
Applied Mathematical Modelling 41 (2017) 667–682 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

Scheduling flexible job-shops with transportation times: 

Mathematical models and a hybrid imperialist competitive 

algorithm 

Sajad Karimi, Zaniar Ardalan, B. Naderi ∗, M. Mohammadi 

Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran 

a r t i c l e i n f o 

Article history: 

Received 28 December 2013 

Revised 22 August 2016 

Accepted 15 September 2016 

Available online 30 September 2016 

Keywords: 

Scheduling 

Flexible job shops 

Transportation times 

Mathematical models 

Hybrid imperialist competitive algorithm 

a b s t r a c t 

After the completion of a job on a machine, it needs to be transported to the next machine, 

actually taking some time. However, the transportation times are commonly neglected in 

the literature. This paper incorporates the transportation times between the machines into 

the flexible job-shop scheduling problem. We mathematically formulate the problem by 

two mixed integer linear programming models. Since the problem is NP-hard, we pro- 

pose an adaptation of the imperialist competitive algorithm hybridized by a simulated 

annealing-based local search to solve the problem. Various operators and parameters of the 

algorithm are calibrated using the Taguchi method. The presented algorithm is assessed by 

comparing it against two other competitive algorithms in the literature. The computational 

results show that this algorithm has an outstanding performance in solving the problem. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Scheduling is an integral part of the operation research which helps the industries to plan their manufacturing activities

appropriately. Three factors of the workshop circumstances, the technical constraints of the processes, and the performance

indexes compose a scheduling problem [1] . One famous problem in this area is the job-shop scheduling problem (JSSP). In

the conventional JSSP, m different machines should process n different jobs. The aim of JSSP is to find a job sequence on

each machine regarding a given objective function. The most common objective function is to minimize the makespan (the

maximum completion time of all jobs). The JSSP is an NP-hard problem [2] . 

As a result of the progress in technology, factories utilize flexible machines that are able to perform more than one type

of operation. In this regard, a variant of the JSSP, named flexible job-shop scheduling problem (FJSSP), is defined where

machines are flexible. Hence, each operation can be carried out by different machines. In the FJSSP, there are two sub-

problems: assigning operations to the machines and sequencing the operations on them. Note that the FJSSP is also NP-hard.

In the classical FJSSP, several basic assumptions, partially non-realistic, are considered. One such assumption is that each

job can be processed on the next machine forthwith after its completion on the previous machine. That is, the transportation

times are overlooked. Yet in real cases, jobs should be first transported between the machines by transportation systems.

This drawback motivates us to incorporate the transportation times between the machines into the FJSSP. There are two

types of transportation systems: single-transporter and multi-transporter systems. Here we consider the multi-transporter

system. In this system, several devices are deployed to perform the transportation of the jobs from one machine to another.
∗ Corresponding author. 

E-mail addresses: bahman.naderi@aut.ac.ir , bahman_naderi62@yahoo.com (B. Naderi). 

http://dx.doi.org/10.1016/j.apm.2016.09.022 

0307-904X/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.apm.2016.09.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2016.09.022&domain=pdf
mailto:bahman.naderi@aut.ac.ir
mailto:bahman_naderi62@yahoo.com
http://dx.doi.org/10.1016/j.apm.2016.09.022


668 S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the number of the transporters is considered to be infinite, jobs can be transported without any delay. We also con-

sider job-dependent transportation times. That is, the magnitude of the transportation time depends on both the distance

among the machines and the job to be transported. 

The major contribution of this paper is to consider the transportation times in the FJSSP. It provides two mathematical

models: sequence-based and position-based mixed integer linear programming (MILP) models. Furthermore, since the FJSSP 

is NP-hard, we develop a new imperialist competitive algorithm to solve this problem. This method utilizes the assimilation

policy, the imperialist competition mechanisms, and a simulated annealing-like local search. The algorithm is evaluated by

comparing it with two mathematical models and two available algorithms in the relevant literature: the genetic algorithm

[14] and the chemical reaction optimization [18] . 

The remainder of this paper is organized as follows. The literature review is discussed in Section 2 . The MILP models

are presented in Section 3 . The developed metaheuristic algorithm is described in Section 4 . The computational results are

presented in Section 5 . The conclusion and future research are mentioned in Section 6 . 

2. Literature review 

The paper by Bruker and Schlie [3] is the first work to address the FJSSP. They developed a polynomial algorithm to solve

the FJSSP. Afterwards, to solve this problem, various approaches have been deployed in the literature. These approaches can

be divided into two groups: integrated and hierarchical methods [4] . In the first approach, the assignment and sequencing

decisions are determined interactively. In the second approach, these two decisions are taken independently. 

Choi and Choi [5] proposed a mixed integer linear programming (MILP) model to solve the FJSSP. They consid-

ered alternative operations and sequence-dependent setup times. Gao et al . [6] studied the FJSSP with machine

availability constraints and presented a mixed integer non-linear programming (MINLP) formulation. Their solu- 

tion procedure was a hybridized genetic algorithm. Imanipour and Zegordi [7] studied the FJSSP. They also pre-

sented an MINLP model for the FJSSP with sequence-dependent setup times and developed a Tabu search. Fattahi

et al . [8] proposed the first position-based MILP model and also developed six heuristics for the FJSSP. To obtain the better

solutions, a mathematical formulation is deployed in small-sized instances. The heuristics contain both integrated and

hierarchical approaches. In another research, Fattahi et al . [9] considered the FJSSP with overlap between the operations.

A hierarchical approach was developed based on simulated annealing. Ozguven et al. [10] dealt with two problems: the

FJSSP with routing and sequencing sub-problems, and the FJSSP with process plan flexibility. Ozguven et al . [11] studied an

advanced form of the FJSSP with sequence-dependent setup times as well as routing flexibility. They proposed two MILP

formulations for the problem. Roshanaei et al. [41] developed new solution methodologies for the FJSSP. They proposed two

MILP models to mathematically formulate the problem: position-based and sequence-based. 

Several other meta-heuristics have been proposed as follows: a hierarchical Tabu search by Brandimarte [12] , genetic

algorithms by Chen et al. [13] and Zhang et al. [14] , a local search technique by Mastrolilli and Gambardella [15] , parallel

variable neighborhood search by Yazdani et al. [16] , a hybrid particle swarm optimization by Xia and Wu [17] , a discrete

chemical-reaction optimization by Li and Pan [18] , an artificial immune algorithm by Bagheri et al . [32] , and an evolutionary

algorithm by Rahmati et al . [34] . 

The literature of scheduling with transportation times is as follows. Strusevich [19] considered the time lags in the open-

shop problems. He assumed those time lags as the times required to transport a job to the next machines. Hurink and

Knust [20] studied this problem with a single-transporter. Langston [21] considered two-stage hybrid flow-shops, and in-

troduced several solving procedures. Naderi et al . [22] incorporated the sequence-dependent transportation times with a

single-transporter system into the flow-shop. Their solution procedure was an adaptation of the simulated annealing algo-

rithm. Boudhar and Haned [23] studied scheduling preemptive jobs on the identical parallel machines. Several heuristic al-

gorithms were presented and a high-quality lower-bound one was obtained for the makespan-minimizing problems. Naderi

et al . [44] considered the transportation times in the permutation flow-shops. They proposed six different models for the

problem. 

