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Vehicular ad hoc networks (VANETs) have drawn great attention in wireless communications. Prompt and 

reliable vehicular communication is a must to provide a good service. Routing is the key problem in infor- 

mation transmission of VANETs. This paper studies quality of service (QoS) constrained multicast routing 

problem. This problem has been proved to be NP-complete problem, and swarm intelligence algorithms 

are more suitable than classical algorithms. A micro artificial bee colony (MABC) algorithm is proposed 

to deal with the problem. The QoS constraints include maximize network lifetime and minimizing delay 

cost. Multicast routing is abstracted to a continuous optimization problem. Then, it is linked with MABC. 

Numerical simulation is implemented on a traffic scenario with three instances. Results show that the 

MABC algorithm successfully attains the optimal routes. Moreover, the routing framework can be applied 

in real time given the network structure does not change too frequently. 

© 2016 Published by Elsevier B.V. 
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. Introduction 

Hybrid wireless network is formed by wireless nodes and base

tations [1] . Wireless networks without support from the fixed in-

rastructure are known as ad hoc networks. Due to the lack of in-

rastructure, the data is forwarded to the destination via a multi-

op fashion. Quite often, the ad hoc network has been studied

n optimization [2] , target detection [3,4] , etc. In some scenarios,

 set of base stations are connected by wired links and placed

ithin the ad hoc networks to form a wired infrastructure, aim-

ng to enhance the whole network performance. This resulting net-

ork is referred to as a hybrid wireless network. Due to the dy-

amic nature of such network, quite often computational intelli-

ence approaches such as fuzzy logic systems [5–7] and evolution-

ry computing could be applied to optimization in hybrid wireless

etworks. In this paper, we are interested in applying evolution-

ry computing (artificial bee colony) to Vehicular ad Hoc Network

VANET). 

Vehicular ad hoc networks (VANETs) have drawn great at-

ention in wireless communications. Typical application scenarios

f VANETs include military communications, where base stations

ould not be built ahead of war area; traffic status reports, where
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ar traffic happens in rush hour; emergency services, where a tem-

orary network is established to assure the communication of re-

ief workers and medical staff; sensor networks, which connect

ensors and control center. In VANETs, vehicles are able to arrange

hemselves to fulfill the application requirements based on the cur-

ent situations. To support information transmission among vehi-

les, wireless communications is clearly the primary method. In

ANETs, each vehicle is assumed to contain necessary equipments

o communicate with nearby vehicles in a short distance. Long dis-

ance communication in VANETs is usually stuck in some signal

ropagation effects, which could be overcome by multi-hop com-

unication. Due to the mobility feature of vehicles and the lack

f fundamental architectures, the real time status of networks is

ardly to acquire. On the other hand, the connectivity in the net-

orks is an essential basis for information exchange and applica-

ion requirements. Thus, routing is the key problem in ad hoc net-

ork fields. A good routing protocol presents reliable performance

n receiving and sending messages from a source node to a des-

ination node [8] . Because multicast routing could effectively or-

anize network resources, reduce network congestion, and node

ork load, researches concerning multicast routing is meaningful

nd valuable in VANETs. 

VANETs are often expressed as a graph G = (N, E, W ) , where

 is a set of vertex, W = 

∑ 

e ∈ E w e is weight function of defined

n edge set E . Based on graphic theory, the design of multi-hop

outing has recently received great attention. In [9] , the routing

http://dx.doi.org/10.1016/j.adhoc.2016.06.009
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Fig. 1. Example of initializing a binary string. 
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algorithms and protocols are classified into three types: connected

dominating set, disjoint sets, and Steiner minimum spanning tree.

Most of these problems are NP-hard or NP-complete. 

Assume a VANET has been transformed to a graph G with n

nodes and C > 0 is a constant number, the Steiner minimum tree

(SMT) problem refers to add m new nodes to G such that the re-

sulting minimum spanning tree has the minimum number of ad-

ditional nodes (i.e., m ) and the edge length in the tree is equal to

or less than C . The additional nodes are named Steiner points. This

problem is also described as “Steiner tree problem with minimum

number of Steiner points and bounded edge-length (STP-MSPBEL)

[10] ”. When the manhattan distance is used in the network, the

SMT problem is known to be NP-hard. 

