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Abstract—The need for accurate, fast, and reliable indoor local-
ization using wireless sensor networks (WSNs) has recently grown
in diverse areas of industry. Accurate localization in cluttered
and noisy environments is commonly provided by means of a
mathematical algorithm referred to as a state estimator or filter.
The particle filter (PF), which is the most commonly used filter
in localization, suffers from the sample impoverishment prob-
lem under typical conditions of real-time localization based on
WSNs. This paper proposes a novel hybrid particle/finite impulse
response (FIR) filtering algorithm for improving reliability of PF-
based localization schemes under harsh conditions causing sample
impoverishment. The hybrid particle/FIR filter detects the PF fail-
ures and recovers the failed PF by resetting the PF using the output
of an auxiliary FIR filter. Combining the regularized particle fil-
ter (RPF) and the extended unbiased FIR (EFIR) filter, the hybrid
RP/EFIR filter is constructed in this paper. Through simulations,
the hybrid RP/EFIR filter demonstrates its improved reliability
and ability to recover the RPF from failures.

Index Terms—Hybrid particle/finite impulse response (FIR)
filter, hybrid regularized particle/extended unbiased finite impulse
response (RP/EFIR) filter, indoor localization, wireless sensor
network (WSN).

I. INTRODUCTION

I NDOOR localization systems [1]–[8], which utilize infor-
mative facilities of wireless sensor network (WSN) tech-

nology, have been used for a variety of purposes, such as
tracking workers and equipment in construction sites, vehicle
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tracking in parking lots, human localization in hospitals or intel-
ligent buildings, cargo tracking systems in logistics, and robot
tracking in museums or in factories [9]. Indoor localization
systems typically take advantage of state estimators for accu-
rate localization in cluttered and noisy indoor environments
[1], [10], [11]. In particular, in order to overcome non-line-of-
sight (NLOS) situations, accurate state estimation is essential
[12]. The state estimator, also referred to as a stochastic filter,
is a mathematical algorithm that can estimate state variables
of a system from noisy measurements [13]. The best known
is the Kalman filter (KF), which is optimal for linear systems
with Gaussian noise [14]. For indoor localization problems, the
state-space model is typically nonlinear; therefore, nonlinear
filters such as the extended Kalman filter (EKF) and the parti-
cle filter (PF) are used [12], [15]. The PF, also referred to as
Monte Carlo localization (MCL) [16]–[18], has gained wide
currency in recent decades owing to its better performance in
highly nonlinear environments [14] and its ability to solve a
given global localization problem with no information about
the initial position. Note that the EKF requires the initial posi-
tion and can thus solve only local-localization (i.e., position
tracking) problems [18].

Although the PF is algorithmically more transparent and sim-
pler than the EKF, it has a serious drawback associated with
loss of diversity among the samples resulting in failures of
state estimation and large estimation errors (i.e., the PF fail-
ure) [14], [18], [19]. An associated problem, called sample
impoverishment, usually occurs when the process/measurement
noise is small or when the number of particles is insufficient.
Several improved techniques, such as the regularized parti-
cle filter (RPF) [20], Markov chain Monte Carlo (MCMC)
move step [21], combined PF/KF [22], and mixture MCL [16]
have been proposed for overcoming the sample impoverishment
problem by mitigating the loss of sample diversity. However,
the improved PF techniques cannot completely prevent sam-
ple impoverishment. It is known that the improved PFs also
can exhibit degraded performance or failures under severe con-
ditions (e.g., very small process/measurement noise or a very
small number of particles) [16], [18], [19]. Thus, a hedge
against failures occurred in the improved PFs is necessary. To
date, there have been various preventative methods against sam-
ple impoverishment and PF failures. However, an effective and
general remedy to cure a completely failed (or diverging) PF
has yet to be proposed.
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In recent years, real-time locating systems (RTLS) based on
WSNs have attracted the attention of designers and users in
industry. When applying a PF to an indoor RTLS for improving
localization accuracy, the computational burden may become
an issue. The RTLS requires fast computation for real-time
processing, and the PF should use a small number of parti-
cles, which accelerates sample impoverishment. In addition,
low measurement noises generated from accurate WSNs also
cause sample impoverishment. Those requisite conditions in the
RTLS are harsh for PF-based localization schemes to achieve
reliable localization.

This paper proposes a novel hybrid particle/finite impulse
response (FIR) filtering algorithm to improve reliability of PF-
based localization under harsh conditions of RTLS based on
WSNs. In the proposed hybrid filtering, a PF plays the role of a
main filter, and a robust filter referred to as a FIR filter [1], [24]–
[35] is used as an auxiliary filter. The main PF produces state
estimates in normal situations in which sample impoverishment
or failures do not occur. When the PF exhibits abnormally large
estimation errors or divergent behaviors, the auxiliary FIR filter
is operated for recovering the failed PF. The proposed hybrid
filtering algorithm does not modify the PF algorithm; it only
detects failures and recovers the PF. Thus, the hybrid filtering
is applicable to any PF. In this paper, the RPF, which is well
known and has been tested in diverse problems, is used to con-
struct the hybrid filter. In addition, the extended unbiased FIR
(EFIR) filter is adopted as the auxiliary FIR filter. The result-
ing filter, combining the RPF and the EFIR filter, is called the
hybrid RP/EFIR filter. In localization problems using a mobile
robot and WSNs, the hybrid RP/EFIR filter demonstrates its
ability to recover from failures under harsh conditions of low
measurement noise and a small number of particles. Statistical
analysis verifies that the hybrid RP/EFIR filter improves reli-
ability of localization compared to the pure RPF. In addition,
the hybrid RP/EFIR filter is shown to be capable of solving the
kidnapped robot problem and can reduce the computation time.