3. Problem description and mathematical modeling 

This section first illustrates the problem by a numerical instance of the FJSSP. The processing and transportation times

are respectively shown in Tables 1 and 2. 

The optimal solutions of this problem with and without the transportation times are shown as Gantt charts in Figs. 1

and 2 . As shown, the optimal solutions of the two problems are different. 

Later on, the FJSSP with the transportation times is mathematically formulated. Note that the decision variables in the

model of the FJSSP should determine both the assignment of the operation to the machines and the sequence of the opera-

tions on each machine. To solve this problem, two types of MILP models are presented: sequence-based and position-based.

The proposed models are based on the model presented by Roshanaei et al . [41] . In the sequence-based model the binary

variables are explained as follows. For each pair of the operations (j, h) , there is a binary variable which shows whether

operation j is processed after operation h or not. In the position-based model, binary variables determine the positions of

the operations in the sequence. 



S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 669 

Table 1 

The processing times of each operation on each machine. 

Jobs Operations Machines 

M1 M2 M3 

Job 1 O 1,1 4 – 2 

O 1,2 4 2 –

O 1,3 5 7 2 

Job 2 O 2,1 - 3 5 

O 2,2 3 2 4 

Table 2 

The transportation times between the machines for each job. 

jobs Machines Machines 

M1 M2 M3 

Job 1 M0 2 3 2 

M1 3 2 1 

M2 4 1 3 

M3 1 8 5 

Job 2 M0 5 1 3 

M1 1 3 2 

M2 5 5 1 

M3 3 4 4 

0 1 2 3 4 5 6 7 time

M1

M2

M3

O2,2

O2,1

O1,1

O1,2

O1,3

Fig. 1. The Gantt chart of the FJSSP without the transportation times. 

0 1 2 3 4 5 6 7 8 9 10 11 12 time

M1

M2

M3

O2,2O2,1

O1,1

O1,2

O1,3

Fig. 2. The Gantt chart of the FJSSP with the transportation times. 

 

 

 

 

 

 

 

3.1. Assumptions and parameters 

In both models, the transportation times between the machines is considered as follows. There is an unlimited number of

transporters. Thus, no delay occurs while transporting jobs to the next machines. Machine failure is not considered. Buffers

are infinite. Machines cannot process more than one job simultaneously. Each operation should be allocated to one machine.

Every machine and every job is ready at time 0. Each job has a fixed processing sequence; if the process of an operation

is started, it should be finished without any interruption. In order to consider the transportation times between the input

warehouse and the first machine, a dummy machine with zero processing time, say machine 0, is defined. The parameters

and the indexes are presented in Table 3. 

3.2. Model 1 (sequence-based model) 

In this subsection, the sequence-based mathematical model for the FJSSP is presented. It is noteworthy that the index

range of the machine is from 0 to m. The zero in the range denotes a dummy machine. The model variables are: 



670 S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 

Table 3 

The parameters and the indexes. 

Para. Definition 

N The number of the jobs 

m The number of the machines 

j,h The indices for the jobs where { 1,2, …,n} 

i The indices for the machines where { 1,2 ,…,m} 

n j The number of the operations of job j . 

O j,l l th operation of job j 

P j,l,i The processing time of O j,l on machine i . 

l,z The indices for the operations of job j { 1,2 ,…,n j } 

t j,k,i The transportation time of job j from machine k to machine i . 

f,k The indices for the positions in machine i where { 1,2 ,…,r i } 

e j,l,I The parameter that takes value 1 if O j,l is eligible to be processed on machine i ; otherwise 0. 

r i The number of the operations eligible to be processed on machine i (i.e., r i = 

∑ n 
j=1 

∑ n j 
l=1 

e j.l.i ) 

M A large positive number 
X j,l,h,z : A binary variable taking value 1 if O j,l is processed after O h,z and 0 otherwise. J = { 1,2 ,…,n −1},h > j 

Y j,l,i,k : A binary variable taking value 1 if O j,l is processed on machine i and O j,l −1 on machine k . 

C j,l : A continuous variable for the completion time of O j,l 

Minimize C max 

Subject to: 

m ∑ 

i =1 

m ∑ 

k =1 

Y j,l,i,k = 1 ∀ j,l> 1 (1) 

m ∑ 

i =1 

Y j, 1 ,i, 0 = 1 ∀ j (2) 

m ∑ 

k =1 

Y j,l,i,k ≤ e j,l,i ∀ j,l> 1 ,i (3) 

Y j, 1 ,i, 0 ≤ e j, 1 ,i ∀ j,i (4) 

Y j,l,i,k ≤
m ∑ 

f=1 

Y j,l−1 ,k, f ∀ j,l> 2 ,i,k (5) 

Y j, 2 ,i,k ≤ Y j, 1 ,k, 0 ∀ j,i,k (6) 

C j,l ≥ C j,l−1 + 

m ∑ 

i =1 

m ∑ 

k =1 

Y j,l,i,k 
(

p j,l,i + t j,k,i 

) ∀ j,l> 1 (7) 

C j, 1 ≥
m ∑ 

i =1 

Y j, 1 ,i, 0 ·
(

p j, 1 ,i + t j, 0 ,i 
) ∀ j (8) 

C j,l ≥ C h,z + p j,l,i − M 

(
1 − X j,l,h,z 

)
− M 

( 

2 −
( 

m ∑ 

k =1 

Y j,l,i,k 

) 

−
( 

m ∑ 

k =1 

Y h,z,i,k 

) ) 

∀ j 〈 n,l 〉 1 ;h> j,z> 1 ;i (9) 

C j, 1 ≥ C h,z + p j, 1 ,i − M 

(
1 − X j, 1 ,h,z 

)
− M 

( 

2 − Y j, 1 ,i, 0 −
( 

m ∑ 

k =1 

Y h,z,i,k 

) ) 

∀ j 〈 n ;h 〉 j,z> 1 ;i (10) 

C j,l ≥ C h, 1 + p j,l,i − M 

(
1 − X j,l,h, 1 

)
− M 

( 

2 −
( 

m ∑ 

k =1 

Y j,l,i,k 

) 

− Y h, 1 ,i, 0 

) 

∀ j 〈 n,l 〉 1 ;h> j,i (11) 

C j, 1 ≥ C h, 1 + p j, 1 ,i − M 

(
1 − X j, 1 ,h, 1 

)
− M 

(
2 − Y j, 1 ,i, 0 − Y h, 1 ,i, 0 

) ∀ j 〈 n,h 〉 j,i (12) 

C h,z ≥ C j,l + p h,z,i − M 

(
X j,l,h,z 

)
− M 

( 

2 −
( 

m ∑ 

k =1 

Y j,l,i,k 

) 

−
( 

m ∑ 

k =1 

Y h,z,i,k 

) ) 

∀ j 〈 n,l 〉 1 ;h> j,z> 1 ;i (13) 

C h,z ≥ C j, 1 + p h,z,i − M 

(
X j, 1 ,h,z 

)
− M 

( 

− M(2 − Y j, 1 ,i, 0 −
( 

m ∑ 

k =1 

Y h,z,i,k 

) ) 

∀ j 〈 n ;h 〉 j,z> 1 ;i (14) 



S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 671 

Fig. 3. The schematic Gantt chart to illustrate the constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C h, 1 ≥ C j,l + p h, 1 ,i − M 

(
X j,l,h, 1 

)
− M 

( 

2 −
( 

m ∑ 

k =1 

Y j,l,i,k 

) 

− Y h, 1 ,i, 0 

) 

∀ j 〈 n,l 〉 1 ;h> j,i (15)

C h, 1 ≥ C j, 1 + p h, 1 ,i − M 

(
X j, 1 ,h, 1 

)
− M 

(
2 − Y j, 1 ,i, 0 − Y h, 1 ,i, 0 

) ∀ j 〈 n,h 〉 j,i , (16)

C max ≥ C j, n j ∀ j (17)

C j,l ≥ 0 ∀ j,l (18)

X j,l,h,z , Y j,l,i,k ∈ { 0 , 1 } . (19)

The objective function is minimizing the maximum makespan. Constraint set (1) guarantees that every operation (except

the first operation) should be allocated to only one machine. Constraint set (2) represents that the first operation of every

job is exactly assigned to one position of one available machine. 