Due to the failure of sensor nodes, fast moving vehicles, or ve-

hicle breakdown, VANETs require a routing path between source

node and destiny node being frequently reconstructed. Transmis-

sion based on tree structure is the most popular one in multicast

routing. Once the multicast tree is built, the information generated

by source node can be sent to end nodes. Source-based tree and

core-based tree (i.e., shared tree) are two common types in mul-

ticast tree. Routing algorithm is a crucial part of routing protocol,

which is in charge of constructing a tree linking source nodes and

destiny nodes.Quality of service (QoS) is a must when routing algo-

rithm builds pathes. QoS mainly contains path length, bandwidth,

delay, delay jitter and packet loss ratio. 

As quality of service (QoS) constrained multicast routing has

been proved to be NP-complete problem [11,12] , classical rout-

ing algorithms become unable to handle this problem. Recent re-

searches focus on heuristic algorithms and computational intelli-

gence algorithms. Typical computational intelligence paradigms in-

clude particle swarm optimization [13] , differential evolution [14] ,

neighborhood field optimization [15] . Artificial bee colony (ABC) is

a popular computational intelligence algorithm. This paper concen-

trates on modifying ABC to tackle the SMT problem in multicast

routing. 

To efficiently deal with the SMT problem, this paper designs a

micro-ABC method with binary representation. The method con-

tains a micro bee colony, which saves computational time in each

cycle compared with the use of a regular colony size. Moreover,

two novel search equations are proposed to improve the conver-

gence speed of the algorithm. The performance of the algorithm is

studied on a VANET with 16 cars. 

The paper is organized as follows. Section 2 reports the SMT

problem and related works. Section 3 gives the proposed algorithm

and its analysis. Section 4 shows the numerical simulation setting

and results. Section 5 gives the conclusion. 

2. Problem overview and related works 

VANET is featured with exchanging information amongst vehi-

cles in real time. It requires data packets have to travel through

the vehicular network from source nodes to destiny nodes. Routing
rotocol is crucial in the operation of VANET. Information trans-

ission between a source node and an end node is easily resolved

y shortest path algorithm given the network topology. However,

he transmission task in VANET are mainly a source node broad-

asting to multiple end nodes, which is well known as multicast

outing. 

Based on the implementation of multicast routing, the algo-

ithms can be classified to centralized algorithm and distributed

lgorithm. In the former, source nodes is in charge of find a proper

oute based on the status information that it acquires; while the

atter requires each node has local status information instead of

astering the whole network status, and the computation of route

s accomplished by inter-sites on the route. Neither could com-

letely outperform the other. Users have to decide which one is

ore proper depending on the practical necessity. 

The information transmission in multicast communication is re-

lized by building a multicast tree. Among all possible multicast

rees, the most economic one evaluated by QoS indices is called

teiner minimum tree. The SMT problem is described as follows.

et G = (N, E, W ) denote an undirected graph, where W = 

∑ 

e ∈ E w e 

s weight function defined on edge set E . Under the condition that

uxiliary nodes are allowed to add to G , SMT is equivalent to find

he minimum spanning tree of graph Ḡ , where Ḡ is G with aux-

liary node set N̄ and updated edge set N̄ . Since the distance in

ANETs is generally measured by Euclidean metric, the SMT prob-

em is also called ESMT [11] . 

Kompella et al. proposed a heuristic multicasting routing for

ultimedia communications [16] . Sun and Langendorfer proposed

 constrained Dijkstra heuristic algorithm for delay-constrained

ulticast routing algorithm [17] . Parsa et al. proposed a bounded

hortest delay-constrained multicasting algorithm [18] . Gutierrez-

eina et al. studied a railway scenario, which is a kind of MANETs,

nd applied GA to optimize the network topology [19] . Natarajan

nd Rajendran proposed a modified Dijkstra algorithm to deal with

n advanced optimized link state routing protocol [20] . 

Recently, researchers attempted to handle multicast routing by

omputational intelligence approaches [21] . Hwang et al. used ge-

etic algorithm (GA) to deal with multicast routing [22] . Yen et al.

onsidered multicast routing with multiple QoS constraints in mo-

ile ad hoc networks (MANETs) and proposed an energy-efficient

A for this kind of problems [23] . Based on Tabu search, For-

ati et al. studied several methods to tackle the bandwidth delay-

onstrained least-cost multicast routing [24] . Toutouh et al. studied

he optimal parameter setting in the optimized link state routing

rotocol of MANETs, where GA, differential evolution (DE), particle

warm optimization, and simulated annealing are applied to do the

ptimization [25] . 

