can be difficult to interpret because the
mathematical definition strayed from the actual physiology
being modeled. As described in Methods, each PSP block
translates into one differential equation. A careful reading
of the 2002 article reveals seven PSP blocks but only five
differential equations. The equations actually agreed with an
earlier version of the block diagram in Wendling et al. [10],
but that diagram was not consistent with the physiological
interpretation of the PSP block. Ironically, that diagram was
based on earlier studies that also had the same inconsistency
[8, 9]. The change that occurred in these earlier studies was
that the two conversion blocks within each subgroup were
artificially separated.This simplified themodel such thatmul-
tiple subgroups could share the same block. Specifically, the
excitatory interneuron group and the inhibitory interneuron
group were revised so as to share the same PSP conversion
block. Figure 5 compares a physiologically accurate block
diagram with the modified version.

The reduction is reasonable considering that both sub-
groups share the same input and that the PSP block is
modeled as a linear transfer function. The end result is a
reduction in the required number of equations. For unknown
reasons, a similar reductionwas not applied to the dual output
paths from inhibitory interneuronswhose outputwas defined
as 𝑦
4
. Such a reduction would increase the efficiency of
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Figure 4: Examples of using forward Euler for SDEs. (a) For integration step size of 1ms, the variance (𝜎2) of the output is 0.0779. (b) For
integration step size of 0.1ms, 𝜎2 is 0.0655. (c) For integration step size of 0.01ms, 𝜎2 is 0.0621. Variances were computed using 10 seconds of
output. Model parameters: 𝐴 = 5, 𝐵 = 40, and 𝐺 = 20.
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Figure 5:Mathematically equivalentmodels. (a) Jansen et al. [8] are physiologically accuratewith one PSP block for each input into a neuronal
subgroup. The same approach was used in Wendling et al. but contradicts the equations. (b) The structure was changed in Jansen and Rit
[9] such that two neuronal subgroups share a common PSP block. Cell groups: pyramidal cells (solid lines), excitatory interneurons (dotted
lines), and inhibitory interneurons (dashed lines). The EPSP block is shown with dash-dotted lines to indicate that it corresponds to both the
excitatory and inhibitory EPSP blocks in (a).

the formulation further. Figure 6 shows this reduction in
which the former 𝑦

4
has been renamed as 𝑦

2
, and the IPSP

block for the former 𝑦
2
has been removed.

A reduced set of equations is provided below that contains
three major revisions. First, the input to the pyramidal cells
now uses the multiplier 𝐶

4
(see the equation for the new �̇�

4
).

Second, the variables formerly named 𝑦
4
and 𝑦

9
have been

renamed as 𝑦
2
and 𝑦

6
, respectively. Third, we have separated

the stochastic and deterministic terms to enable the proper
use of numerical integrationmethods as described earlier (see
the equation for the new �̇�

5
). The complete system is defined

as follows:

�̇�
0
(𝑡) = 𝑦

4
, (14)

�̇�
1
(𝑡) = 𝑦

5
, (15)

�̇�
2
(𝑡) = 𝑦

6
, (16)

�̇�
3
(𝑡) = 𝑦

7
, (17)

�̇�
4
(𝑡) = 𝐴𝑎𝑆 [𝑦

1
(𝑡) − 𝐶

4
𝑦
2
(𝑡) − 𝑦

3
(𝑡)] − 2𝑎𝑦

4
(𝑡)

− 𝑎
2
𝑦
0
(𝑡) ,

(18)

�̇�
5
(𝑡) = √0.001𝐴𝑎𝜎

2
𝑟 (𝑡)

+ (𝐴𝑎 (𝑚 + 𝐶
2
𝑆 [𝐶
1
𝑦
0
(𝑡)]) − 2𝑎𝑦

5
(𝑡) − 𝑎

2
𝑦
1
(𝑡)) ,

(19)

�̇�
6
(𝑡) = 𝐵𝑏𝑆 [𝐶

3
𝑦
0
(𝑡)] − 2𝑏𝑦

6
(𝑡) − 𝑏

2
𝑦
2
(𝑡) , (20)

�̇�
7
(𝑡) = 𝐺𝑔𝐶

7
𝑆 [𝐶
5
𝑦
0
(𝑡) − 𝐶

6
𝑦
4
(𝑡)] − 2𝑔𝑦

7
(𝑡)

− 𝑔
2
𝑦
3
(𝑡) ,

(21)

where 𝑟(𝑡) is a normally distributed random variable with a
mean of 0 and a variance of 1, 𝜎2 is the desired input variance,
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Figure 6: Revised model with additional mathematical reduction. The former 𝑦
4
has been renamed as 𝑦

2
, and the IPSP block for the former

𝑦
2
has been removed.

and𝑚 is the desired input mean. We repeated the simulation
shown in Figure 2 and confirmed that the results are identical.

4. Discussion

We critiqued a prolific computational modeling approach
that has been used for the study of epilepsy. We evaluated
three aspects of the models with regard to theoretical and
computational concerns, and we developed enhancements to
the model formulation. None of the issues that were raised
invalidate the published results. However, we feel they are
important considerations for other researchers to utilize the
models effectively.

First, we demonstrated that a previously unreported DC
offset is present in the model and that the offset varies for
different parameter configurations. As explained previously,
the presence of a DC offset is a well-known characteristic of
the physiological EEG that is typically ignored. However, the
model was not designed to incorporate any supposed mech-
anism for this phenomenon. Though the model produces an
output that is interpreted as a voltage, the reactive-diffusive
process of extracellular ion flow is in no way described by the
system.We used dynamical systems analysis to show how the
DC offset in the model can be predicted from the equations.
Though another model has specifically addressed DC offset
[35], no physiological significance was suggested. Future
work can explore whether the model correctly describes the
phenomenon that is observed in physiological systems.

Second, we described how numerical integration meth-
ods may significantly affect the results. Using the pub-
lished method, the voltage amplitude of the simulated EEG
was greatly affected by the integration step size. Methods
appropriate for SDEs require a separation of stochastic and
deterministic terms. From a practical perspective, this affects
whether results are reproducible by other researchers. We
provided a reformulation of the equations in order to separate

the stochastic and deterministic terms, and we described
how this formulation would be implemented using a forward
Euler integration method.

Note that there are additional numerical methods avail-
able for SDEs. For example, a stochastic Runge-Kuttamethod
exists [28], but it is only applicable when the random variable
is multiplicative with respect to a state variable. In the
present system, the term with the random variable does not
contain a state variable. Two significantly different integration
approaches can be found in [39, 40]. The latter study is
actually based on the EEG model in [9]. However, these
approaches cannot be compared directly to classical methods
in the same manner as we have done here. Future work
can evaluate the efficiency of these alternative integration
methods for the present model.

Third, we discussed a mathematical reduction that led to
a contradiction between system diagrams and the equations
in the literature. We further proposed a modification to
improve the efficiency of the equations by applying the same
mathematical reduction to a different part of the model.
Though the reduction is mathematically equivalent to the
longer form, it is an important conceptual modification
because it contradicts actual physiological structure.

The intent of our critique is to enhance the evolution
of macroscopic modeling of epilepsy and assist others who
wish to explore this exciting class of models further. Just as
modeling is only one research tool amongmany,macroscopic
modeling is merely one of many levels of modeling that
are needed to study a system like the brain that exhibits
complexities at many temporal and spatial scales. Micro-
scopic models of large networks may require significant
computing power, but macroscopic models can usually be
simulated using common office computing equipment. As
we have demonstrated here, low-dimensional models also
allow for rigorous mathematical analysis in order to better
understand the mechanisms behind dynamical behavior.