For every operation, there is a set of machines that are feasible to process this operation, and this set of feasible machines

(alternative machines) does not necessarily include all the machines for each operation. So, we define constraint set (3) in

order to make sure that the machine for each O j,l (except O j,1 ) is selected from the eligible alternative machines for O j,l .

Constraint set (4) enforces that the first operation of each job should be operated on the feasible machines for this operation.

According to the definition of variable Y j,l,i,k , O j,l −1 should be processed on machine k, if O j,l is processed on machine i .

Therefore, constraint sets (5) and (6) ensure that if O j,l is operated on machine i, O j,l −1 is processed on machine k . 

It is noteworthy that constraint sets (7) –(16) are sequencing constraints. As shown in Fig. 3 , the operation O j,l should be

completed after the completion of O j,i −1 , the transportation of the related job, and the processing of the O j,l . Hence, con-

straint sets (7) and (8) enforce that O j,l starts just after the completion of job O j,l −1 and the transportation of job j to machine

i . These constraints consider the transportation times in the FJSSP model. Constraint sets (9) to (16) force every machine to

operate only one operation at a certain time. Constraint set (17) determines the value of the makespan by considering the

completion time of the last operation of all the jobs. Constraint set (18) enforces that the continuous variables take positive

values, and constraint set (19) shows that those related variables are binary. 

3.3. Model 2 (the position-based model) 

The position-based mathematical model is presented here. The binary variables locate the jobs in the sequence. Like the

sequence-based model, the machine index begins from 0. The variables are as follows. 

X j,l,i,f,k Take value 1 if O j,l is processed in position f of machine i after the processing of job j on machine k , and 0 other-

wise. 

C j,l The completion time of O j,l . 

Minimize C max 

Subject to: 

m ∑ 

i =1 

r i ∑ 

f=1 

m ∑ 

k =1 

X j,l,i, f,k = 1 ∀ j,l> 1 , (20)

m ∑ 

i =1 

r i ∑ 

f=1 

X j, 1 ,i, f, 0 = 1 ∀ j , (21)



672 S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 

 

 

 

 

 

 

 

 

 

 

 

 

 

n ∑ 

j=1 

n j ∑ 

l=2 

m ∑ 

k =1 

X j,l,i, f,k + 

n ∑ 

j=1 

X j, 1 ,i, f, 0 ≤ 1 ∀ i, f∈ R i , (22) 

r i ∑ 

f=1 

m ∑ 

k =1 

X j,l,i, f,k ≤ e j,l,i ∀ j,l> 1 ,i , (23) 

r i ∑ 

f=1 

X j, 1 ,i, f, 0 ≤ e j, 1 ,i ∀ j,i , (24) 

r i ∑ 

f=1 

X j,l,i, f,k ≤
r k ∑ 

f=1 

m ∑ 

t=1 

X j,l−1 ,k, f,t ∀ j,l> 2 ,i,k , (25) 

r i ∑ 

f=1 

X j, 2 ,i, f,k ≤
r k ∑ 

f=1 

X j, 1 ,k, f, 0 ∀ j,i,k , (26) 

C j,l ≥ C j,l−1 + 

m ∑ 

i =1 

r i ∑ 

f=1 

m ∑ 

k =1 

X j,l,i, f,k 

(
p j,l,i + t j,k,i 

)∀ j,l> 1 (27) 

C j, 1 ≥
m ∑ 

i =1 

r i ∑ 

f=1 

X j, 1 ,i, f, 0 

(
p j, 1 ,i + t j, 0 ,i 

) ∀ j , (28) 

C j,l ≥ C h,z + p j,l,i − M 

( 

1 −
m ∑ 

k =1 

X j,l,i, f,k 

) 

− M 

( 

1 −
f−1 ∑ 

t=1 

m ∑ 

k =1 

X h,z,i,t,k 

) 

∀ j,l> 1 ,h,z> 1 , j 	 = h,i, fεR i > 1 
, (29) 

C j, 1 ≥ C h,z + p j, 1 ,i − M 

(
1 − X j, 1 ,i, f, 0 

)
− M 

( 

1 −
f−1 ∑ 

t=1 

m ∑ 

k =1 

X h,z,i,t,k 

) 

∀ j,h,z> 1 , j 	 = h,i, fεR i > 1 
, (30) 

C j,l ≥ C h, 1 + p j,l,i − M 

( 

1 −
m ∑ 

k =1 

X j,l,i, f,k 

) 

− M 

( 

1 −
f−1 ∑ 

t=1 

X h, 1 ,i,t, 0 

) 

∀ j,l> 1 ,h, j 	 = h,i, fεR i > 1 
, (31) 

C j, 1 ≥ C h, 1 + p j, 1 ,i − M 

(
1 − X j, 1 ,i, f, 0 

)
− M 

( 

1 −
f−1 ∑ 

t=1 

X h, 1 ,i,t, 0 

) 

∀ j,h, j 	 = h,i, fεR i > 1 
, (32) 

C max ≥ C j, n j ∀ j (33) 

C j,l ≥ 0 (34) 

X j,l,i, f,k ∈ { 0 , 1 } (35) 

The objective function is to minimize the makespan. Constraint set (20) ensures that each operation (except the first

operation) uniquely occupies one position on one machine among all of the available machines. Constraint set (21) ensures

that the first operation of each job is assigned to one position of one available machine. Constraint set (22) guarantees

that each position of each machine is occupied once. When l is equal to 1, index k will be equal to 0 because O j , 1 is

the first operation in each job. Constraint set (23) enforces that O j,l (except O j,1 ) must be assigned to an eligible machine

that can process O j,l . Constraint set (24) enforces that the first operation of each job should be operated on its respective

and eligible machines. According to the definition of variable X j,l,i,f,k , if the operation l of one job is operated on machine

i, O l-1 should be operated on machine k . Thus, we define Constraint sets (25) and (26) to ensure that O j,l −1 is processed

on machine k when O j,l is processed on machine i . Constraint sets (27) to (32) are sequencing constraints. Constraint sets

(27) and (28) are logical precedence constraints among the operations of a job and the transportation times between the 

machines considered in these constraints. According to Fig. 3 , the processing of O j,l can be completed after the completion of

its previous operation ( O j,l −1 ), and the transportation of the job from machine k to machine i , and the processing of O j , 1 on

machine i . Constraint sets (27) and (28) guarantee this issue. Constraint sets (29) –(32) ensure that every machine processes

only one operation at a time. Constraint set (33) defines the makespan. Constraint sets (34) and (35) define the decision

variables. 