This paper attempts to tackle QoS multicast routing protocol

n VANETs. Specifically, minimum cost and maximum network life

ime are taken as measurements to access the QoS of network.

MT is constructed linking source nodes and destiny nodes. In

ulticast routing, it is usually assumed that one source node send

essages to multiple end nodes. Unlike building a network archi-

ecture, Steiner points are not permitted to be placed anywhere

nder the coverage area of a vehicle. At a time slot, the positions

f vehicles in VANETs are relatively stable, though they may change

n the next time slot after driving. The candidate Steiner points

re those in network graph G excluding source and destiny nodes.

ig. 1 presents a VANET example including 6 nodes and 11 edges.

ll nodes are numbered in order. Given node N 1 is the source and

ode N 5 is the end. The SMT problem becomes to select middle

odes from set { N 2 , N 3 , N 4 , N 6 } such that the communication cost

s minimized. Each node in the network can dynamically very its

mitted energy. In case a node becomes a inter-site in a routing

ree, we suppose that it could adapt its radiation energy to dif-

erent transmission paths. Moreover, the topology of a VANET is
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Fig. 2. Subgraph associated with bit string 1010 in the order of N 2 , N 3 , N 4 , and N 6 . 

Fig. 3. A multicast routing example with 16 nodes and 32 edges locating in 400 × 500 m 
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ssumed not to change too frequently to computing and updating

outing paths. In other words, there is a short stable period after

he network topology has been altered. 

. Optimization algorithm 

The original ABC algorithm is proposed to solve continuous op-

imization problems. It is recently extended to handle combina-

ional optimization problems [26,27] . The colony of ABC is com-

rised by employed bees, onlooker bees, and scout bees. Accord-

ngly, the algorithm is divided into three stages. The three bee

roups are sent out one after another to search potential food

ources. A loop of the three stages constitute a cycle of the algo-

ithm as shown in Algorithm 1 . The target of the search of bees

s mapped to minimize an objective function or maximize a fitness

unction. In Algorithm 1 , n s is the number of solutions (i.e., food

ources), limit is the number of consecutive evaluations that a so-

ution fails to be updated. Generally, both the number of employed
ees and the number of onlooker bees are equal to n s . The num-

er of scout bees relies on limit and the algorithm’s evolutionary

tatus. 

To deal with the SMT problem, binary representation is utilized

n this paper. As mentioned above, all nodes in graph G excluding

ource and destiny nodes are candidates for Setiner points. Thus,

he problem dimension is | N| − | N 

s | − | N 

d | , where | N 

s | and | N 

d | are

he number of source nodes and destiny nodes, respectively. The

andidate nodes are coded to a binary string, where all nodes are

umbered in order. Each element in binary string corresponds to a

ode of G and takes value 0 or 1, where value 0 means the asso-

iated node is not included in SMT, and value 1 means the node

s a member of SMT. Thus, a subgraph can be built based on an

nstance of such kind of binary string. Take the graph in Fig. 1 for

xample. Suppose N 1 and N 5 are respectively source node and end

ode, the other nodes are encoded to a binary string in the or-

er of N 2 , N 3 , N 4 , and N 6 . Hence 1010 can be decoded to subgraph

hown in Fig. 2 . 
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Fig. 4. Flow chart of applying MABC to the network example. EB: employed bee stage, OB: onlooker bee stage, SB: scout bee stage. 
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In employed bee stage, the following formula (1) is designed to

generate a variation v i based on solution x i : 

v i, j = 

{ 

1 − x i, j if j = j1 

x r1 , j if j = j2 

x i, j otherwise 
(1)

where subscript i denotes the solution index and subscript j is the

bit string index; j 1 ≤ j 2 are randomly chosen positions; x r1 is also

randomly selected solutions with r 1 � = i in the population. This for-

mula is modified based on the one-position inheritance scheme,

which is proposed to deal with continuous variables [28] . 

In onlooker bee stage, a honey bee chooses a solution to ex-

ploit depending on the fitness of solutions in population. Because

a micro population is used here, the selection pressure should not

be too heavy; otherwise the population may be easily trapped in

local optima. Each solution has at least selection probability 0.7/ n s .

