
Knowledge-Based Systems 76 (2015) 240–255
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys

Storing OWL ontologies in object-oriented databases
http://dx.doi.org/10.1016/j.knosys.2014.12.020
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel./fax: +86 24 83681582.
E-mail address: mazongmin@ise.neu.edu.cn (Z.M. Ma).

Fu Zhang, Z.M. Ma ⇑, Weijun Li
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
a r t i c l e i n f o

Article history:
Received 21 July 2014
Received in revised form 15 December 2014
Accepted 17 December 2014
Available online 2 January 2015

Keywords:
OWL
Ontology
Object-oriented database
Storage
Query
a b s t r a c t

The Semantic Web uses ontological descriptions, in particularly Web Ontology Language OWL, as a uni-
versal medium to formally describe and exchange knowledge of various domains. Currently, many OWL
ontologies for different domains come into being successively. Therefore, how to store OWL ontologies
becomes one of ordinary needs of the Semantic Web. Based on the efficient storage mechanism of
object-oriented databases, they may be used to store OWL ontologies for realizing the management of
large amounts of knowledge in the Semantic Web.

To this end, the main objective of this paper is to investigate how to store OWL ontologies in object-
oriented databases, and we propose a formal approach and develop a prototype tool for storing OWL
ontologies in object-oriented databases. Firstly, after giving a complete formal definition of OWL ontolo-
gies, we propose an overall architecture of storing OWL ontologies in object-oriented databases. Based on
the architecture, we further give storage rules and explain how to store OWL ontologies in object-oriented
databases with a running example in detail. The correctness and quality of the storage approach are
proved and analyzed. Finally, we implement a prototype tool which can store OWL ontologies in a widely
used open source object database db4o. Also, a query interface is developed in the prototype tool for que-
rying the stored OWL ontologies. The storage and query examples are provided to show that the approach
is feasible and the tool is efficient.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Ontologies, a cornerstone of the Semantic Web, can enable
shared, explicit and formal descriptions of knowledge [7,9]. Cur-
rently, ontologies are increasingly used in many application
domains such as information systems, schema integration, and
the Semantic Web [29]. Lots of ontologies have been created and
real ontologies tend to become very large to huge (e.g., in the life
sciences there are some very large ontologies such as FMA, AERO
and NBO ontologies) [1,27]. Therefore, one problem is considered
that has arisen from practical needs: namely, efficient storage of
ontologies.

In general, there are several possible approaches to store ontol-
ogies [1,3,13,36]. One is to use file systems to store ontologies,
while the problem with this approach is that the file systems do
not provide scalability or query facility. Moreover, the database
research community has successfully developed a wide theory cor-
pus and a mature and efficient technology to deal with large and
persistent amounts of information. In this case, the well-known
relational, object or object-relational databases may be used to
store ontologies.

Currently, there are some proposals for storing ontologies in
relational databases [1,3,13,17,28,34,35,40]. Moreover, in [6], ontol-
ogies are stored in object-relational databases. Notice that, the
ontologies mentioned in these approaches are relatively light-
weight and are represented in OWL 1. OWL 1 is the Web Ontology
Language developed by the W3C Web Ontology Working Group
and published in 2004 (referred to hereafter as ‘‘OWL 1’’) [23].
However, a practical experience with OWL 1 has shown that it
lacks several constructs for modeling complex domains [14]. The
improvements of OWL 1, initially performed by some group of its
users, have led to more expressive OWL 2 that is still allows for
complete and decidable computing [14,27]. Currently, many ontol-
ogies are represented in OWL 2 [14,27,36]. Accordingly, efficient
storage of OWL 2 ontologies is necessary for the Semantic Web.

Although there are some approaches for storing OWL 1 ontolo-
gies in relational and object-relational databases as mentioned
above, and also there is an approach for storing ontologies
described in OWL 2 metamodels to relational database schemas
[33,36]. The ways for storing OWL 2 ontologies in object-oriented
databases still do not exist. As mentioned in [6], storing ontologies
in relational databases is less straightforward than storing

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.12.020&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.12.020
mailto:mazongmin@ise.neu.edu.cn
http://dx.doi.org/10.1016/j.knosys.2014.12.020
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255 241
ontologies in object databases, because relational databases do not
provide support for many constructs of ontologies, e.g., class inher-
itance, object properties, and cardinalities. In particular, object-
oriented databases are designed to model complex objects and
relationships in real-world applications [10,25]. Therefore,
object-oriented databases may be used to store OWL 2 ontologies
for realizing the efficient management of large amounts of knowl-
edge in the Semantic Web.

To this end, the main objective of this paper is to investigate
how to store OWL 2 ontologies in object-oriented databases, and
we propose a complete approach and develop a prototype tool
to store OWL 2 ontologies in object-oriented databases, including:

� After giving a complete formal definition of OWL 2 ontologies,
we propose an overall architecture of storing OWL 2 ontologies
in object-oriented databases.
� Based on the architecture, we further propose storage rules and

explain how to store OWL 2 ontologies in object-oriented
databases with a running example in detail. Also, the correctness
and quality of the storage approach are proved and analyzed.
� Finally, we implement a prototype tool which can store OWL 2

ontologies in object-oriented database db4o [26], which is a
widely used open source object database recommended by
Object-oriented Database Management Group (ODMG) [10].
Also, a query interface is developed in the prototype tool for
querying the stored OWL 2 ontologies. The storage and query
examples are provided to show that the approach is feasible
and the tool is efficient.

The remainder of this paper is organized as follows: Section 2
introduces some preliminaries, and proposes a formal definition
of OWL 2 ontologies. Section 3 proposes a formal approach for stor-
ing OWL 2 ontologies in object-oriented databases and develops a
prototype storage tool. Section 4 introduces the related work.
Section 5 shows the conclusion.
2. OWL 2 ontologies and object-oriented databases

In this section, some preliminaries on OWL 2 ontologies and
object-oriented databases are introduced. The characteristics of
OWL 2 are summarized and a formal definition of OWL 2 ontolo-
gies is presented.
2.1. OWL 2 ontologies

Ontologies are formalized vocabularies of terms, often cover-
ing a specific domain and shared by a community of users [9].
Ontologies can be defined by ontology languages such as RDFS,
DAML + OIL, or OWL [16]. The Web Ontology language OWL [23],
which is developed by W3C Web Ontology Working Group and
published in 2004 (referred to hereafter as ‘‘OWL 1’’), is to be
de facto standard for ontologies. OWL 1 was mainly focused on
constructs for expressing information about classes and individu-
als, and exhibited some weakness regarding expressiveness for
properties. OWL 2 is an extension and revision of OWL 1
[14,27]. OWL 2 adds several new features to OWL 1, some of
the new features are syntactic sugar (e.g., disjoint union of classes)
while others offer new expressivity, including: increased expres-
sive power for properties, simple metamodeling capabilities, extended
support for datatypes, extended annotation capabilities, and other
innovations and minor features.

Table 1 gives the syntax of OWL 1. OWL 2 inherits OWL 1 lan-
guage features and adds several new features to OWL 1. Table 2
further provides a summary of the main new features with
examples. Here, we show some examples and comments to recon-
cile an easy understandable illustration for each feature.

Moreover, the semantics for OWL 1 and OWL 2 are given based
on Description Logics [8,27] (Description logics, which are a family
of knowledge representation languages that are widely used in
ontological modeling, are the logical underpinnings of OWL 1
and OWL 2). The semantics allow humans and computer systems
to exchange ontologies without ambiguity as to their meaning,
and also make it possible to use logical deduction to infer addi-
tional information from the facts stated explicitly in an ontology.
The detailed syntax and semantics for OWL 1 and OWL 2 can be
found at [23,27].

An ontology formulated in OWL 2 language is called OWL 2
ontology. In the following we present a formal definition of OWL
2 ontologies by summarizing the characteristics of OWL 2
ontologies.

Definition 1. (OWL 2 ontologies). An OWL 2 ontology can be
formally defined as a tuple O ¼ fI ;P;X ;D;Ag:

� I is a set of individuals; Each individual is an instance of a class,
and it may be an abstract individual or a concrete individual as
mentioned in Tables 1 and 2;
� P is a set of properties; A property can be classified into two

kinds of properties: object properties P and datatype properties
T , the former link individuals to individuals and the later link
individuals to data values;
� X is a set of classes; X ;P and I form the primitive terms of an

ontology, e.g., a class Person can be used to represent the set
of all people, the object property parentOf can be used to repre-
sent the parent–child relationship, and the individual Peter can
be used to represent a particular person called Peter;
� P is a set of data range identifier s; Each data range identifier is a

predefined XML Schema datatype;
� A is a set of axioms defined over I t P t X t D as shown in

Tables 1 and 2.

The semantics for OWL 2 ontologies can be given based on the
interpretations of Description Logics [8,23,27]. An OWL 2 ontology
O is satisfied in an interpretation if all axioms in O are satisfied in
the interpretation, and in this case we say that the interpretation is
a model of O.

The Definition 1 summarizes the main notions of OWL 2 ontol-
ogies. However, it should be noted that we do not expect this def-
inition to become a universal and standard definition, because we
understand that a universal ontology definition is difficult since the
different application requirements. All of the notions of OWL 2
ontologies as mentioned in Definition 1 (i.e., Tables 1 and 2) will
be stored in object-oriented databases in the subsequent sections.

2.2. Object-oriented databases

As mentioned in [10,25], an object-oriented database (OODB) is
basically a set of declarations of classes. A class declaration
depicts several parts of objects: structure (attribute, and relation-
ship to other objects like association), behavior (a set of opera-
tions) and inheritance. A class, called subclass, is produced from
another class, called superclass by means of inheriting all attri-
butes and methods of the superclass, overriding some attributes
and methods of the superclass, and defining some new attributes
and methods. Any object belonging to the subclass must belong
to the superclass.

Here we begin with an example in [25] to further explain the
class declarations in OODBs.

Table 1
OWL 1 syntax and the corresponding Description Logic (DL) syntax.