S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 673 

Fig. 4. The Pseudo-code of the proposed imperialist competitive algorithm. 

Fig. 5. The structure of the solution representation in the imperialist competitive algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. The proposed imperialist competitive algorithm 

Since the FJSSP is NP-hard, solving the large-scale problems with the proposed mathematical models is practically im-

possible. Therefore, we develop an imperialist competitive algorithm (ICA). This algorithm has been proposed for various

optimization problems [24,25] . It is a population-based algorithm in which every element of the population are called a

country. Each country denotes an encoded solution to the problem. The better countries are chosen to become the imperi-

alists. The other countries are divided among the imperialists as colonies. The whole set of an imperialist and its colonies is

called an empire. After seizing the colonies, the imperialists try to penetrate into their colonies by making them similar to

themselves. Then the imperialists compete with each other to seize more colonies and gain more power. This process makes

some imperialists more powerful and some weaker. The weak empires eventually collapse. The ICA has been employed in

several areas such as the non-convex dynamic economic power-dispatching problem [35] , the project scheduling problem

[36] , the hub location problem [37] , the supply chain network design [38] , the power flow problem with non-smooth cost

functions, [39] and the complicated image-matching problems [40] . 

4.1. The proposed ICA procedure 

This paper proposes a well-organized ICA for the FJSSP. In this regard, some effective changes are made in the conven-

tional ICA as follows. As mentioned above, the imperialist countries assimilate their colonies by making them similar to

themselves. This procedure is called the assimilation policy. This procedure lessens the diversity of the algorithm. Thus, in

order to prevent this similarity and to have more powerful colonies, we mutate empires by a mutation strategy and then the

colonies are assimilated into these mutated empires. In the real world cases, imperialist countries have several strategies to

develop their power and domination, but the classical ICA does not develop the imperialists’ power, obviously it is a draw-

back of the classical ICA. Hence, in order to make up for that, a strategy called the imperialists’ development plan is applied

in the algorithm. This helps the algorithm to give better results. Furthermore, to enhance the algorithm diversification, a

replacing strategy is implemented and also a local search is deployed to increase the intensification. The pseudo-code of the

ICA is shown in Fig. 4. 

4.2. Encoding scheme, initialization, and empires’ formation 

In the literature of the FJSSP, several solution representations exist [13,14,45] . Each one has its own pros and cons. In

this paper, we use an encoding scheme proposed by Zhang et al . [14] . This solution representation does not require repair

mechanism. Therefore, the decoding procedure takes less time throughout the iterations. This encoding scheme includes

two parts; the first part is machine-selection (MS) and the second part is operation-sequence (OS). They are named MSOS

( Fig. 5 ). According to the example mentioned in Section 2 , one possible encoding can be as follows. 



674 S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 

Fig. 6. Machine-selection, part of the solution representation. 

Fig. 7. Operation sequence, part of the solution representation. 

Fig. 8. The Gantt chart of the encoding scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The value placed in the machine cell for the first operation is equal to 2. This means that 2th machine in the alternative

machine set is selected for the first operation. (See Fig. 6 ). 

In the second part, the indicator of each job is duplicated n j times, that n j is the number of the operations of job j . Also,

the sequence of the operations is indicated by this part of encoding. It is illustrated in Fig. 7. 

The sequence of the operations in Fig. 6 is O 2,1 – O 2,2 –O 1,1 – O 1,2 – O 2,3 . The decoding of the encoding in Fig. 4 is shown

as a Gantt chart in Fig. 8. 

Generating the initial countries is conducted through two steps. In the first step, we generate the initial machine-

selection part. For this part, three approaches, already presented by Zhang et al. [14] , are adapted: global selection (GS),

local selection (LS), and random selection (RS). The adaptation of the first two approaches is applied by adding the trans-

portation time to the processing time of the corresponding machine. In the second part of the solution representation, the

sequence of all the operations is randomly determined. The major advantage of the presented encoding scheme is that it

does not produce infeasible solutions. 

In the ICA, some countries become imperialist and others are the colonies of these imperialists. In order to select the

imperialists, the powerful ones (countries with better objective functions) are selected. The rest form their colonies. The

more powerful an imperialist is, the more colonies it seizes. The population size (POP) includes several imperialist countries

(N imp ) and their colonies ( N col ). 

Pop = N imp + N col . 

To assign colonies to the imperialists, the roulette wheel selection procedure is used. The power of each imperialist is

calculated by: 

P ower (k ) = 

1 

ob jecti v e f unction ( k ) 
, 

where objective function (k) is the makespan value corresponding to the k th imperialist. After the calculation of the power

of the imperialists, we normalize them as follows. 

p k 
power ( k ) ∑ Nimp power ( k ) 

, 
k =1 



S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 675 

Fig. 9. The mutation procedure before the assimilation. 

Fig. 10. The assimilation procedure for the machine-selection part. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where p k is the normalized power of the k th imperialist and N imp indicates the number of the imperialists. Now p k is the

probability of assigning each colony to the k th imperialist. 

4.3. The assimilation policy mechanism 

In the real world, imperialist countries desire to make their colonies similar to themselves. Each colony has some features

such as language, religion, culture, economy, etc. These features are affected by the imperialist in order to assimilate the

colonies. Thus, in the ICA, the assimilation policy mechanism denotes this imperialist effort. 

In this paper, the encoding scheme has two independent parts. Hence, we employ different operators in each part. For

the machine-selection part, two-point and uniform crossovers are deployed. In the operation-sequence part, OX and POX

crossovers are utilized. It is noteworthy that if all the colonies of an imperialist assimilate into the imperialist, after some

iteration, many repetitive colonies are obtained. To prevent this from happening, the imperialist is firstly mutated, and then

the colonies are assimilated into the mutated imperialist. 

For the first part of the encoding, mutation is done by changing the alternative machine of the related operation ran-

domly. For the second part, a swap operator is used to make a mutation (see Fig. 9 ). 

In the two-point crossover [26] for the first part, two points of the imperialist are randomly selected, and the cells

between these two points are inserted into the corresponding cells of the colony. Then, a new colony is made. In the

uniform crossover [27] , each cell of the imperialist is selected with a constant probability value, and inserted into its related

cell in the colony (see Fig. 10 ). 

In the OX crossover [28] , two points of the operation-sequence part of the imperialist are randomly selected, and the

cells between those two points are inserted into the new colony. The other cells of the new colony are selected from the

older colony with respect to the order in the older colony ( Fig. 11 ). In the POX crossover [27] , some jobs are randomly

selected, and the related cells from the imperialist are inserted into the new colony. The remaining jobs are inserted into

the new colony according to the order in the older colony ( Fig. 12 ). 

4.4. The imperialists’ updating and the competition mechanism 

Through the iterations, colonies may obtain greater power (better objective functions) than their imperialist. In this case,

the country with the greatest power becomes the new imperialist. The imperialists compete with each other to obtain

more colonies and extend their power. When an imperialist gradually loses its power, a more powerful one may capture its



676 S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 

Fig. 11. The OX crossover to assimilate the operation-sequence part. 