In the following, the formula (2) is designed to generate v t based

on chosen solution x t : 

v t, j = 

{ 

x t1 , j if j = j3 and f it( x t1 ) ≥ f it( x t ) 
1 − x t2 , j if j = j4 and f it( x t2 ) ≤ f it( x t ) 
x t, j otherwise 

(2)

where j 3 ≤ j 4 are randomly chosen positions; x t1 and x t2 are ran-

domly selected solutions with t 1 � = t 2 � = t in the population. The
hysical meaning of this formula is a honey bee would fly toward

he same direction given a solution is better than its current choice

 t , and it would fly toward the opposite direction given a solution

s worse than x t . 

If the limit flag of a solution becomes true, the associated so-

ution would be abandoned, and are substituted for a new one,

hich is randomly explored by a scout bee in search space. The

rocedure is alike to that in initialization. To assure convergence,

litism of size 1 is used in scout bee stage. That is the best solu-

ion would never be abandoned by honey bees. Theoretical study

as proved that keeping the best so far solution is necessary for

 SI algorithm converging to global optimum of a problem with

robability one [29,30] . Thus, this usage of scout bee is helpful to

olve the SMT problem. 

The pseudo code of the micro ABC (MABC) algorithm is given

n Algorithm 2 with D = | N| − | N 

s | − | N 

d | . 
Observed from the variation formulas, candidate solution v i 

s always a feasible solution. Hence, boundary repair method is

ot used in MABC. This avoids the notorious problem of choos-

ng proper repair method [31] . Unlike the proposed algorithm in

27,32–34] , The MABC algorithm does not introduce any new pa-

ameter, and does not increase the burden of algorithmic parame-

er control. 
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Fig. 5. The Steiner minimum tree with source node N 2 and destiny node N 15 . 

Fig. 6. The Steiner minimum tree with source node N 2 and destiny nodes N 10 , N 15 . 
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. Simulation 

In this section, the proposed MABC algorithm will be tested on

 QoS constrained multicast routing example of inter-vehicle com-

unication (IVC) network, which is a typical VANET. 

.1. Test example and simulation setting 

An IVC network of 16 cars are taken as an example (see Fig. 3 ).

he network illustrates a traffic scenario that cars are moving from
ottom left to upper right among the main road. Its correspond-

ng graph contains sixteen nodes ( | N| = 16 ) and thirty two edges

 E| = 32 . The distance between two nodes is computed using Eu-

lidean distance measure based on the locations of nodes. The

ode locations are obtained by global positioning system sensors

mbedded in cars. Moreover, suppose all vehicles utilize omnidi-

ectional antennas. When a node N i sends out data packages, all

odes that locates in the coverage area of N i with transmission

ower p could receive the packages. An edge in graph G means a
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Algorithm 1: Flow chart of the standard ABC algorithm. 

Input : f (·) , D , �, n s , limit , f e v al = 0 

Output : a set of optimal solutions found by the ABC 

algorithm 

randomly generate n s solutions, f e v al = f e v al + n s ; 

evaluate the function values of the initialized solutions, and 

compute their fitness values; 

while termination criteria are not satisfied do // Main cycle 

for i ← 1 to n s do // Employed bee stage 

employed bee i flies around solution i based on some 

rules and locates position v i ; 

evaluate v i , f e v al = f e v al + 1 ; 

greedy selection between v i and x i ; 

end 

for t ← 1 to n s do // Onlooker bee stage 

onlooker bee t chooses a solution based on the fitness 

of solutions; 

onlooker bee t flies around the chosen solution k 

based on some rules and produces v t ; 

evaluate v t , f e v al = f e v al + 1 ; 

greedy selection between v t and x k ; 

end 

for i ← 1 to n s do // Scout bee stage 

if solution i has not been improved in the last limit 

evaluations then 

a scout bee flies out and randomly explores in 

search space � to produce x 
′ 
i 
; 

replace solution x i by x 
′ 
i 

end 

end 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2: Flow chart of the MABC algorithm with binary 

representation. 

Input : f (·) , D , � = { 0 , 1 } , n s , limit , f e v al = 0 

Output : a set of optimal solutions found by the MABC 

algorithm 

randomly generate n s solutions, f e v al = f e v al + n s ; 

evaluate the function values of the initialized solutions, and 

compute their fitness values; 

while termination criteria are not satisfied do // Main cycle 

for i ← 1 to n s do // Employed bee stage 

employed bee i flies around solution i based on (1) 

and locates position v i ; 

evaluate v i , f e v al = f e v al + 1 ; 

greedy selection between v i and x i ; 

end 

for t ← 1 to n s do // Onlooker bee stage 

onlooker bee t chooses a solution x t based on the 

fitness of solutions; 