OWL 1 syntax DL syntax Examples and comments

Class descriptions
C, which is a URIref of a class C Student //Student is defined as a class
owl:Thing > // It is a top class
owl:Nothing ? // It is a bottom class
intersectionOf ðC1 . . . CnÞ C1 u . . . u Cn intersectionOf (Student Person) () Student u Person
unionOf ðC1 . . . CnÞ C1 t . . . t Cn unionOf (Student Teacher) () Student t Teacher
complementOf (CÞ :C complementOf (Student) () :Student
oneOf ðw1 . . . wnÞ {w1 . . . wn} oneOf (Monday Tuesday . . .)
restriction ðP someValuesFrom ðEÞÞ 9P.E restriction (hasChild someValuesFrom (Man))
restriction ðP allValuesFrom ðEÞÞ 8P.E restriction (hasChild allValuesFrom (Woman))
restriction ðP hasValue ðEÞÞ 9P. {w} restriction (hasChild hasValue (John))
restriction ðP minCardinality ðnÞÞ P n P restriction (hasChild minCardinality (1))
restriction ðP maxCardinality ðnÞÞ 6 n P restriction (hasChild maxCardinality (3))
restriction ðP Cardinality ðnÞÞ ¼ n P restriction (hasChild cardinality (2))
ObjectProperty ðRÞ R isProducedBy
DatatypeProperty ðTÞ T hasAge
AbstractIndividual ðoÞ o s1 // if s1 is defined as a student
DatatypeIndividual ðvÞ v 5^^xsd:integer
Datatype ðDÞ D xsd:integer, xsd:string, and so on
Facets ðFiÞ P 2 fR; Tg E 2 fC;Dg w 2 fo; vg Fi Fi are the constraining facets, e.g., minInclusive and

minInclusive

Class axioms
Class ðC partial C1 . . . CnÞ C v C1 u . . . u Cn Class (hpPrinter partial hpProduct Printer)
Class ðC complete C1 . . . CnÞ C � C1 u . . . u Cn Class (Woman complete Person Female)
SubClassOf ðC1C2Þ C1 v C2 SubClassOf (Woman Person)
EquivalentClasses ðC1 . . . CnÞ C1 � . . . � Cn EquivalentClasses (Faculty AcademicStaffMember)
EnumeratedClass ðCw1 . . . wnÞ C � {w1 . . . wn} EnumeratedClass (DaysOfTheWeek Sunday Monday . . .)

Property axioms
DatatypeProperty (T domain ðC1Þ. . .domain ðCnÞ range ðD1Þ. . .range
ðDnÞ [Functional])

P 1T v Ci> v 8T:Di> v6 1T DatatypeProperty (hasAge domain (Student) range (xsd:integer)
[Functional])

ObjectProperty (R ObjectProperty (hasSameGradeAs
domain ðC1Þ. . .domain ðCnÞ P1R v Ci domain (student)
range ðC1Þ. . .range ðCnÞ > v 8R. Ci range (student)
[Functional] > v6 1R [Symmetric]
[inverseOfðR0Þ] R ¼ ðR0Þ� [Transitive]
[Symmetric] R ¼ R� . . .)
[InverseFunctional] > v6 1R�

[Transitive]) Trans ðRÞ
SubPropertyOf ðE1; E2Þ E1 v E2 SubPropertyOf (isTaughtBy involves)
EquivalentProperties ðE1 . . . EnÞ E1 � . . . � En EquivalentProperties (lecturesIn teaches)

Individual axioms
Individual (o type ðC1Þ. . .type ðCnÞ o 2 Ci Individual ðs1 type (Student)
value ðR1; o1Þ. . .value ðRn; onÞ ðo; oiÞ 2 Ri value (hasSameGradeAs, s2)
value ðT1;v1Þ. . .value ðTn;vnÞ) ðo; v iÞ 2 Ti value (hasAge, 20^^xsd:integer))
SameIndividual ðo1 . . . onÞ o1 ¼ . . . ¼ on SameIndividual ðs1John)
DifferentIndividuals ðo1 . . . onÞ oi – oji – j DifferentIndividuals ðs1s2Þ

242 F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255

The Fig. 1 is the diagram of an OODB. The declarations of several
classes are defined as follows:
Class Book {
 Class Author {

title: String;
 name: String;

ISBN: Int;
 authorNo: Int;

publishedBy: Publisher inverse

publish;

write: Book inverse
writtenBy;
writtenBy: Author inverse write;
 }

}

. . .
Class ArtBook isa Book {

style: String;

}

In the Book example we have attributes title, ISBN, publishedBy,
and writtenBy. Book and Publisher is connected with 1:N associa-
tion. An ArtBook is a Book, therefore the ArtBook class is a subclass
of Book class. Currently, the OODBs can be stored in db4o database
[26], which is a widely used open source object database recom-
mended by Object-oriented Database Management Group (ODMG)
[10].
For a comprehensive review of OODBs, please refer to [10,25].
3. Storage of OWL 2 ontologies in object-oriented databases

In this section, we propose an approach and develop a tool to
store OWL 2 ontologies in object-oriented databases, including:

(i) We propose an overall architecture of storage approach, and
illustrate the architecture (see Section 3.1);

(ii) Based on the architecture, we further give storage rules in
detail and begin with an example to explain how to store
OWL 2 ontologies in object-oriented databases (see Section
3.2); Also, we prove the correctness of the approach (see Sec-
tion 3.3);

(iii) We implement a prototype tool called OWL2OODB which can
automatically store OWL 2 ontologies in object-oriented dat-
abases, and also we develop a query interface for querying the
stored OWL 2 ontologies in the prototype tool (see Section
3.4);

(iv) Finally, we make a discussion and analysis about the
approach and tool, including the storage in the semantics
level and other issues (see Section 3.5).

Table 2
The new features of OWL 2 syntax and the corresponding Description Logic (DL) syntax.

OWL 2 new features DL syntax Examples and comments

Syntactic sugar
DisjointUnion ðC C1 . . . CnÞ C ¼ C1 t . . . t Cn DisjointUnion (CarDoor FrontDoor RearDoor TrunkDoor)

Ci u Cj v? // A CarDoor is exclusively either a FrontDoor, a RearDoor or a TrunkDoor and
not more than one of themi – j i; j 2 f1; . . . ;ng

DisjointClasses ðC1 . . . CnÞ Ci u Cj v? DisjointClasses (LeftLung RightLung)
i – j i; j 2 f1; . . . ;ng // Nothing can be both a LeftLung and a RightLung

NegativeObjectPropertyAssertion
ðR o1 o2Þ

ðo1; o2Þ R R NegativeObjectPropertyAssertion (livesIn ThisPatient IleDeFrance)

// ThisPatient does not live in the IleDeFrance region
NegativeDataPropertyAssertion
ðT o vÞ

ðo;vÞ R T NegativeDataPropertyAssertion (hasAge ThisPatient 5^^xsd:integer)

// ThisPatient is not five years old

New constructs for properties
ObjectHasSelf ðRÞ fojðo; oÞ 2 R} SubClassOf (AutoRegulatingProcess ObjectHasSelf (regulate))

//Auto-regulating processes regulate themselves
// The feature is called self restriction or local reflexivity, which denotes:
classes of objects that are related to themselves by a given property

ObjectMinCardinality ðn R½C�Þ P n R. C ObjectMinCardinality (1 hasPart [Door])
// Class of objects having at least 1 Door

ObjectMaxCardinality ðn R½C�Þ 6 n R. C ObjectMaxCardinality (5 hasPart [Door])
// Class of objects having at most 5 Door

ObjectExactCardinality ðn R½C�Þ ¼ n R:C ObjectExactCardinality (2 hasPart [RearDoor])
// Class of objects having exactly 2 RearDoor

DataMinCardinality ðn T½D�Þ P n T:D DataMinCardinality (1 hasName [xsd:string])
// Each individual has at least one Name

DataMaxCardinality ðn T½D�Þ 6 n T:D DataMaxCardinality (1 hasSSN [xsd:string])
// Each individual has at most one Social Security Number

DataExactCardinality ðn T½D�Þ ¼ n T:D DataExactCardinality (1 hasNumber [xsd:string])
// Each individual has exactly one Number

ReflexiveObjectProperty ðRÞ 8o! ðo; oÞ 2 R ReflexiveObjectProperty (sameBloodGroup)
// Everything has the same blood group as itself
// The feature is called global reflexivity, which denotes: the object property
holds for all individuals

IrreflexiveObjectProperty ðRÞ 8o! ðo; oÞ R R IrreflexiveObjectProperty (flowsInto)
// Nothing can flow into itself

AsymmetricObjectProperty ðRÞ R – R� AsymmetricObjectProperty (proper_part_of)
// The property proper_part_of is asymmetric

SubPropertyOf
(ObjectPropertyChain
ðR1 . . . RnÞRÞ

R1ðo; o1Þ � . . . � Rnðon�1; onÞ ! Rðo; onÞ SubPropertyOf (ObjectPropertyChain (locatedIn partOf) locatedIn)

// If x is located in y and y is part of z then x is located in z, for example a
disease located in a part is located in the whole

DisjointObjectProperties
ðR1 . . . RnÞ

Ri u Rj v? DisjointObjectProperties (connectedTo contiguousWith)

i – j i; j 2 f1; . . . ;ng // connectedTo and contiguousWith are exclusive properties
DisjointDataProperties ðT1 . . . TnÞ Ti u Tj v? DisjointDataProperties (startTime endTime)

i – ji; j 2 f1; . . . ;ng // Start time of something, e.g., surgery, must be different from its end time
HasKey ðCðR1 . . . RnÞjðT1 . . . TnÞÞ 8o1; o2; o 2 C : Riðo1; oÞ and Riðo2; oÞ ! o1 ¼ o2; or

8o1; o2 2 C : Tiðo1; vÞ and Tiðo2; vÞ ! o1 ¼ o2

HasKey (RegisteredPatient hasWaitingListN)

// Each registered patient is uniquely identified by his waiting list number
HasKey (Transplantation donorId recipientId ofOrgan)
// Each Transplantation is uniquely identified by a donor, a recipient, and an
organ

Extended datatype capabilities
DatatypeRestriction
ðDF1d1 . . . FndnÞ

D u ðF1 v1Þ u . . . u ðFnvnÞ DatatypeRestriction (xsd:integer minInclusive 18)