Fig. 12. The POX crossover to assimilate the operation-sequence part. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

colonies. Therefore, in each iteration of the algorithm, the colony with the least power under the imperialist with the least

power is separated from it and annexed to another imperialist with respect to the power of the imperialists. 

4.5. The imperialists’ development plan mechanism and local search 

Ignoring the imperialists’ behavior in the classical ICA causes the colonies to become assimilated into the less power-

ful imperialist. In order to eliminate this shortcoming, we use the imperialists’ development plan mechanism (IDP). This

mechanism improves the performance of the ICA. 

In the IDP, for each imperialist, N idp development plans (new solutions) are randomly produced. Then, the best plan (best

solution) is selected. The development plans are designed based on the current situation. Thus, in order to design a plan

based on the current situation, we should make a slight change to the imperialist. According to the fact that the encoding

scheme has two parts, an operator is chosen to implement this change to each part. First, in the machine-selection part, one

cell is randomly selected, and an alternative machine is randomly changed. Second, for the operation-sequence part, a shift

operator is selected. In the shift operator, one cell is randomly selected and transported to another random position in the

encoding scheme. 

In evolutionary algorithms, similar solutions decrease the diversity of the algorithms. This deteriorates the algorithm

performance. Here, similar colonies are replaced by new colonies produced by the initialization phase. Moreover, to improve

the performance by enhancing the intensification of the algorithm, a local search based on the simulated annealing (SA), is

utilized. The best imperialist is improved by this local search. The machine-selection part and the operation-sequence part

of the solution are nested and improved in the local search (see Fig. 13 ). The first part is improved by the internal loop, and

the external loop tries to find a better operation-sequence part. The procedure is inspired by SA. Some changes are made

to the current solution. Then, if a better solution is obtained, it is accepted. Otherwise, this change is accepted with a low

probability. To change the machine-selection part, one cell is selected, and its alternative machine is substituted. For the

second part of the encoding, inversion operator [29] is used. 

5. Numerical experiments 

This section first evaluates and compares the performance of two presented MILP formulations based on the size and

computational complexities. Then, the proposed metaheuristic algorithm is calibrated and compared with both models on

small instances. Later, we evaluate the metaheuristic algorithm on large instances by comparing it with two best performing

algorithms available on the FJSSP literature (genetic algorithm by Zhang et al . [14] and chemical reaction optimization by Li

and Pan [18] ). These two algorithms overcome other competitive algorithms in the literature [14,18] . 

The MILP models are solved by GAMS 22.2 and the algorithms are implemented by MATLAB 7.12. They are run on a

system with a 2.1 GHz Intel core i3 processor and a 4 GB RAM memory. To compare the algorithms, we need a suitable



S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 677 

Fig. 13. The Pseudo-code of the local search. 

Table 4 

The size complexity comparison between the models. 

Sequence-based model Position-based model 

# Constraint 
2 . L 2 ( m + 1 )( n − 1 )! + m 

2 n ( n − 1 ) 

+3 mnL − 2 mn + 4 nL 

L 2 ( n 2 − n )( m + 1 )(F − 1) + m 

2 n (L − 1) 

+ mn ( 3 L − 2 ) + 4 Ln + mF + F 

# Binary variables ( nL ) 2 + nL ( m + 1) 2 nL(m + 1) 2 F 

# Continues variables nL nL 

# Total variables ( nL ) 2 + nL ( m + 1) 2 + nL nL(m + 1)2F + nL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

performance index. In this regard, we use the relative percentage deviation (RPD) [28] . The RPD is calculated as follows. 

RP D i, j = 

X i, j − X min, j 

X min, j 

× 100 , 

where X i, j is the average obtained from the objective functions from i th trail of j th instance. 

5.1. Models’ evaluation 

The models are compared based on the size and computational complexities. In the size complexity, the comparison is

conducted based on the number of the variables and the constraints. Table 4 shows the results of the comparison. Param-

eter L is the maximum number of the jobs’ operations, and parameter F is the maximum number of the positions on the

machines. 

To evaluate the computational complexity of the MILP models, we produce a set of small instances. As there is no dataset

containing the transportation times in the literature of the FJSSP, we generate instances based upon Barnes and Brandimarte

datasets [42,43] . The number of the machines ( m ), the number of the jobs ( n) and the average number of the operations

in each job ( o) are as follows. m = {2, 4}, n = {2, 3, 4, 5, 6}, o = {3, 5}. We generate 20 instances from the combinations

of m, n and o . To generate the processing times, a uniform distribution between [ 1 ,99] is used and the transportation times

between the machines are generated according to a uniform distribution between [1,30] . The instances can be emailed upon

the request. 

We set the stop criterion for the MILP models at 10 0 0 seconds of the computational time. The results of the comparison

are presented in Table 5 . In this table, the GAP is the relative gap obtained from the GAMS. As reported in Table 5 , the

sequence-based model has a better performance (time and Gap) in comparison with the position-based model. 

5.2. Parameter tuning 

Before evaluating the proposed algorithm, we calibrate the algorithm, i.e. different parameters of the algorithm are an-

alyzed using the Taguchi method. The stopping criterion of the tested algorithms is the elapsed computational time of

0.05 ×m ×n ×o seconds. The Initial tests show that the suitable computational time to reach the desirable result depends on

the number of the machines, jobs, and the average operations of each job. 

The critical part of adapting an efficient evolutionary algorithm is the selection of the values of the parameters, which is

called parameter tuning. We evaluate the impacts of the parameters on the performance of the algorithms. Several methods



678 S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 

Table 5 

The results of the computational complexity comparison between the models. 

Instance size ( n,o,m ) Sequence-based model Position-based model 

C max GAP CPU time (s) # variables # constraints C max GAP CPU time (s) # variables # constraints 

1 2,3,2 202 0 0 .45 264 336 202 0 0 .2 300 812 

2 2,3,4 129 0 0 .19 456 568 129 0 0 .36 972 2896 

3 2,5,2 247 0 0 .16 600 800 247 0 0 .81 500 2076 

4 2,5,4 209 0 0 .17 920 1336 209 0 0 .63 1620 7632 

5 3,3,2 218 0 0 .18 999 1254 218 0 2 999 7662 

6 3,3,4 118 0 0 .3 1431 2124 118 0 0 .53 3267 27,582 

7 3,5,2 372 0 0 .26 2475 3162 372 10% 10 0 0 1665 20,874 

8 3,5,4 214 0 0 .23 3195 5292 214 0 43 5445 75,678 

9 4,3,2 212 0 0 .21 2784 5696 212 0 10 .31 2352 36,952 

10 4,3,4 158 0 0 .31 3552 9568 158 0 426 7728 131,120 

11 4,5,2 437 0 2 7200 15,232 447 25 .5% 10 0 0 3920 101,912 

12 4,5,4 223 0 0 .78 8480 25,440 223 10 .3 10 0 0 12,880 362,544 

13 5,3,2 269 0 0 .28 6375 33,210 269 23% 10 0 0 4575 122,540 

14 5,3,4 137 0 0 .3 7575 55,480 137 2% 10 0 0 15,075 429,880 

15 5,5,2 632 23% 10 0 0 16,875 91,310 – – – 7625 339,240 

16 5,5,4 255 0 61 18,875 152,280 – – – 25,125 1,191,480 

17 6,3,2 283 0 103 12,744 234,456 – – – 7884 322,260 

18 6,3,4 185 0 4 14,472 390,960 – – – 26,028 1,121,232 

19 6,5,2 887 32% 10 0 0 34,200 649,896 – – – 13,140 893,508 

20 6,5,4 303 1.30% 10 0 0 37,080 1,083,312 – – – 43,380 3,110,736 

Table 6 

Different levels of the Taguchi factor. 