onlooker bee t flies around the chosen solution based 

on (2) and produces v t ; 

evaluate v t , f e v al = f e v al + 1 ; 

greedy selection between v t and x t ; 

end 

for i ← 1 to n s do // Scout bee stage 

if x i has not been improved in the last limit evaluations 

and is not the best one in population then 

a scout bee flies out and randomly explores in 

search space � to produce x 
′ 
i 
; 

replace solution x i by x 
′ 
i 

end 

end 

end 
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node lies in the coverage area of the other node. The weight func-

tion w i, j between two nodes N i , N j is related with the queue delay

and propagation delay d i , j as well as their distance dist i , j . The en-

ergy consumption c i of data transmission from N i to N j is a func-

tion of dist i , j based on the energy attenuation model of wireless

communication: 

c i, j = k 
(
dist i, j 

)β + c 0 , (3)

where k is a constant related with antenna property, c 0 is the

energy amount of receiving a data package, β ∈ [2, 4] is path

propagation attenuation factor. For simplicity, these parameters are

k = 1 , β = 2 , and c 0 = 1 in the simulation. Thus, the amount of en-

ergy consumption from source node to destiny nodes is: 

c(T ) e = 

∑ 

N i ∈ T 
c i, j , (4)

where T is a Steiner minimum tree linking source nodes and end

nodes. The transmission delay cost of tree T is: 

c(T ) d = 

∑ 

N i ,N j ∈ T 
d i, j . (5)

Therefore, the target of the example is to minimize both energy

consumption cost and transmission delay cost. In this way, the

maximum lifetime and minimum cost multicast routing can be ac-

complished. The SMT T is attained by the proposed MABC algo-

rithm. The function value of each solution is defined as follows:

f ( x i ) = c(T ) e + c(T ) d . (6)

where T is the corresponding Steiner minimum tree of solution x i . 

The flow chart of applying MABC to deal with the network ex-

ample is shown in Fig. 4 . The MABC algorithm is responsible for
earching the Steiner points, while the function value is computed

y (6) from the network. In case the subgraph decoded from a so-

ution is disconnected, which indicating the solution does not ful-

ll the constraints, the function value is set to infinity. Minimum

panning tree of a subgraph is obtained by Kruskal algorithm. 

The parameter setting of the MABC algorithm is: 

(1) n e = 6 ; 

(2) limit = min (0 . 5 n e D, 0 . 3 ∗ MF E) . 

here MFE is the maximum number of function evaluations. The

lgorithm is independently executed 25 times to obtain its aver-

ge performance. The proper of this parameter setting has already

een demonstrated as in [35,36] . It terminates when either the fol-

owing conditions is met: 

(1) MFE is reached, where MF E = 20 0 0 ; 

(2) | f ( x ) − f ( x ∗) | ≤ 10 −6 , where f ( x ) stands for the best value

found by MABC and f ( x ) ∗ is the optimal value found by

hand with the assistance of shortest path algorithm. 

Expected running time (ERT) means the average running time

f MABC reaching optimal value. The following metric is used [37] :

(RT (� f )) = 

ˆ E (F E s ) + 

1 − ˆ p s 

ˆ p s 
ˆ E (F E u )˜, (7)

here RT ( �f ) denotes the runtime of the algorithm finding � f =
0 E −6 ; ˆ E (F E s ) means the average number of functions evaluations

hat those runs successfully reach �f ; ˆ E (F E u ) is the average num-

er of function evaluations in the unsuccessful runs; ˆ p s is the ra-

io of runs that reaching �f over 25 runs. In this paper, ˆ E (F E u ) =
0 0 0 . 
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Fig. 7. The Steiner minimum tree with source node N 2 and destiny nodes N 4 , N 9 , N 10 , N 15 . 

Table 1 

Summary of the results found by the MABC algorithm in dealing with the three test 

cases. 

case Weight Node sequence ˆ p s ERT ECT 

1 843 .98 N 2 N 5 N 8 N 13 N 15 100% 308 .60 0 .071 

2 887 .52 N 2 N 5 N 7 E 10 N 13 N 15 100% 315 .96 0 .079 

3 1273 .53 N 2 N 3 N 6 N 4 N 8 E 10 N 9 N 12 N 15 100% 307 .72 0 .106 

Note: In case 1, N 2 is source node, N 15 is destiny node; 

In case 2, N 2 is source node, N 10 and N 15 are destiny nodes; 

In case 3, N 2 is source node, N 4 , N 9 , N 10 , and N 15 are destiny nodes. 