// new datatype with a lower bound of 18 on the XML Schema datatype
xsd:integer

DatatypeDefinition ðDiDjÞ Di ¼ Dj DatatypeDefinition (adultAge DatatypeRestriction (xsd:integer minInclusive
18))
// An adult age is defined by using a lower bound of 18 with the XML Schema
datatype xsd:integer

DataIntersectionOf ðD1 . . . DnÞ D1 u . . . u Dn DataIntersectionOf (xsd:nonNegativeInteger xsd:nonPositiveInteger)
DataUnionOf ðD1 . . . DnÞ D1 t . . . t Dn DataUnionOf (xsd:string xsd:integer)
DataComplementOf ðDÞ :D DataComplementOf (xsd:positiveInteger)

Enhanced capabilities and other innovations and features
Other features such as punning

and annotations, declarations
// Punning allows different uses of the same term

// OWL 2 allows for annotations
// A declaration signals that an entity is part of the vocabulary of an ontology
// Note that, all these types have no semantic meaning in OWL 2. The use of
them is left to the applications that use OWL 2

(continued on next page)

F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255 243

Table 2 (continued)

OWL 2 new features DL syntax Examples and comments

owl:topObjectProperty >R // all pairs of individuals are connected by owl:topObjectProperty
owl:bottomObjectProperty ?R // no individuals are connected by owl:bottomObjectProperty
owl:topDataProperty >T // all possible individuals are connected with all literals by

owl:topDataProperty
owl:bottomDataProperty ?T // no individual is connected by owl:bottomDataProperty to a literal
ObjectInverseOf ðRÞ R� ObjectInverseOf (partOf)

// this expression represents the inverse property of partOf
InverseObjectProperties ðR1;R2Þ R1 ¼ R�2 InverseObjectProperties (hasPart partOf)

// hasPart and partOf are inverse properties

Book

title: String
ISBN: Int

Publisher

name: String
registerNo: Int

Author

name: String
authorNo: Int

1..* 1publishedBy

1 1writtenBy

FictionBook

age: Int

ArtBook

style: String

Fig. 1. The diagram of an OODB.

244 F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255

3.1. The overall architecture of storage approach

In the following we propose an overall architecture of storage
approach, which is helpful to well understand the storage process
of OWL 2 ontologies in object-oriented databases. Fig. 2 shows the
overall architecture of storage approach. Furthermore, Table 3 fur-
ther explains the architecture in detail.

In Fig. 2, all the elements of an OWL 2 ontology in Definition 1
(i.e., Tables 1 and 2) are considered and stored in an object-
oriented database. The details can be found in Fig. 2, Table 3, and
the later Section 3.2. In brief, all the symbols of classes, properties,
individuals, and datatypes in an OWL 2 ontology are stored in a
resource class (i.e., Resource class shown in Fig. 2). Then, all the
axioms defined over the symbols in the OWL 2 ontology (i.e., class
axioms, property axioms, and individual axioms) are stored in dif-
ferent classes as shown in Fig. 2.

Here, it should be noted that we assign a new ID to each anon-
ymous class occurring in complex OWL 2 class axioms. Taking the
class axiom ‘‘Mother � Woman u9hasChild.Person’’ as an example,
we first define a new class ID (e.g., c_1) for the anonymous class
‘‘9hasChild.Person’’, and then store the new ID c_1 and its property
restriction ‘‘9hasChild.Person’’ in the Resource class and Property_
Restriction class shown in Fig. 2, respectively. As a result, the class
axiom ‘‘Mother � Woman u9hasChild.Person’’ is replaced with the
class axiom ‘‘Mother � Woman u c_1’’, which is stored in the
Class_Operation class shown in Fig. 2. Such a design is motivated
by making the semantics of the complex class axioms explicit.
3.2. The detailed procedures of storing OWL 2 ontologies in object-
oriented databases

Based on the storage architecture in Section 3.1, in this section,
we use an example throughout the subsections to demonstrate and
introduce the idea of the storage architecture. This example can
show how to map each construct in an OWL 2 ontology to a corre-
sponding construct in an object-oriented database.

Fig. 3 shows an OWL 2 ontology Ouni modeling parts of the real-
ity at a university, which includes the structure information and
the instance information. Further, for ease of understanding, the
OWL 2 ontology Ouni is also represented as a graph in Fig. 4.

In the following two subsections, on the basis of the storage
architecture proposed in Section 3.1, both of the structure and
instance information of the OWL 2 ontology Ouni in Fig. 3 will be
stored in an object-oriented database in detail.

3.2.1. Storing the structure information of OWL 2 ontology in object-
oriented database

The structure information of the OWL 2 ontology O =
{I ;P;X ;D;A} includes the sets of properties P, classes X , data
range identifiers D, and axioms A. Based on the architecture pro-
posed in Section 3.1, the following procedures will store the struc-
ture information of the OWL 2 ontology Ouni in Fig. 3 in an object-
oriented database.

(1) Storing the resources
As mentioned in Section 3.1, all resources in an OWL 2 ontol-
ogy (including properties P, classes X , data range identifiers
D, and individuals I) will be stored in a Resource class
(including 5 fields, i.e., OntoName, ID, namespace, localname,
and type).
Fig. 5 shows the class Resource and its objects in a target
object-oriented database, which stores all resources of the
OWL 2 ontology Ouni in Fig. 3. Here, OntoName is the ontol-
ogy name ‘‘O_1’’; ID uniquely identifies a resource; name-
space and localname describe the URIref of a resource; and
type describes the type of a resource.

(2) Storing the relationships among classes
As mentioned in Section 3.1, the relationships among classes
in an OWL 2 ontology (including partial, complete,
SubClassOf, and DisjointUnion) will be stored in a Class_Rela-
tion class (including fields Vector<ClassID> and relationship).
Fig. 6 shows the class Class_Relation and its objects in a target
object-oriented database, which stores the relationships
among classes in the OWL 2 ontology Ouni in Fig. 3. In detail,
the classes axioms SubClassOf (Professor Staff), SubClassOf
(Associate_Prof Staff), DisjointUnion (Student Undergraduate
Postgraduate), Class (Staff partial restriction (work_in all-
ValuesFrom(College))), and so on, are stored in Fig. 6.
Note that, as has been indicated at the beginning of Section
3.1, for storing the class axioms such as ‘‘Class (Staff partial
restriction (work_in allValuesFrom(College)))’’, the following
several steps need to be done:
(i) we need to assign a new ID (e.g., new_c_10) to the

anonymous class ‘‘restriction (work_in allValuesFrom
(College))’’. In this case, the original class axiom above
can be replaced with two new axioms:
‘‘Class (Staff partial new_c_10)’’ and
‘‘new_c_10 � restriction (work_in allValuesFrom
(College))’’;
(ii) Finally, the new ID ‘‘new_c_10’’ is stored in the Resource
class as shown in Fig. 5;

Property_Field

-ProID: String
-domain: String
-range: String

Property_Character

-ProID: String
-type: String
-character: String

Property_Restriction

-CreateID: String
-ProID: String
-type: String
-value: String
-cardinality: Integer

Property_Assertion

-ProID: String
-Ind1ID: String
-Ind2ID: String
-type: String

Property_Key

-ClassID: String
-ProID: Vector<String>

Property_Relation

-ProID: Vector<String>
-relationship: String

Property_Chain

-CreateID: String
-ProID: Vector<String>

Class_Relation

-ClassID: Vector<String>
-relationship: String

Class_Operation

-CreateID: String
-ClassID: Vector<String>
-type: String

Class_Enumeration

-ClassID: String
-type: String
-IndID: Vector<String>

Individual_Class_Relation

-IndID: String
-ClassID: String

Individual_Property_Value

-IndID: String
-ProID: String
-value: String

Individual_Relation

-IndID: Vector<String>
-relationship: String

Datatype_Restriction

-DtID: String
-facts: String
-value: String

Datatype_Definition

-Dt1ID: String
-Dt2ID: String

Datatype_Operation

-DtID: Vector<String>
-type: String

Resource

-ID: String
-namespace: String
-localname: String
-type: String
-OntoName: String

Fig. 2. The overall architecture of storage approach.

F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255 245

(iii) The first new axiom ‘‘Class (Staff partial new_c_10)’’ is
stored in the Class_Relation class as shown in Fig. 6;
and the second one ‘‘new_c_10 � restriction (work_in
allValuesFrom(College))’’ will be stored in the Prop-
erty_Restriction class as will be introduced in the later
step (6).

(3) Storing the domains and ranges of properties
As mentioned in Section 3.1, the domains and ranges of prop-
erties in an OWL 2 ontology will be stored in a Property_Field
class (including 3 fields, i.e., ProID, domain, and range).

Fig. 7 shows Property_Field class and its objects in a target
object-oriented database, which stores the domains and
ranges of properties in the OWL 2 ontology Ouni in Fig. 3.
For example, for the object property work_in (p_2), its
domain is Staff (c_7) and range is College (c_2); for the data-
type property Name (p_11), its domain is Student (c_3) and
range is xsd:String.

(4) Storing the key properties
As mentioned in Section 3.1, the key properties in an OWL 2
ontology will be stored in a Property_Key class (including
fields ClassID and ProID).
Fig. 8 shows the class Property_Key and its objects in a target
object-oriented database, which stores the key properties in
the OWL 2 ontology Ouni in Fig. 3. For example, the property
StuNo (p_9) is the key property of the class Student (c_3),
which is stored in Fig. 8.

(5) Storing the characters of properties
As mentioned in Section 3.1, the characters of properties
(including Functional, Symmetric, InverseFunctional, Transi-
tive, ObjectHasSelf, ReflexiveObjectProperty, IrreflexiveObject-
Property, AsymmetricObjectProperty, and ObjectInverseOf as
introduced in Table 3) in an OWL 2 ontology will be stored
in Property_Character class.
Fig. 9 shows Property_Character class and its objects in a tar-
get object-oriented database, which stores the characters of
properties in the OWL 2 ontology Ouni in Fig. 3. For example,
the functional object properties study_in (p_3) and super-
vise_by (p_8) is stored in Fig. 9.

(6) Storing the restrictions of properties
As mentioned in Section 3.1, the restrictions of properties
(including allValuesFrom, someValuesFrom, hasValue,
minCardinality, maxCardinality, Cardinality, ObjectMin-

Table 3
The detailed explanations of the storage architecture in Fig. 2.