Symbols Level Type 

N country 3 50 

100 

150 

N imp 3 5 

10 

20 

ITER seq 3 N allop /4 

N allop /2 

N allop 

ITER assg 3 N allop /4 

N allop /2 

N allop 

Table 7 

The orthogonal array L9. 

trial Control factor level 

N country N imp ITER seq ITER assg 

1 N country (1) N imp (1) ITER seq (1) ITER assg (1) 

2 N country (1) N imp (2) ITER seq (3) ITER assg (2) 

3 N country (1) N imp (3) ITER seq (2) ITER assg (3) 

4 N country (1) N imp (1) ITER seq (3) ITER assg (3) 

5 N country (2) N imp (2) ITER seq (2) ITER assg (1) 

6 N country (2) N imp (3) ITER seq (1) ITER assg (2) 

7 N country (3) N imp (1) ITER seq (2) ITER assg (2) 

8 N country (3) N imp (2) ITER seq (1) ITER assg (3) 

9 N country (3) N imp (3) ITER seq (3) ITER assg (1) 

 

 

 

 

 

can be used for parameter tuning including full factorial [31] and Taguchi experiments [33] . Here, we use the Taguchi exper-

iments to reduce the number of the tests and the time. We also consider the following control factors: the number of the

countries ( N country ), the imperialists ( N imp ), the number of local search iterations for the operation-sequence part ( ITER seq ),

and the number of the local search iterations for the machine-selection part ( ITER assg ). Different levels of these factors are

shown in Table 6 . 

Where N allop is the total operations of all the jobs. Since L9 in the orthogonal array meets our minimum requirements,

we select it. Table 7 shows the orthogonal array L9. 



S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 679 

Fig. 14. The average S/N plot for every factor level. 

Table 8 

The results of the comparison of the algorithm with the models. 

Instance Size (n,o,m) Sequence-based model Position-based model ICA 

C max GAP CPU time(s) C max GAP CPU time (s) C max CPU time (s) 

1 2,3,2 202 0 0.45 202 0 0.2 202 ∗ 1.2 

2 2,3,4 129 0 0.19 129 0 0.36 129 ∗ 2.4 

3 2,5,2 247 0 0.16 247 0 0.81 247 ∗ 2 

4 2,5,4 209 0 0.17 209 0 0.63 209 ∗ 4 

5 3,3,2 218 0 0.18 218 0 2 218 ∗ 1.8 

6 3,3,4 118 0 0.3 118 0 0.53 118 ∗ 3.6 

7 3,5,2 372 0 0.26 372 10% 10 0 0 372 ∗ 3 

8 3,5,4 214 0 0.23 214 0 43 214 ∗ 6 

9 4,3,2 212 0 0.21 212 0 10.31 212 ∗ 2.4 

10 4,3,4 158 0 0.31 158 0 426 158 ∗ 4.8 

11 4,5,2 437 0 2 447 25.5% 10 0 0 437 ∗ 4 

12 4,5,4 223 0 0.78 223 10.3 10 0 0 223 ∗ 8 

13 5,3,2 269 0 0.28 269 23% 10 0 0 269 ∗ 3 

14 5,3,4 137 0 0.3 137 2% 10 0 0 137 ∗ 6 

15 5,5,2 632 23% 10 0 0 – – – 632 5 

16 5,5,4 255 0 61 – – – 381 10 

17 6,3,2 283 0 103 – – – 283 ∗ 3.6 

18 6,3,4 185 0 4 – – – 185 ∗ 7.2 

19 6,5,2 887 32% 10 0 0 – – – 761 6 

20 6,5,4 303 1.3% 10 0 0 – – – 289 12 

 

 

 

 

 

 

 

 

 

 

A set of 60 instances is generated: 5 instances for each one of the following 12 combinations 

n = { 5 , 10 , 20 } , m = { 5 , 10 } , o = { 5 , 10 } . 
After conducting the Taguchi method, all the RPDs are converted into S/N ratios for each trial [30] . S/N of the RPDs are

calculated as follows. 

S / N = −10 × log 10 

(
RP D 

2 
)
. 

S/N results are shown in Fig. 14. 

The selected levels of the factors according to both the RPD and S/N results are: N country = 100, N imp = 10, ITER seq = N allop /4,

ITER assg = N allop /2 . 

5.3. Algorithms’ evaluation 

In this subsection, the proposed metaheuristic is compared with the MILP models in the small instances and two high-

performing existing metaheuristics in large instances. To evaluate the general performance of the algorithm, the small-sized

instances already solved by the models, are also solved by the ICA. The results of the algorithm in small-sized problems are

shown in Table 8 . 

As it can be seen, the ICA obtains the optimal solution in 16 out of 20 instances (remarks with 

∗). It is remarkable

that the elapsed time of the ICA is much less than that of the models in larger-sized instances. These results prove the

effectiveness of ICA in the FJSSP. 

Now, the proposed ICA is compared with two existing algorithms presented for the FJSSP: the Genetic Algorithm (GA)

presented by Zhang et al . [14] and the chemical reaction optimization (CRO) proposed by Li and Pan [18] . We generate 36

instances with the combination of n, m, o where n = { 10, 15, 20, 25 }, m = { 5, 10, 15 } and O = { 10, 15, 20 } and solve them



680 S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 

Table 9 

The average RPDs of the algorithms presented for the instances. 

Instance Size (n,o,m) Algorithms 

GA CRO ICA 

1 10,10,5 4 .91 3 .18 1 .86 

2 10,10,10 11 .43 10 .13 5 .30 

3 10,10,15 36 .60 12 .20 6 .10 

4 10,15,5 10 .40 5 .20 2 .60 

5 10,15,10 11 .20 13 .50 4 .50 

6 10,15,15 15 .60 17 .80 8 .90 

7 10,20,5 6 .56 5 .71 3 .55 

8 10,20,10 5 .66 7 .18 2 .33 

9 10,20,15 20 .15 13 .40 10 .11 

10 15,10,5 7 .80 6 .67 3 .63 

11 15,10,10 7 .30 7 .60 3 .11 

12 15,10,15 13 .50 6 .60 4 .20 

13 15,15,5 13 .20 14 .00 4 .60 

14 15,15,10 14 .20 13 .70 7 .15 

15 15,15,15 44 .14 34 .50 12 .10 

16 15,20,5 13 .20 5 .27 1 .90 

17 15,20,10 24 .00 17 .51 8 .30 

18 15,20,15 39 .00 19 .80 6 .60 

19 20,10,5 11 .51 9 .57 5 .82 

20 20,10,10 23 .20 13 .60 5 .07 

21 20,10,15 22 .30 9 .30 6 .11 

22 20,15,5 19 .20 7 .90 3 .20 

23 20,15,10 13 .20 11 .40 4 .09 

24 20,15,15 25 .20 19 .89 6 .30 

25 20,20,5 38 .00 26 .20 5 .70 

26 20,20,10 33 .30 8 .70 7 .63 

27 20,20,15 41 .06 39 .90 13 .30 

28 25,10,5 21 .00 7 .30 3 .50 

29 25,10,10 37 .80 12 .50 4 .13 

30 25,10,15 28 .20 6 .40 4 .70 

31 25,15,5 35 .70 24 .60 8 .70 

32 25,15,10 43 .00 24 .40 9 .30 

33 25,15,15 45 .20 25 .40 11 .30 

34 25,20,5 58 .80 44 .70 14 .90 

35 25,20,10 62 .15 44 .00 9 .00 

36 25,20,15 46 .20 15 .40 7 .70 

Average 25 .11 15 .70 6 .31 

Fig. 15. The means plot and the LSD intervals for the algorithms on the generated instances. 