 

m  

c  

b

4

 

t  

t  

o  

v  

t

a

N  

v  

h  

m

 

N  

F  

r  

d

 

M  

M  

s  

t  

c  

t  

d  

a  

r

 

i  

T  

e  

3  

i  

s  

t

5

 

p  

t  

i  

i  

u  

t  

s

 

l  

a  

a

 

 

The simulation of the network and MABC algorithm is imple-

ented in Matlab, and executed on a personal computer with 4-

ore 2.50GHz CPU and 4GB of memory. Thus, a fair comparison can

e conducted under the same running environment. 

.2. Simulation results 

Case 1: suppose source node is N 2 and destiny node is N 15 in

he network of Fig. 3 . Dijkstra shortest path algorithm is used in

his case to find the optimal path, which is shown in Fig. 5 . The

ptimal path is N 2 − N 5 − N 8 − N 13 − N 15 , and the optimal function

alue is 843.98. The MABC algorithm is independently executed 25

rials. It reaches the predefined threshold �f in all trials. 

Case 2: suppose source node is N 2 and destiny nodes are N 10 

nd N 15 in the example. The SMT route in this case is N 2 − N 5 −
 7 − N 10 − N 13 − N 15 as shown in Fig. 6 , and the optimal function

alue is 887.52. The optimal solution is obtained by hand with the

elp of Dijkstra shortest path algorithm. MABC can find the opti-

al solution in all trials. 

Case 3: suppose source node is N 2 and destiny nodes are N 4 , N 9 ,

 10 and N 15 in the example. The SMT route in this case is given in

ig. 7 , and the optimal function value is 1273.53. The MABC algo-

ithm can find the optimal solution in all trials in the case of four

estiny nodes. 
Table 1 presents a summary of the results attained by the

ABC algorithm in dealing with the above three cases. In the table,

ABC successfully finds the SMT solution for all test cases with a

uccess rate ˆ p s = 100% . This means that the algorithm is reliable

o handle multicast routing problem in VANETs. The SMT routes of

ase 2 and case 3 are much different, while the algorithm is able

o attain the optimal solution. Moreover, in all test cases, their ERT

oes not change much. Note that ERT assesses the performance of

n algorithm in the view of function evaluations, hence the algo-

ithm is effective when the number of destiny nodes increases. 

The expected computational time (ECT) of the MABC algorithm

n searching the optimal route is shown in the last column of

able 1 . ECT is counted in seconds (s) and approximated by the av-

rage of computer time in 25 trials. Clearly, the ECT value of case

 is the greatest, the value of case 2 is the second, and following

s case 1. For case 3, the computer time is 0.106 s. In a carriageway

cenario where the network structure does not change frequently,

he multicast routing algorithm can be applied in real time. 

. Conclusion 

Efficient and reliable communication in VANETs heavily de-

ends on the construction of strong routes among vehicles. Mul-

icast routing plays an important part in information transmission

n VANETs. Hence, the research of optimal route in multicast rout-

ng is meaningful and valuable. Relating with graphic theory, an

ndirected acyclic graph G is apt to characterize a VANET, then

he routing problem is transformed to Steiner minimum tree (SMT)

earching problem. Existing studies prove that SMT is NP-hard. 

This paper considers QoS constrained multicast routing prob-

em, where the quality measures include energy consumption cost

nd transmission delay cost. The main contributions of this paper

re as follows: 

(1) Multicast routing is modeled as a continuous optimization

problem. The objective is to maximize network lifetime and

minimize communication cost. 
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(2) MABC algorithm is proposed in this paper, which works on

a micro population for reducing the computational time,

whereas it should not be too small to being effective. 

(3) New variation formula for employed bee and onlooker bee

stages are created to producing good solutions by using so-

lutions in current population. 

The micro ABC (MABC) algorithm is tested on three cases with

increasing number of destiny nodes. In all cases, the algorithm

successfully finds the optimal solutions. From the viewpoint of

function evaluations, which is measured by expected running time

(ERT), MABC needs about the same ERT to solve all test cases.

In the view of computational time, the computer time is 0.106 s.

Therefore, the simulation results show that MABC is effective and

reliable in handling QoS constrained multicast routing problem. 

The ERT of MABC could be reduced by inventing more power-

ful variation formula or by identifying search patterns in solutions,

which should be investigated further in future. 
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