Classes Structure and description

Resource class Storing resources in an ontology, i.e., classes, properties, individuals, and datatypes. This class includes 5 attributes, i.e., ID, namespace,
localname, type, and OntoName:

– ID identifies uniquely a resource in an ontology;
– namespace and localname describe a URIref of any resource;
– type describes the type of a resource, which may be a class, a property, an individual, or a datatype;
– OntoName describes the stored ontology name;

In the following, ProID e ID denotes a property, ClassID e ID denotes a class, IndID e ID denotes an individual, and DtID e ID denotes a
datatype.

Property_Field class Storing the domain and range of a property.

– ProID identifies uniquely a property in the ontology;
– domain andrange store the domain and range of the property.

Property_Character class Storing the characters of a property.

– ProID denotes a property;
– type, which describes the type of a property, may be adatatype property or anobject property;
– characters, which describes the characters of a property, may be Functional, Symmetric, InverseFunctional, Transitive, ObjectHasSelf,

ReflexiveObjectProperty, IrreflexiveObjectProperty, AsymmetricObjectProperty, or ObjectInverseOf (see Tables 1 and 2 in detail).

Property_Restriction class Storing the restrictions of a property.

– CreateID is a created ID, which can uniquely identify a property restriction;
– ProID is a property;
– type, which describes restrictions as shown in Tables 1 and 2, may beallValuesFrom, someValuesFrom, hasValue, minCardinality, max-

Cardinality, Cardinality, ObjectMinCardinality, ObjectMaxCardinality, ObjectExactCardinality, DataMinCardinality, DataMaxCardinality,
DataExactCardinality;

– value denotes the value of restriction of a property, where:
value = ID (i.e., ID in the Resource class) if type = allValuesFrom j someValuesFrom j hasValue j ObjectMinCardinality j
ObjectMaxCardinality j ObjectExactCardinality j DataMinCardinality j DataMaxCardinality j DataExactCardinality; otherwise, value is
NULL.– cardinality is the cardinality constraints.

Property_Assertion_Class Storing the property assertions.

– ProID may be a datatype property or an object property;
– IndjID and Ind2ID are two individuals;
– type denotes the type of the assertions, may be NegativeObjectPropertyAssertion orNegativeDataPropertyAssertion.

Property_Key class Storing the key properties.

– ClassID is a class;
– ProID are object or datatype key properties of the class ClassID.

Property_Chain class Storing the property chains.

– CreateID is a created ID, which can uniquely identify a property chian;
– ProID are object properties.

Property_Relation class Storing the relationships among properties.

– ProID are properties;
– relationship may be SubPropertyOf, EquivalentProperties, inverseOf, ObjectPropertyChain, InverseObjectProperties, DisjointObjectProper-

ties, orDisjointDataProperties. When therelationship is SubPropertyOf, the ProiID may be the CreateID in the Property_Chain class.

Class_Relation class Storing the relationships among classes.

– ClassID are classes, which may be the ID in the Resource class, CreateID in the Property_Restriction class, or CreateID in the following
Class_Operation class;

– relationship may bepartial, complete, SubClassOf, orDisjointUnion.

Class_Operation class Storing the operations among classes.

– CreateID is a created ID, which can uniquely identify a class operation;
– ClassID are Classes;
– type is the operation of classes such asintersectionOf, unionOf, complementOf, EquivlentClasses, andDisjointClasses.

Class_Enumeration class Storing the enumerated class.

– ClassID is a class.
– IndID are indivisuals;
– type is the operationoneOf orEnumeratedClass.

Individual_Class _Relation
class

Storing the relationships among classes and individuals.

– IndID is an individual;
– ClassID is a class.

Individual_Property_value
class

Storing the values of properties.

– IndID is an individual;
– ProID is an object or datatype property;
– value is the value of the property.

246 F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255

Fig. 3. An OWL 2 ontology Ouni modeling parts of the reality at a university.

Table 3 (continued)

Classes Structure and description

Individual_Relation class Storing the relationships among individuals.

– IndID are individuals;
– relationship denotes the relationships among individuals such asSameIndividual orDifferentIndividuals.

Datatype_Restriction class Storing the restrictions of datatypes.

– DtID denotes a datatype;
– facts is a constraining facet in XML Schema datatypes, e.g.,minInclusive andminInclusive;
– value is the datatype individual as mentioned in Table 1.

Datatype_Definition class Storing the definitions of the datatypes.

– DtiID is the defined datatype;
– Dt2ID is the existing datatype.

Datatype_Operation class Storing the operations of datatypes.

– DtID aredatatypes;
– type denotes an operation of datatypes such as DataIntersectionOf, DataUnionOf, orDataComplementOf.

F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255 247

Cardinality, ObjectMaxCardinality, ObjectExactCardinality,
DataMinCardinality, Data- MaxCardinality, DataExactCardinality
as introduced in Table 3) in an OWL 2 ontology will be stored
in Property_Restriction class.
Fig. 10 shows Property_Restriction class and its objects in a
target object-oriented database, which stores the restric-
tions of properties in the OWL 2 ontology Ouni in Fig. 3. For
example, the restriction of the propertywork_in (p_2)
‘‘restriction (work_in allValuesFrom(College))’’, the restric-
tions of the propertys_choose (p_4) ‘‘ObjectMinCardinality
(3 s_choose [Course])’’ and ‘‘ObjectMaxCardinality (12
s_choose [Course])’’, and so on, are stored in Fig. 10.
(7) Storing the relationships among properties
As mentioned in Section 3.1, the relationships among
properties in an OWL 2 ontology (including SubPropertyOf,
EquivalentProperties, inverseOf, ObjectPropertyChain, Inverse-
ObjectProperties, DisjointObjectProperties, or DisjointData-
Properties in Table 3) will be stored in a Property_Relation
class (including fieldsVector<ProID> and relationship).
Fig. 11 shows Property_Relation class and its objects in a tar-
get object-oriented database, which stores the relationships
among properties in the OWL 2 ontology Ouni in Fig. 3. For
example, SubPropertyOf (u_choose s_choose) and Inverse
ObjectProperties (supervise supervise_by) are stored in Fig. 11.

StudentCollege

Staff

SubClassO
fSu

bC
la

ss
O

f

Associate_ProfProfessor

wor
k_

in

st
ru

ct
ur

e
in

fo
rm

at
io

n
noit a

mrof ni
ecnatsni

study_in [Functional]

Course

University

be
lo

ng
_t

o StuNo/String

Age/Integer

Name/String

Ha
sK

ey

Undergraduate Postgraduate

DisjointUnion

u_choose

supervise_by [Functional]

tea
ch

s_choose

Su
bP

ro
pe

rty

InverseObjectProperties (supervise, supervise_by)
supervise

 [3
, 12]

[4, 7]

Northeastern
University

be
lo

ng
_t

o

Information
Science

Prof. Mike

Stu_0810351

0810351

21

John

HasKey

work_in supervise

supervise
_by

study_in

Fig. 4. The diagram of the OWL 2 ontology Ouni in Fig. 3.

248 F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255

All the constructors of OWL 2 ontologies mentioned in Sec-
tion 2.1 can be stored in object-oriented databases following
the similar procedures given above. The following section will
further store the instance information of the OWL 2 ontology
Ouni in Fig. 3 in the object-oriented database.
3.2.2. Storing the instance information of OWL 2 ontology in object-
oriented database

The instance information of the OWL 2 ontologyO ¼ fI ;P;X ;D;Ag
includes the sets of individuals I and axiomsA. Based on the archi-
tecture proposed in Section 3.1, the following procedures will store
the instance information of the OWL 2 ontology Ouni in Fig. 3 in an
object-oriented database.

The instance information of the OWL 2 ontology Ouni in Fig. 3
includes:

� several individuals: I ¼ {Northeastern University (i_1), Informa-
tion Science (i_2), Prof.Mike (i_3), Stu_0810351 (i_4)};
� several individual axioms: A ¼ {Individual (Stu_0810351 type

(Student) value (StuNo, 0810351 ^^xsd:String) value (Age,
21^^xsd:Integer) value (Name, John^^xsd:String)), Individual
(Prof.Mike type (Professor)), . . ., DifferentIndividuals (Northeast-
ern University, Information Science, Prof.Mike, Stu_0810351)}.
Here, some axioms are omitted.
(8) Storing the relationships of individuals/classes
As mentioned in Section 3.1, the relationships of individuals/
classes in an OWL 2 ontology will be stored in Individual_
Class_Relation class (including fieldsIndID and ClassID).
Fig. 12 shows Individual_Class_Relation class and its objects in a
target object-oriented database, which stores the relationships
of individuals/classes in the OWL 2 ontology Ouni in Fig. 3.
For example, Northeastern University (i_1) is an instance of
the class University (c_1), Stu_0810351 (i_4) is an instance
of the class Student (c_3), and so on, which are stored in
Fig. 12.

(9) Storing the values of properties of individuals
As mentioned in Section 3.1, the values of properties of indi-
viduals in an OWL 2 ontology will be stored in Individual_
Property_Value class (including fields IndID, ProID, and value).
Fig. 13 shows Individual_Property_Value class and its objects in a
target object-oriented database, which stores the values of
properties in the OWL 2 ontology Ouni in Fig. 3. For example,
the values of properties of individual Stu_0810351 (i_4) are
stored in Fig. 13.