 

 

 

 

 

 

 

by the algorithms with the same time termination. Each instance has been solved five times and the average RPDs of them

are calculated. The average RPDs of the algorithms are shown in Table 9 . 

As it can be seen, the performance of the ICA is much better than those of both the GA and the CRO. The average RPD

of the ICA is less than that of other algorithms. The average RPD of the ICA is 6.31% while the average RPD of the GA and

the CRO are 25.11% and 15.7%, respectively. To acknowledge the better performance of the ICA, the means plot and the LSD

intervals for the algorithms are obtained and shown in Fig. 15. 

As the statistic results confirm, the ICA outperforms the other methods. To show whether the algorithm is robust or not,

we analyze the potential impacts of the problem size (the number of the jobs and the number of the machines) on the

algorithms’ performance. A means plot for the interaction between the factors, the type of the method, and the number



S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 681 

Fig. 16. The means plot for the interaction between the algorithms and the number of the jobs. 

Fig. 17. The means plot for the interaction between the algorithms and the number of the machines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the jobs and the machines are shown in Figs. 16 and 17 . The ICA shows more robustness in all instances of every size

compared with other methods. 

6. Conclusion and future research 

Although the FJSSP is a well-studied problem, the available papers in the literature consider an unrealistic assumption of

ignoring the transportation times of the jobs between the machines. This paper considered the transportation times in the

FJSSP. Two MILP models were presented for this problem: sequence-based and position-based. These models were deployed

to solve small-sized instances using the GAMS software. Their results disclosed that the sequence-based model has a better

performance than the position-based model. As the FJSSP is NP-hard, we developed a metaheuristic algorithm (ICA) to solve

the problems. The ICA has simple and efficient structures, making the algorithm more favorable. Recently, the ICA has been

used by many researchers in various fields. Because of these advantages of the ICA, we developed an adaptation of the

imperialist competitive algorithm hybridized by a local search to solve the problem. After tuning the parameters by the

Taguchi method, the algorithm was compared with the MILP models on small instances. Finally, the ICA was compared

with two existing evolutionary algorithms on large instances. The results demonstrated that the ICA provides a much better

performance than the other algorithms. 

The following directions are recommended for future research. Since the problem under the consideration assumes an

unlimited number of transporters, modeling the problem with limited transporters can be interesting research. Besides, the

other assumption of our models is that there is no machine failure. Hence, it is recommended to incorporate the machine

failure into the model. We can also consider due time-oriented models such as minimizing the penalties for total tardi-

ness and the machine’s idle times. Also, since the ICA has shown excellent performance in different problems, we strongly

recommend deploying this method in other scheduling problems. 

Reference 

[1] M. Pinedo , Scheduling: Theory, Algorithms and Systems, Prentice-Hall, Englewood cliffs, NJ, 1995 . 
[2] M.R. Garey , D.S. Johnson , R. Sethi , The complexity of flow-shop and job shop scheduling, Math. Oper. Res. 1 (2) (1976) 117–129 . 

[3] P. Bruker , R. Schlie , Job-shop scheduling with multi-purpose machines, Computing 45 (1990) 369–375 . 

[4] W.J. Xia , Z.M. Wu , An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems, Comput. Ind. Eng. 48 (2005)
409–425 . 

[5] I.C. Choi , D.S. Choi , A local search algorithm for job-shop scheduling problems with alternative operations and sequence-dependent setups, Comput.
Ind. Eng. 42 (1) (2002) 43–58 . 

[6] J. Gao , M. Gen , L. Sun , Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm, J. Intell. Manuf. 17 (4) (2006) 493–507 .
[7] N. Imanipour , S.H. Zegordi , A heuristic approach based on Tabu Search for early/tardy flexible job-shop problems, Sci. Iran. 13 (1) (2006) 1–13 . 

[8] P. Fattahi , M.S. Mehrabad , F. Jolai , Mathematical modeling and heuristic approaches to flexible job shop scheduling problems, J. Intell. Manuf. 18 (3)

(2007) 331–342 . 
[9] P. Fattahi , F. Jolai , J. Arkat , Flexible job shop scheduling with overlapping in operations, Appl. Math. Model. 33 (7) (2009) 3076–3087 . 

[10] C. Ozguven , L. Ozbakir , Y. Yavuz , Mathematical models for job-shop scheduling problems with routing and process plan flexibility, Appl. Math. Model.
34 (6) (2010) 1539–1548 . 

[11] C. Ozguven , Y. Yavuz , L. Ozbakir , Mixed integer goal programming models for the flexible job-shop scheduling problems with separable and non-sep-
arable sequence-dependent setup times, Appl. Math. Model. 36 (2) (2012) 846–858 . 

http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0001
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0001
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0002
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0002
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0002
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0002
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0003
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0003
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0003
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0004
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0004
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0004
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0005
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0005
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0005
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0006
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0006
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0006
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0006
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0007
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0007
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0007
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0008
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0008
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0008
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0008
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0009
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0009
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0009
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0009
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0010
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0010
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0010
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0010
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0011
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0011
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0011
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0011


682 S. Karimi et al. / Applied Mathematical Modelling 41 (2017) 667–682 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[12] P. Brandimarte , Routing and scheduling in a flexible job shop by tabu search, Ann. Oper. Res. 41 (1-4) (1993) 157–183 . 
[13] H. Chen , J. Ihlow , C. Lehmann , A genetic algorithm for flexible job-shop scheduling, in: IEEE International Conference on Robotics And Automation, 2,

Detroit, 1999, pp. 1120–1125 . 
[14] G. Zhang , L. Gao , Y. Shi , An effective genetic algorithm for the flexible job-shop scheduling problem, Expert Syst. Appl. 38 (2011) 3563–3573 . 

[15] M. Mastrolilli , L.M. Gambardella , Effective neighbourhood functions for the flexible job shop problem, J. Sched. 3 (1) (20 0 0) 3–20 . 
[16] M. Yazdani , M. Amiri , M. Zandieh , Flexible job-shop scheduling with parallel variable neighborhood search algorithm, Expert Syst. Appl. 37 (2010)

678–687 . 

[17] W. Xia , Z. Wu , An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems, Comput. Ind. Eng. 48 (2) (2005)
409–425 . 

[18] J. Li , Q. Pan , Chemical-reaction optimization for flexible job-shop scheduling problems with maintenance activity, Appl. Soft. Comput. 12 (2012)
2896–2912 . 