(10) Storing the relationships among individuals
As mentioned in Section 3.1, the relationships among individ-
uals in an OWL 2 ontology will be stored in Individual_Relation
class (including fields Vector<IndID> and relationship).
Fig. 14 shows Individual_Relation class and its objects in a target
object-oriented database, which stores the relationships

O_1c_1 http://www... classUniversity

O_1c_2 http://www... classCollege

O_1c_3 http://www... classStudent

O_1c_4 http://www... classUndergraduate

O_1c_5 http://www... classPostgraduate

O_1c_6 http://www... classCourse

O_1p_1 http://www... ObjectPropertybelong_to
O_1p_2 http://www... ObjectPropertywork_in
O_1p_3 http://www... ObjectPropertystudy_in
O_1p_4 http://www... ObjectPropertys_choose
O_1p_5 http://www... ObjectPropertyu_choose
O_1p_6 http://www... ObjectPropertyteach
O_1p_7 http://www... ObjectPropertysupervise
O_1p_8 http://www... ObjectPropertysupervise_by
O_1p_9 http://www... DatatypePropertyStuNo
O_1p_10 http://www... DatatypePropertyAge

O_1i_1 http://www... individualNortheastern University
O_1i_2 http://www... individualInformation Science
O_1i_3 http://www... individualProf. Mike

OntoNameID namespace typelocalnameResource

-ID: String
-namespace: String
-localname: String
-type: String
-OntoName: String

c_7 http://www... classStaff

c_8 http://www... classProfessor

c_9 http://www... classAssociate_Prof

p_11 http://www... DatatypePropertyName O_1

i_4 http://www... individualStu_0810351 O_1

O_1d_1 http://www... datatypexsd:String

d_2 http://www... datatypexsd:Integer O_1

O_1
O_1

O_1

new_c_10 http://www... classrestriction (work_in ... O_1

... ... class... O_1

new_c_11 http://www... classrestriction (s_choose ... O_1

... ... individual... O_1

Fig. 5. The class Resource and its objects in a target object-oriented database for storing the resources of the OWL 2 ontology Ouni in Fig. 3.

Class_Relation

-ClassID: Vector<String>
-relationship: String

<Vector>ClassID relationship

<c_8, c_7> SubClassOf

<c_9, c_7> SubClassOf

<c_3, c_4, c_5> DisjointUnion

<c_7, new_c_10> partial

... ...

Fig. 6. The class Class_Relation and its objects in a target object-oriented database
for storing the relationships among classes of the OWL 2 ontology Ouni in Fig. 3.

ProID domain range

p_1 c_2 c_1

p_2 c_7 c_2

p_3 c_3 c_2

p_4 c_3 c_6

p_5 c_4 c_6

p_6 c_9 c_6

p_7 c_8 c_5

p_8 c_5 c_8

p_9 c_3 d_1

p_10 c_3 d_2

Property_Field

-ProID: String
-domain: String
-range: String

p_11 c_3 d_1

Fig. 7. The class Property_Field and its objects in a target object-oriented database
for storing the domains and ranges of properties of the OWL 2 ontology Ouni in
Fig. 3.

Property_Key

-ClassID: String
-ProID: Vector<String>

ClassID ProID

c_3 p_9

Fig. 8. The class Property_Key and its objects in a target object-oriented database
for storing the key properties of the OWL 2 ontology Ouni in Fig. 3.

F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255 249

among individuals in the OWL 2 ontology Ouni in Fig. 3. For
example, the relationships among several individuals ‘‘Differen-
tIndividuals (Northeastern University, Information Science, Prof.-
Mike, Stu_0810351)’’ are stored in Fig. 14.
According to the previous sections, an OWL 2 ontology, includ-
ing classes, properties, individuals, and axioms, can be stored
in an object-oriented database. In the following section we
prove the correctness of the approach.

3.3. Correctness of the storage approach

In the following we prove the correctness of the storage
approach. As mentioned in the literature (e.g., [3,13]), when storing
domain knowledge, one should ensure that the result of the

Property_Character

-ProID: String
-type: String
-character: String

ProID type

p_3 ObjectProperty

character

Functional

p_8 ObjectProperty Functional

Fig. 9. The class Property_Character and its objects in a target object-oriented
database storing the characters of properties of the OWL 2 ontology Ouni in Fig. 3.

Property_Relation

-ProID: Vector<String>
-relationship: String

<Vector>ProID relationship

<p_5, p_4> SubPropertyOf

<p_7, p_8> InverseObjectProperties

Fig. 11. The class Property_Relation and its objects in a target object-oriented
database storing the relationships among properties of the OWL 2 ontology Ouni in
Fig. 3.

IndID ClassID

i_1 c_1

i_2 c_2

i_3 c_8

Individual_Class_Relation

-IndID: String
-ClassID: String

i_4 c_3

Fig. 12. The class Individual_Class_Relation and its objects in a target object-
oriented database storing the relationships of individuals/classes of the OWL 2
ontology Ouni in Fig. 3.

IndID ProID value

i_4 p_9 0810351^^d_1

i_4 p_10 21^^d_2

i_4 p_11 John^^d_1

Individual_Property_Value

-IndID: String
-ProID: String
-value: String

Fig. 13. The class Individual_Property_Value and its objects in a target object-
oriented database storing the values of properties of individuals of the OWL 2
ontology Ouni in Fig. 3.

250 F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255

storage can describe the original information. From the storage
procedures in the previous sections, it shows that our storage
approach can be seen as a transformation. The evaluation of trans-
forming, mapping or storing information is an important and cen-
tral issue, but it is also a difficult task. Currently there are still no
any standard frameworks/metrics for evaluation, and many works
used the standard information retrieval metrics to evaluate their
approaches (e.g., [19,22,31]). On this basis, we also evaluate our
approach using the relative information capacities of the source
and target resources.

Based on the notion of information capacity [19,22], we give the
formal proof of the correctness of our storage approach (i.e., Theo-
rem 1).

Theorem 1. Given an OWL 2 ontology O, the storage procedure from
O to an object-oriented database OODB in the previous sections is an
information capacity preserving storage.
Individual_Relation

-IndID: Vector<String>
-relationship: String

<Vector>IndID relationship

<i_1, i_2, i_3, i_4> DifferentIndividuals

Fig. 14. The class Individual_Relation and its objects in a target object-oriented
Proof. Let IðOÞ and I(OODB) be consistent instances of schemata O
and OODB. A mapping from IðOÞ to I(OODB), i.e., k : IðOÞ ! I(OODB)
can be established as follows: assuming that I 2 IðOÞ is an instance
of O, then kðIÞ 2 I(OODB) is an instance of OODB derived according
to the storage approach in Sections 3.1 and 3.2. Formally, the map-
ping k can be defined as (taking the Individual_Property_Value
class for example):
database for storing the relationships among individuals of the OWL 2 ontology Ouni

in Fig. 3.
For i ¼ 1 to m� �
Fig. 10. The class Property_
// m classes

ci ¼ p1

i ; p
2
i ; . . . ; pn

i

// each class ci has n properties
For k ¼ 1 to s
 // each class has s instances

For j ¼ 1 to nh i

kðIÞ IndIDk

i idk
i

// IndID is the individual identifier in

Fig. 2 and Table 3, and idk
i is the

identifier of the kth instance of the

class ci and is stored in the field IndIDk
i .
kðIÞ ProIDj
i

h i
 pj

i

//ProID is the property identifier in

Fig. 2 and Table 3 property pj
i is stored

in the field ProIDj
i.
kðIÞ valuej
i

h i
 I pj

i

h i

//value is the property value in Fig. 2

and Table 3, and I pj
i

h i
denotes a

component value of pj
i of I and is

stored in the field valuej
i.
Property_Restriction

-CreateID: String
-ProID: String
-type: String
-value: String
-cardinality: Integer

CreateID ProID

new_c_10 p_2

new_c_11 p_4

... ...

new_c_11 p_4

Restriction and its objects in a target object-oriented dat
The following proves the mapping k is a function firstly.
From the definition of k above, each property value of an
individual belonging to a class in the OWL 2 ontology O
corresponds to an object in the Individual_Property_Value
class. Since the object identifier of the class can ensure that kðIÞ
is an instance of OODB (an object), i.e., k is a function from
O to OODB; Secondly, we further prove that k is an injective
function. Let I1 ¼ I1 p1

i

� �
;I1 p2

i

� �
; . . . ;I1 pn

i

� �� �
and I2 ¼

I2 p1
i

� �
;I2 p2

i

� �
; . . . ;I2 pn

i

� �� �
be two different instances of the class

ci, then there is at least one j 2 f1; . . . ;ng such that

I1 pj
i

h i
– I2 pj

i

h i
. According to the definition of k above, there are

objects kðI1Þ ¼ kðI1Þ IndID1
i

h i
; kðI1Þ ProIDj

i

h i
; kðI1Þ valuej

i

h i� 	
and

kðI2Þ ¼ kðI2Þ IndID2
i

h i
; kðI2Þ ProIDj

i

h i
; kðI2Þ valuej

i

h i� 	
in the class,
type value

allValuesFrom c_2

ObjectMinCardinality c_6

... ...

cardinality

...

3

ObjectMaxCardinality c_6 12

abase storing the restrictions of properties of the OWL 2 ontology Ouni in Fig. 3.

0

500

1000

1500

2000

2500

3000

86 427 1160 2407 4600 7304 10406 14020 19204 24360

Preprocessing Preprocessing & Storage

Numbers of elements in OWL 2 ontologies

e
x

e
cu

ti
o

n
 t

im
e

 (
m

s)

Fig. 16. The execution time of the tool OWL2OODB routine on several OWL 2
ontologies.

Yes

OWL 2 ontology

Parser

OWL 2 classes,
properties, and etc.

(In-memory Java classes)

Store
(Java methods of

storage rules)

Output
(Screen display)

Syntax checker

Inform
errors

No

OODB (db4o)

Fig. 15. The overall architecture of OWL2OODB.

1 http://www.w3.org/TR/2012/REC-owl2-primer-20121211/.
2 https://code.google.com/p/epistemicdl/source/browse/trunk/EQuIK/wine_1.owl.
3 http://dumontierlab.com/?page=ontologies.
4 http://gforge-lirmm.lirmm.fr/gf/download/docmanfileversion/211/743/FMA_

owl2_noMTC_100417.zip.
5 http://www.w3.org/TR/2012/REC-owl2-new-features-20121211/.
6 http://protege.stanford.edu/.
7 http://www.obofoundry.org/
8 http://github.com/RinkeHoekstra/lkif-core.
9 https://code.google.com/p/elk-reasoner/wiki/TestOntologies.

F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255 251

where j ¼ 1; . . . ;n. Furthermore, since there is at least one j such

that I1 pj
i

h i
– I2 pj

i

h i
as mentioned above, it follows that there is

also at least one j 2 f1; . . . ;ng such that kðI1Þ valuej
i

h i
–

kðI2Þ valuej
i

h i
, i.e., we have kðI1Þ– kðI2Þ, that is, k is an injective

function. �

Based on the previous sections and the Theorem 1, it is shown
that the storage from an OWL 2 ontology to an object-oriented
database is an information capacity preserving and correct storage.
That is, given an OWL 2 ontology, the proposed approach can cor-
rectly and completely store the information of the OWL 2 ontology
in an object-oriented database. Furthermore, in order to imple-
ment the automated storage of OWL 2 ontologies, in the following
section we will develop a prototype storage tool.

3.4. Prototype storage tool

Following the proposed storage approach in the previous sec-
tions, we implement a prototype tool called OWL2OODB for storing
OWL 2 ontologies in object-oriented databases. In the following,
we briefly sketch the design and implementation of OWL2OODB.

The implementation of OWL2OODB is based on JAVA JDK 1.7.0
platform, and the Graphical User Interface is exploited by using
the java.awt and javax.swing packages. The used object-oriented
database db4o [26], which is a widely used and the most popular
open source object database recommended by Object-oriented
Database Management Group (ODMG) [10], enables Java and
.NET developers to store and retrieve any application object. The
database db4o provides several main packages including com.db4o,
com.db4o.ext, com.db4o.config, and com.db4o.query. The detailed
introduction about the object-oriented database db4o can be found
in [26]. Fig. 15 shows the overall architecture of OWL2OODB.

OWL2OODB includes four main modules as shown in Fig. 15, i.e.,
syntax checking module, parsing module, storage module, and output
module:

� Syntax checking module: The prototype tool opens an OWL 2
ontology file for reading, and then the syntax checking module
checks the correctness of the syntax. If the syntax does not
match OWL 2 notations (see Section 2.1), then the tool will
inform errors.
Here, we provide several examples represented in OWL 2 syn-
tax that can be imported in the tool (the complete syntax can
be found in Tables 1 and 2 of Section 2.1). For example: (i) the
OWL 2 property axioms ObjectProperty (study_in domain(Student)
range(College) [Functional]); InverseObjectProperties (supervise
supervise_by); HasKey (Student StuNo); and etc; (ii) the OWL 2
class axioms SubClassOf (Associate_Prof Staff); DisjointUnion
(Student Undergraduate Postgraduate); and etc; (iii) the OWL 2
individual axioms Individual (Stu_0810351 type (Student)); Indi-
vidual (Prof.Mike type (Professor)); and etc.
� Parsing module: If the syntax of the file matches OWL 2 nota-

tions, the parsing module parses the OWL 2 ontology file and
stores the parsed results as Java classes.
� Storage module: The storage module stores the parsed OWL 2

ontology information in a target object-oriented database
according to the proposed approach in Sections 3.1 and 3.2.
Moreover, the tool OWL2OODB provides a graphical user inter-
face to show the stored data in the target object-oriented data-
base. In addition, a query interface is also provided in order that
users can conveniently retrieve the data in databases.
� Output module: The output module finally displays the informa-

tion including the source OWL 2 ontology information, the
parsed results, and the target object-oriented database informa-
tion on the tool screen (see Fig. 17).
We carried out some storage experiments of OWL 2 ontologies
using the implemented tool OWL2OODB, with a PC (Inter Core i7
CPU@3.40 GHz, RAM 8.0 GB and Windows 7 system). As we
have known, currently there is no a widely accepted or standard
dataset of OWL 2 ontologies. In this case, the OWL 2 ontologies
used in our experiments are mainly from the following several
parts:
� Some ones come from the existing common OWL 2 ontologies

(e.g., the complete sample OWL 2 ontology,1 the populated ver-
sion of the Wine ontology that contains about 483 individuals
and uses most of the OWL 2 DL constructs,2 the OWL 2 ontology
bro in Dumontier Lab,3 the FMA_OWL 2 ontology,4 the Chemistry
ontology in [32], and some ontologies mentioned in Part 75);
� Some ones are derived by importing some additional OWL 2

constructs into the existing familiar OWL 1 ontologies by means
of the popular ontology editor Protégé6 (e.g., the AERO and NBO
ontologies in OBO Foundry7, the Molecule and Pharmacogenom-
ics ontologies3, the LKIF Core ontology,8 and some ontologies in
the ELK project9);

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://code.google.com/p/epistemicdl/source/browse/trunk/EQuIK/wine_1.owl
http://dumontierlab.com/?page=ontologies
http://gforge-lirmm.lirmm.fr/gf/download/docmanfileversion/211/743/FMA_owl2_noMTC_100417.zip
http://gforge-lirmm.lirmm.fr/gf/download/docmanfileversion/211/743/FMA_owl2_noMTC_100417.zip
http://www.w3.org/TR/2012/REC-owl2-new-features-20121211/
http://protege.stanford.edu/
http://www.obofoundry.org/
http://github.com/RinkeHoekstra/lkif-core
http://https://code.google.com/p/elk-reasoner/wiki/TestOntologies

Fig. 17. The screen snapshot of OWL2OODB.

O_1c_2 http://www... classCollege

O_1c_3 http://www... classStudent

O_1p_3 http://www... ObjectPropertystudy_in

OntoNameID namespace typelocalnameResource

-ID: String
-namespace: String
-localname: String
-type: String
-OntoName: String

c_7 http://www... classStaff
c_9 http://www... classAssociate_Prof

O_1
O_1

ProID domain range

p_3 c_3 c_2

Property_Field

-ProID: String
-domain: String
-range: String

Property_Character

-ProID: String
-type: String
-character: String

ProID type

p_3 ObjectProperty

character

Functional

Class_Relation

-ClassID: Vector<String>
-relationship: String

<Vector>ClassID relationship

<c_9, c_7> SubClassOf

Fig. 18. A part of parsed results of the ontology in the database.

252 F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255

� Some others are created manually by us with the ontology edi-
tor Protégé (e.g., one of the OWL 2 ontologies mentioned in Sec-
tion 3.2).

The sizes of the OWL 2 ontologies range about from 50 to
36,000 in our current tests. Here, the scale of an OWL 2 ontology
denotes the numbers of classes, properties, individuals, and axioms
in the OWL 2 ontology, and it can be measured after we parse the
ontology in the parsing module as shown in Fig. 15. Fig. 16 shows
the actual execution time routines in the OWL2OODB tool running
several OWL 2 ontologies, where the preprocessing denotes the
operations of reading and parsing the classes, properties, individu-
als, and axioms of the OWL 2 ontologies and preparing the data
in computer memory for the usage in the storage procedure. Case
studies show that our approach and prototype tool actually work.
However, we also should be noted that, with the development of
ontologies in various application domains, some larger scale OWL
2 ontologies may occur, and we will test them in our future work
to further evaluate the tool.

In the following, we give the screen snapshot of OWL2OODB, and
an example is provided to well show the running process of the tool
OWL2OODB. Fig. 17 shows the screen snapshot of OWL2OODB, which
displays the storage of an OWL 2 ontology (including the informa-
tion of the OWL 2 ontology in Fig. 4) in an object-oriented database.
In Fig. 17, the source OWL 2 ontology information, the parsed
results, and the target object-oriented database information are dis-
played in the left, middle and right areas, respectively. Moreover, in
order that users can conveniently retrieve the data in databases, we
provide a query interface in the tool OWL2OODB. When users click
the button ‘‘Query’’ in the graphical interface of OWL2OODB as
shown in Fig. 17, a query window can be opened. Then the users
can choose the classes that they want to query, and fill in the query
conditions to execute the query. The screen snapshot of a brief
query is also shown in the bottom right area of Fig. 17.

F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255 253
In order to well show the running process of the tool
OWL2OODB in Fig. 17, here we provide an example in detail. For
example, after inputting the OWL 2 ontology information (for sim-
plicity here we only give two axioms of the OWL 2 ontology):

‘‘ObjectProperty (study_in domain(Student) range(College)
[Functional])’’
‘‘SubClassOf (Associate_Prof Staff)’’

the tool will further parse the axioms, and the corresponding parsed
results are:

Axiom: ObjectProperty (study_in domain(Student)
range(College) [Functional])

Property Name: study_in
Property Type: ObjectProperty
Domain: Student
Range: College
Character: Functional
Axiom: SubClassOf (Associate_Prof Staff)
Type: SubClassOf
SubClass Name: Associate_Prof
SuperClass Name: Staff

finally, the tool stores the parsed results of the OWL 2 ontology in
an object-oriented database according to the rules mentioned in
Sections 3.1 and 3.2, and the corresponding classes ‘‘Resource’’,
‘‘Property_Field’’, ‘‘Property_Character’’, and ‘‘Class_Relation’’ are
created and some objects belonging to these classes are inserted
as follows (for visualization, the classes and objects in the object-
oriented database are showed by the forms of diagrams and tables)
(see Fig. 18).