[19] V.A. Strusevich , A heuristic for the two-machine open-shop scheduling problem with transportation times, Discrete Appl. Math. 93 (1999) 287–304 . 
[20] J. Hurink , S. Knust , Tabu search algorithms for job-shop problems with a single transport robot, Eur. J. Oper. Res. 162 (2005) 99–111 . 

[21] M.A. Langston , Interstage transportation planning in the deterministic flow-shop environment, Oper. Res. 35 (1987) 556–564 . 
[22] B. Naderi , M. Zandieh , A. Khaleghi Ghoshe Balagh , V. Roshanaei , An improved simulated annealing for hybrid flow-shops with sequence-dependent

setup and transportation times to minimize total completion time and total tardiness, Expert Syst. Appl. 36 (2009) 9625–9633 . 

[23] M. Boudhar , A. Haned , Preemptive scheduling in the presence of transportation times, Comput. Oper. Res. 36 (2009) 2387–2393 . 
[24] E. Atashpaz-Gargari , C. Lucas , Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, in: CEC IEEE

Congress on Evolutionary Computation, 2007 . 
[25] Z. Ardalan , S. Karimi , O. Poursabzi , B. Naderi , A novel imperialist competitive algorithm for generalized traveling salesman problems, Appl. Soft. Comput

26 (2015) 546–555 . 
[26] M. Watanabe , K. Ida , M. Gen , A genetic algorithm with modified crossover operator and search area adaptation for the job-shop scheduling problem,

Comput. Ind. Eng. 48 (2005) 743–752 . 

[27] K.M. Lee , T. Yamakawa , K.M. Lee , A genetic algorithm for general machine scheduling problems, Int. J. Knowl. Based Electron. 2 (1998) 60–66 . 
[28] L. Davis , Applying adaptive algorithms to epistatic domains, in: Proceedings of the International Joint Conference on Artificial Intelligence, 1985,

pp. 162–164 . 
[29] K.S. Amirthagadeswaran , V.P. Arunachalam , enhancement of performance of genetic algorithm for job shop scheduling problems through inversion

operator, Int. J. Adv. Manuf. Technol. 32 (2007) 780–786 . 
[30] B. Naderi , S.M.T. Fatemi Ghomi , M. Aminnayeri , A high performing meta-heuristic for job-shop scheduling with sequence-dependent setup times, Appl.

Soft. Comput. 10 (2010) 703–710 . 

[31] D.C. Montgomery , Design and Analysis of Experiments, 5th, Wiley, New York, 20 0 0 . 
[32] A. Bagheri , M. Zandieh , Iraj Mahdavi , M. Yazdani , An artificial immune algorithm for the flexible job-shop scheduling problem, Future Gener. Comput.

Syst. 26 (4) (2010) 533–541 . 
[33] G. Taguchi , Introduction to Quality Engineering, White Plains: Asian Productivity Organization/UNIPUB, 20 0 0 . 

[34] S.H.A. Rahmati , M. Zandieh , M. Yazdani , Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling
problem, Int. J. Adv. Manu. Tech. 8 (2013) 5–8 64 . 

[35] B. Mohammadi-ivatloo , A. Rabiee , A. Soroudi , M. Ehsan , Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch,

Energy 44 (2012) 228–240 . 
[36] A. Rahimi , H. Karimi , B. Afshar-Nadjafi, Using meta-heuristics for project scheduling under mode identity constraints, Appl. Soft Comput. 13 (4) (2013)

2124–2135 . 
[37] M. Mohammadi , S.A. Torabi , R. Tavakkoli-Moghaddam , Sustainable hub location under mixed uncertainty, Transport. Res. E 62 (2014) 89–115 . 

[38] K. Devika , A. Jafarian , V. Nourbakhsh , Designing a sustainable closed-loop supply chain network based on triple bottom line approach: a comparison
of meta-heuristic s hybridization techniques, Eur. J. Oper. Res. 235 (3) (2014) 594–615 . 

[39] M. Ghasemi , S. Ghavidel , S. Rahmani , A. Roosta , H. Falah , A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm

for optimal power flow problem with non-smooth cost functions, Eng. Appl. Artif. Intell. 29 (2014) 54–69 . 
[40] H. Linzhi , D. Haibin , W. Yin , Hybrid bio-inspired lateral inhibition and imperialist competitive algorithm for complicated image matching, Opt. Int. J.

Light Electron Opt. 125 (2014) 414–418 . 
[41] V. Roshanaei , H.ElMaraghy, Ahmed Azab , Mathematical modelling and a meta-heuristic for flexible job shop scheduling, Int. J. Prod. Res (2013)

6247–6274 . 
[42] Barnes J. W, Cambers. J. B, Flexible job shop scheduling by Tabu search, graduate program in operations research and industrial engineering, (1996),

the University of Texas in at Austin, Technical report series, ORP96-09. 

[43] P. Brandimarte , Routing and scheduling in a flexible job shop by Tabu search, Ann. Oper. Res. 22 (1993) 158–184 . 
[44] B. Naderi , A. Ahmadi Javid , F. Jolai , Permutation flow-shops with transportation times: mathematical models and solution methods, Int. J. Adv. Manuf.

Technol. 46 (2010) 631–647 . 
[45] N.B. Ho , J.C. Tay , M. Edmund , K. Lai , An effective architecture for learning and evolving flexible job-shop schedules, Eur. J. Oper. Res. 179 (2007)

316–333 . 

http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0012
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0012
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0013
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0013
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0013
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0013
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0014
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0014
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0014
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0014
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0015
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0015
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0015
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0016
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0016
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0016
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0016
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0017
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0017
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0017
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0018
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0018
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0018
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0019
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0019
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0020
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0020
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0020
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0021
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0021
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0022
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0022
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0022
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0022
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0022
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0023
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0023
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0023
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0024
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0024
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0024
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0025
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0025
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0025
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0025
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0025
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0026
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0026
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0026
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0026
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0027
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0027
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0027
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0027
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0028
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0028
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0029
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0029
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0029
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0030
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0030
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0030
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0030
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0031
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0031
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0032
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0032
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0032
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0032
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0032
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0033
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0033
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0034
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0034
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0034
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0034
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0035
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0035
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0035
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0035
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0035
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0036
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0036
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0036
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0036
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0037
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0037
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0037
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0037
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0038
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0038
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0038
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0038
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0039
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0039
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0039
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0039
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0039
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0039
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0040
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0040
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0040
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0040
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0041
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0041
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0041
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0042
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0042
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0043
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0043
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0043
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0043
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0044
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0044
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0044
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0044
http://refhub.elsevier.com/S0307-904X(16)30492-9/sbref0044

	Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm
	1 Introduction
	2 Literature review
	3 Problem description and mathematical modeling
	3.1 Assumptions and parameters
	3.2 Model 1 (sequence-based model)
	3.3 Model 2 (the position-based model)

	4 The proposed imperialist competitive algorithm
	4.1 The proposed ICA procedure
	4.2 Encoding scheme, initialization, and empires’ formation
	4.3 The assimilation policy mechanism
	4.4 The imperialists’ updating and the competition mechanism
	4.5 The imperialists’ development plan mechanism and local search

	5 Numerical experiments
	5.1 Models’ evaluation
	5.2 Parameter tuning
	5.3 Algorithms’ evaluation

	6 Conclusion and future research
	 Reference