After storing the OWL 2 ontology in the object-oriented data-
base, users can access to the object-oriented database by using reg-
ular queries. The object-oriented database db4o provides the query
engine so that users may access to the data in databases. For exam-
ple, let us assume that a user wants to find the domain and range of
a given property (e.g., the property p_3 mentioned above), and the
user can write the following query:
Query query ¼ O.query(); // creating a new query for
querying the database O

query.constrain(Property_Field.class); // querying the class Property_Field
in O

Query pointQuery = query.descend
(‘‘ProID’’).constrain(‘‘p_3’’);

// the query condition is ProID =
p_3

ObjectSet result =
query.execute();

// executing the query

listResult(result); // listing the query results
Also, a user may want to find all the subclass/superclass relation-
ships in the original OWL 2 ontology, and the user can write the
following query:
Query query ¼ O.query();
query.constrain(Class_Relation.class);
Query pointQuery = query.descend(‘‘relationship’’).

constrain(‘‘SubClassOf’’);
ObjectSet result = query.execute();
listResult(result).
Being similar to the queries shown above, users also may ask for
the other queries, such as finding the disjoint classes with a given
class, the super-properties or sub-properties of a given property,
and so on. The detailed introduction about the query syntax of
db4o can be found in [26]. Moreover, a query interface is provided
in the prototype tool OWL2OODB as has been shown in Fig. 17.
3.5. Discussions

Until now, we propose an approach for storing OWL 2 ontolo-
gies in object-oriented databases, which is our main purpose of
this paper. Further, the implemented prototype tool and some tests
demonstrate that our approach actually works. However, with the
increasing of the scale and the richer of semantics expressiveness of
ontologies in the future real-world applications, it can be found
that there are still some research issues on the storage of ontolo-
gies to be tackled, and our approach and tool may be further
enhanced in the following several issues:

� The issue of semantics preservation: It should be noted that, in
some cases the storage is not really lossless in the sense that
there may be some loss of semantics, since it is well known that
ontologies are semantically richer than databases
[1,3,6,13,24,34–36,40]. Ontologies are primarily used for inter-
operability and they have richer capabilities to represent seman-
tics and infer implicitly knowledge from the knowledge that is
explicitly contained in the ontologies [29]. The primary use of
databases (e.g., relational and object-oriented databases) is to
structure, store and query a set of data. This differences impact
on the preservation of semantics when storing OWL 2 ontolo-
gies in object-oriented databases, which can be further
explained with the following examples:
For example, given a symmetric property R in an OWL 2 ontology,
i.e., R[Symmetric], and two individuals o1; o2 such that
ðo1; o2Þ 2 R, all of these can be fully stored in an object-oriented
database according to the storage approach proposed in the
previous sections. In the OWL 2 ontology, since R is a symmetric
property, it implies that ðo2; o1Þ 2 R. But, the implicit knowledge
ðo2; o1Þ 2 R is not stored in the object-oriented database. Simi-
larly, for a transitive property S in an OWL 2 ontology, i.e., S[Tran-
sitive], and there are several individuals o1; o2; o3 such that
ðo1; o2Þ 2 S; ðo2; o3Þ 2 S, all of these can also be fully stored in
an object-oriented database. In the OWL 2 ontology, since S is
a transitive property, it implies that ðo1; o3Þ 2 S, while the impli-
cit knowledge ðo1; o3Þ 2 S is not stored in the object-oriented
database.
Extending an existing database system with reasoning capabil-
ities for supporting the reasoning of large ontologies stored in
databases may solve the problem of the loss of semantics,
which will be investigated in our near future work. But it should
be noted that, although some of the semantics captured in
ontologies are inevitably lost when ontologies are stored in dat-
abases (e.g., relational databases [3,13,35]; object-relational
databases [6]; and object-oriented databases proposed in the
paper), the information of the OWL 2 ontologies can be fully
stored in object-oriented databases based on our work in the
previous sections. That is to say, by retrieving the object-ori-
ented databases, the original explicit information of the OWL
2 ontologies can be found and further used in the Semantic
Web as well as some applications using ontologies. The infor-
mation capacity preserving and correct storage of OWL 2 ontol-
ogies in object-oriented databases proposed in our work makes
it possible to manage the knowledge of ontologies in databases.
� The issue of scale of ontologies: As we have mentioned in Section

3.4, currently there is no a widely accepted or standard dataset
of OWL 2 ontologies. Therefore, in our current experiments we
search some existing OWL 2 ontologies and create some OWL 2
ontologies by means of the ontology editor Protégé, and we fur-
ther provide the execution time of the storage running some
scale OWL 2 ontologies. The results show that our approach
and tool actually work. However, we also should be noted that,
with the development of ontologies in the future various appli-
cation domains, some super large scale OWL 2 ontologies may

254 F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255
occur, and we will test them in our future work to further eval-
uate the tool.
� The issue of query inference: It should be noted that, unlike ontol-

ogies or knowledge bases, databases store and retrieve explicit
data well, but they generally do not perform inference. Cur-
rently, after storing OWL 2 ontologies in object-oriented dat-
abases according to our approach and tool, some queries may
be done by means of the query interface in our tool or by using
regular db4o queries, while reasoning is not performed while
processing queries. In our near future work, on the basis of
the approach and tool for storing OWL 2 ontologies proposed
in the previous sections, we will further study the effective inte-
gration of storing, querying and reasoning, and test the query-
ing and reasoning efficiency in depth.

In summary, our current work develops an approach and a pro-
totype tool to fulfill a complete storage of OWL 2 ontologies in
object-oriented databases, which is our main purpose of this paper.
Some scale experiments show that our approach and tool actually
work. The work may be useful for realizing the efficient manage-
ment of knowledge in ontologies, and also may act as a gap-bridge
between the existing object-oriented database applications and the
Semantic Web. Moreover, we provide a query interface for query-
ing OWL 2 ontologies stored in object-oriented databases. In addi-
tion, we make a discussion about the approach in several aspects of
semantics, scale and inference, and also several directions for
future researches are pointed out.
4. Related work

Relating Semantic Web ontologies with databases becomes a
topical problem as ontologies provide richer capabilities for repre-
senting and reasoning on knowledge and databases may store and
retrieve explicit data well. The growing number of methodologies
and tools are considering this problem and they are looking from
the point of view of ontologies or from the point of databases. A
comprehensive review about round-tripping between databases
and ontologies can be found in [18,24,30,41]. Table 4 briefly sum-
marizes some proposals of relating ontologies with databases.

As shown in Table 4, several categories of approaches are
related to our work according to their focuses.

The first category focuses on transforming databases into ontolo-
gies, which has increasingly attracted considerable attention
because much knowledge and data is still stored in databases
and is not published as an open Web of inter-referring resources.
Currently, there are some approaches for transforming relational
databases into ontologies [4,5,12,15,21]. Moreover, in [11], a
rule-based approach for transforming object-relational databases
into ontologies was proposed. In addition, more recently, the for-
mal approaches and tools for transforming XML and object-ori-
ented databases into ontologies was developed in [38,39],
respectively. A comprehensive review about database-to-ontology
Table 4
A brief summarization of round-tripping between databases and ontologies.

Motivations References

Database-to-ontology mapping [5,12,15,21], etc. (see [30,41] for re
[11]
[38]

Ontology-to-database storing [1,3,13,17,20,28,34,35,40]
[6]
[33,36]
There is no report on storing OWL 1
mapping can be found in [30,41]. The motivations and approaches of
these researches are different comparing to this paper, and our work
aims at storing ontologies in object-oriented databases.

The second category focuses on storing ontologies in databases,
which is closely related to our work. There are today several pro-
posals for storing OWL 1 ontologies in relational databases
[1,3,13,17,20,28,34,35,40]. A first attempt to store ontologies in
relational databases was made in [7], where an algorithm was
developed to map OWL 1 to relational schema. From then on, some
proposals were proposed to store OWL 1 ontologies. An approach
for storing OWL 1 ontologies in SQL relational databases was pro-
posed in [3]. In [9], a relational database storage and inference sys-
tem for OWL 1 ontologies called Minerva was developed. Further,
taking the Minerva system as an example, a more in-depth discus-
sion about OWL 1 ontology storage in database was done in [17].
More recently, an OntoMinD approach was proposed in [1] for rea-
soning with vary large ontologies by storing DL-Lite(R,\) ontolo-
gies in relational databases. In [37], the authors dealt with the
need for manage fuzzy data in the Semantic Web and provided sev-
eral rules for storing fuzzy OWL 1 ontologies in fuzzy relational
databases, but our work in this paper focuses on crisp ontologies
and object-oriented databases. The other efforts on storing OWL
1 ontologies in relational databases were made in
[17,20,28,34,35]. Moreover, how to store OWL 1 ontologies in
object-relational databases was investigated in [6], where several
brief rules were given to transform classes, class inheritances, car-
dinalities, and object properties of ontologies into object-relational
databases. Furthermore, with the appearance of the ontology lan-
guage OWL 2 (OWL 2 is an extension and revision of OWL 1),
how to store ontologies described in OWL 2 metamodels in rela-
tional database schemas was discussed in [33,36].

In summary, these proposals mentioned above give us good
hints for developing the approach in this paper, but they are differ-
ent comparing to this paper: (i) the motivations and approaches of
the first category are opposite to our work, and they focus on trans-
forming databases into ontologies while our work aims at trans-
forming ontologies into databases for storing ontologies; (ii) most
of the approaches in the second category focus on storing OWL 1
ontologies in relational or object-relational databases, little research
on storage of OWL 2 ontologies has been done. In particular, there
is no report on storing OWL 2 ontologies in object-oriented databases.
Storing OWL 2 ontologies in object-oriented databases may be use-
ful for realizing the efficient management of large amounts of
knowledge in the Semantic Web. Based on the observations men-
tioned above, to fulfill a complete storage of OWL 2 ontologies, an
approach and a prototype tool for storing OWL 2 ontologies in
object-oriented databases are developed in this paper.

5. Conclusions and future works

In this paper we investigated the storage of OWL 2 ontologies in
object-oriented databases, and proposed a formal approach and
developed a prototype tool for storing OWL 2 ontologies in

Main contributions

views) Mapping relational databases to ontologies
Mapping object-relational databases to ontologies
Mapping object-oriented databases to ontologies

Storing OWL 1 ontologies in relational databases
Storing OWL 1 ontologies in object-relational databases
Storing OWL 2 ontologies in relational database schemas

or OWL 2 ontologies in object-oriented databases

F. Zhang et al. / Knowledge-Based Systems 76 (2015) 240–255 255
object-oriented databases. An overall storage architecture and its
detailed illustrations were proposed, and the correctness and qual-
ity of the storage approach were proved and analyzed. We achieve
applicable object structure and avoid of losing the ontological
information. A prototype tool, which could store OWL 2 ontologies
in a widely used open source object database db4o, was imple-
mented. Also, a query interface was developed in the prototype
tool for querying the stored OWL 2 ontologies. The storage and
query examples were provided to show that the approach is feasi-
ble and the tool is efficient.

The proposed method in this paper may be useful for some pos-
sible applications. Currently, ontologies are increasingly used in
many application domains. For example, in [2], a novel ontology-
supported case-based reasoning (OS-CBR) approach is proposed
and implemented in the mobile-based response system (MERS)
to support emergency decision makers to effectively respond to
an emergency situation. In [7,29], ontologies are used to represent
and manage knowledge in the Semantic Web. After storing ontol-
ogies in databases with our method, on one hand, this may to some
extent solve the scalability issue raised by the real ontologies, and
some mature and efficient database technologies (e.g., query,
manipulation, and analysis [10,24,25]) may be useful for handling
and managing the ontologies. On the other hand, some database
users can access to the ontologies directly by querying the dat-
abases even though they do not know the details of the ontologies.
In our near future work we will further investigate the possible
applications of the proposed method in depth.

As far as future work, we realize that with the development of
ontologies in various application domains, some super large scale
OWL 2 ontologies may occur, and we will test them in our future
work to further evaluate our approach and tool. Also, with the pro-
gressing of research works on storage of OWL 2 ontologies, we will
create a rather larger real-world dataset to link and evaluate the
experimentation with some works in databases and IR (informa-
tion retrieval) communities. Moreover, we will comprehensively
investigate and make further improvements in querying capabili-
ties, and test the querying efficiency. In addition, extending an
existing database system with reasoning capabilities for support-
ing the reasoning of large ontologies stored in databases is an
important direction, which may solve the problem of the loss of
semantics. Furthermore, we aim at studying the effective integra-
tion of storing, querying, and reasoning in depth.

Acknowledgments

The authors thank the anonymous referees for their valuable
comments and suggestions, which improved the technical content
and the presentation of the paper. The work is supported by the
National Natural Science Foundation of China (61073139,
61202260, 61370075), the Fundamental Research Funds for the
Central Universities (N120404005), and in part by the Program for
New Century Excellent Talents in University (NCET-05-0288).

References

[1] L. Al-Jadir, C. Parent, S. Spaccapietra, Reasoning with large ontologies stored in
relational databases: the OntoMinD approach, Data Knowl. Eng. 69 (11) (2010)
1158–1180.

[2] K. Amailef, J. Lu, Ontology-supported case-based reasoning approach for
intelligent m-government emergency response services, Decis. Support Syst.
55 (1) (2013) 79–97.

[3] I. Astrova, N. Korda, A. Kalja, Storing OWL ontologies in SQL relational
databases, in: Proc. of World Academy of Science Engineering and Technology,
2007, pp. 167–172.

[4] Y. An, A. Borgida, J. Mylopoulos, Refining semantic mappings from relational
tables to ontologies, in: Proceedings of 2nd International workshop on
Semantic Web and Databases (SWDB 2004), 2004, pp. 84–90.

[5] I. Astrova, Reverse engineering of relational database to ontologies, in: Proc. of
the ESWC 2004, 2004, pp. 327–341.
[6] I. Astrova, A. Kalja, Storing OWL ontologies in SQL3 object-relational databases,
in: Proc. of 8th WSEAS Int. Conf. on Applied Informatics and Communications
(AIC’08), 2008, pp. 99–103.

[7] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific Am. 284 (5)
(2001) 34–43.

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.),
The Description Logic Handbook: Theory, Implementation, and Applications,
Cambridge University Press, Cambridge, 2003.

[9] B. Chandrasekaran, R. Josephson John, V. Richard Benjamins, What are
ontologies* and why do we need them?, IEEE Intell Syst. 14 (1) (1999) 20–26.

[10] R.G.G. Cattell, D.K. Barry, et al., The Object Data Standard: ODMG 3.0, springer,
2000.

[11] J. Chen, Y. Wu, Rules-based object-relational databases ontology construction,
J. Syst. Eng. Electron. 20 (1) (2009) 211–215.

[12] C.P de Laborda, S. Conrad, Relational.OWL-A data and schema representation
format based on OWL, in: Second Asia-Pacific Conference on Conceptual
Modeling (APCCM2005), 2005, pp. 89–96.

[13] A. Gali, C.X. Chen, K.T. Claypool, R. Uceda-Sosa, From ontology to relational
databases, in: Proc. of ER Workshops 2004, LNCS 3289, 2004, pp. 278–289.

[14] B.C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler, OWL 2:
the next step for OWL, in: Web Semantics: Science, Services and Agents on the
World Wide Web 6(4), 2008, pp. 309–322.

[15] R. Ghawi, N. Cullot, Database-to-ontology mapping generation for semantic
interoperability, Third International Workshop on Database Interoperability
(InterDB), 2007.

[16] I. Horrocks, P.F. Patel-Schneider, F. van Harmelen, From SHIQ and RDF to OWL:
the making of a web ontology language, J. Web Semant. 1 (1) (2003) 7–26.

[17] S. Heymans et al., Ontology reasoning with large data repositories, in: M.
Hepp, P. De Leenheer, A. de Moor, Y. Sure (Eds.), Ontology Management,
Semantic Web, Semantic Web Services, and Business Applications, Springer,
2008, pp. 89–128.

[18] N. Konstantinou, D. M Spanos, M. Nikolas, Ontology and database mapping: a
survey of current implementations and future directions, J. Web Eng. 7 (1)
(2008) 1–24.

[19] I. Kwan, J. Fong, Schema integration methodology and its verification by use of
information capacity, Inform. Syst. 24 (5) (1999) 355–376.

[20] A. Khalid, A.H. Shah, M.A. Qadir, OntRel: an ontology indexer to store OWL-DL
ontologies and its instances, in: Proc. of Int. Conf. of Soft Computing and
Pattern Recognition, 2009, pp. 478–483.

[21] L. Lubyte, S. Tessaris, Automatic extraction of ontologies wrapping relational
data sources, in: DEXA 2009, 2009, pp. 128–142.

[22] R.J. Miller, Y.E. Ioannidis, R. Ramakrishnan, The use of information capacity in
schema integration and translation, in: Proc. of the 19th VLDB Conference,
1993, pp. 120–133.

[23] OWL: Ontology Web Language. <http://www.w3.org/2004/OWL/>.
[24] C. Martinez-Cruz, I. Blanco, M. Vila, Ontologies versus relational databases: are

they so different? a comparison, Artif. Intell. Rev. 38 (2012) 271–290.
[25] T.U. Muenchen, D. Maier, Object-Oriented Database Theory, 2001.
[26] Object-oriented database db4o: <http://www.db4o.com/>.
[27] OWL 2 Web Ontology Language Document Overview (Second Edition), <http://

www.w3.org/TR/owl2-overview/>, W3C Recommendation 11 December 2012.
[28] Z. Pan, X. Zhang, J. Heflin, DLDB2: a scalable multi-perspective semantic web

repository, in: IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology, Sydney, NSW, 2008.

[29] S. Staab, R. Studer (Eds.), Handbook on Ontologies, second ed., Springer, 2009.
[30] D.E. Spanos, P. Stavrou, N. Mitrou, Bringing relational databases into the

semantic web: a survey, Semant. Web 3 (2) (2012) 169–209.
[31] O. Udrea, L. Getoor, R.J. Miller, Leveraging data and structure in ontology

integration, in: Proc. of the 27th ACM SIGMOD Int. Conf. on Management of
Data, 2007, pp. 449–460.

[32] N. Villanueva-Rosales, M. Dumontier, Describing chemical functional groups in
OWL-DL for the classification of chemical compounds, in: OWL: Experiences
and Directions (OWLED 07), Innsbruck, Austria, 2007.

[33] E. Vyšniauskas, L. Nemuraitė, B. Paradauskas, Preserving semantics of Owl 2
ontologies in relational databases using hybrid approach, Inform. Technol.
Control 41 (2) (2012) 103–115. ISSN: 1392-124X.

[34] E. Vysniauskas, L. Nemuraite, Mapping of OWL ontology concepts to RDB
schemas, in: Information Technologies 2009: Proceedings of the 15th
International Conference on Information and Software Technologies, IT 2009,
Kaunas Lithuania, 2009, pp. 317–327.

[35] E. Vysniauskas, L. Nemuraite, Transforming ontology representation from OWL
to relational database, Inform. Technol. Control 35 (3) (2006) 333–343.

[36] E. Vysniauskas, L. Nemuraite, A. Sukys, A hybrid approach for relating OWL 2
ontologies and relational databases, BIR 2010, LNBIP 64, 2010, pp. 86–101.

[37] F. Zhang, Z.M. Ma, L. Yan, J.W. Cheng, Storing fuzzy ontology in fuzzy relational
database, in: Proceedings of the 22nd International Conference on Database
and Expert Systems Applications (DEXA), 2011, pp. 447–455.

[38] F. Zhang, Z.M. Ma, L. Yan, Construction of ontologies from object-oriented
database models, Integr. Comput.-Aid. Eng. 18 (4) (2011) 327–347.

[39] F. Zhang, Z.M. Ma, Representing and reasoning about XML with ontologies,
Appl. Intell. 40 (2) (2014) 74–106.

[40] J. Zhou, L. Ma, Q. Liu, et al., Minerva: a scalable OWL ontology storage and
inference system, in: Proc. of the ASWC 2006, LNCS 4185, 2006, pp. 429–443.

[41] S. Zhao, E. Chang, From database to semantic web ontology: an overview, in:
On the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops,
2007, pp. 1205–1214.

http://refhub.elsevier.com/S0950-7051(14)00458-4/h0005
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0005
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0005
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0010
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0010
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0010
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0035
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0035
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0040
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0040
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0040
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0040
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0040
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0040
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0040
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0040
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0045
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0045
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0050
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0050
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0050
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0055
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0055
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0080
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0080
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0085
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0085
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0085
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0085
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0085
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0085
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0085
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0085
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0085
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0090
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0090
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0090
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0095
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0095
http://www.w3.org/2004/OWL/
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0125
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0125
http://www.db4o.com/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0150
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0150
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0150
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0155
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0155
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0170
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0170
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0170
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0180
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0180
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0195
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0195
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0200
http://refhub.elsevier.com/S0950-7051(14)00458-4/h0200

	Storing OWL ontologies in object-oriented databases
	1 Introduction
	2 OWL 2 ontologies and object-oriented databases
	2.1 OWL 2 ontologies
	2.2 Object-oriented databases

	3 Storage of OWL 2 ontologies in object-oriented databases
	3.1 The overall architecture of storage approach
	3.2 The detailed procedures of storing OWL 2 ontologies in object-oriented databases
	3.2.1 Storing the structure information of OWL 2 ontology in object-oriented database
	3.2.2 Storing the instance information of OWL 2 ontology in object-oriented database

	3.3 Correctness of the storage approach
	3.4 Prototype storage tool
	3.5 Discussions

	4 Related work
	5 Conclusions and future works
	Acknowledgments
	References