The contributions of this paper are as follows. The hybrid
particle/FIR filtering is a novel algorithm for recovering a com-
pletely failed PF. To date, to the best of the present authors’
knowledge, a general algorithm for recovering a completely
failed PF has yet to be proposed. The sensor resetting tech-
nique proposed in [23] is available in very limited cases (e.g.,
visual object tracking) in which the samples of state can be
directly drawn from the sensor readings. Since the hybrid par-
ticle/FIR filtering generates new samples using an auxiliary
FIR filter, it can be used for general purposes. In addition,
the hybrid particle/FIR filtering is a general algorithm that can
adopt any PFs and nonlinear FIR filters. Combining a state-
of-the-art PF with a nonlinear FIR filter, the hybrid filter can
be upgraded to a new version. The hybrid particle/FIR filter
overcomes limitations of both the PF and the FIR filter by
utilizing the two filters jointly. The PF is a type of infinite
impulse response (IIR) filters, and it exhibits better estimation
accuracy than FIR filters under ideal (or normal) conditions.
However, the PF may exhibit failures due to sample impov-
erishment, which can be caused by diverse factors. The FIR
filter is a reliable filtering algorithm that is robust against mod-
eling and computational errors; however, it exhibits inferior

Fig. 1. Schematics of the mobile robot localization system. (a) Block-diagram
of the WSN-based indoor localization system employing TDOA measurements.
(b) 2-D schematic geometry.

performance in normal situations to that of IIR-type filters. The
hybrid particle/FIR filter behaves like a PF in normal situa-
tions and an FIR filter when PF failures occur. Therefore, the
hybrid particle/FIR filter simultaneously achieves accuracy and
reliability.

This paper is organized as follows. In Section II, the PF-
based robot localization scheme using a WSN is explained.
In Section III, the hybrid particle/FIR filtering algorithm is
proposed. In Section IV, simulation results under various
harsh conditions are presented for demonstrating the effect
and ability of the hybrid RP/EFIR filter. Finally, conclusion is
drawn in Section V.

II. PF-BASED LOCALIZATION SCHEME USING WSN FOR

MOBILE ROBOTS

In this paper, an indoor localization system based on a
WSN for tracking positions of mobile robots is considered.
The indoor localization system consists of a wireless tag with
a transmitter, four receivers, and a server computer. A 2-D
schematic diagram of this system is shown in Fig. 1(a). A
wireless tag attached to the mobile robot transmits a wire-
less signal. Four receivers installed at fixed positions with
exactly known coordinates receive the wireless signal from the
tag. The receiver’s clocks are synchronized using the clock
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synchronization line. The time-of-arrival (TOA) measurements
are made, which give the traveling time of a wireless signal
between the transmitter and each of the receivers. The TOA
measurements are then transferred to a server computer to
generate the time-difference-of-arrival (TDOA) measurements,
which can be described by the following equation:⎡

⎣ z1,k
z2,k
z3,k

⎤
⎦ =

⎡
⎣ h1,k

h2,k

h3,k

⎤
⎦ =

1

c

⎡
⎣ d1 − d2
d1 − d3
d1 − d4

⎤
⎦ (1)

where z1,k, z2,k, and z3,k are the TDOA measurements (in units
of nanoseconds) at discrete time index k; c is the speed of light
[9], [15]. Here, di (i = 1, 2, 3, 4) represents distances between
the mobile robot and the receivers, as shown in Fig. 1(b), which
is defined by the following equation:

di =
√

(xk − xi)2 + (yk − yi)2 (2)

where (xk, yk) are coordinates of the mobile robot location at
time k, and (xi, yi) are fixed coordinates of the receivers.

At time index k, the mobile robot pose is described with the
state vector xk = [xk yk θk]

T , where xk and yk are the coor-
dinates on a 2-D plane relative to an external coordinate frame,
and θk is the heading angle [18]. Motion of the mobile robot
is determined by the control commands uk = [Δdk Δθk]

T ,
where Δdk is the incremental distance (in meters) and Δθk is
the incremental change in heading angle (in degrees). The robot
motion can be described by (3), (4), and (5) [1], [36]

xk = f1,k = xk−1 +Δd cos

(
θk−1 +

1

2
Δθk

)
(3)

yk = f2,k = yk−1 +Δd sin

(
θk−1 +

1

2
Δθk

)
(4)

θk = f3,k = θk−1 +Δθk. (5)

The localization accuracy is improved by equipping the
mobile robot with a fiber optic gyroscope (FOG) [37] that
directly measures the heading angle θk. Thus, the fourth mea-
surement, defined by (6), is adopted

z4,k = h4,k = θk (6)

where z4,k is the measured θk. Combining all three TDOA
measurements, defined by (1), with a measured heading angle,
defined by (6), the measurement vector is constructed as zk =
[z1,k z2,k z1,k z4,k]

T .
Now, the state equation and the measurement equation

are defined as fk = [f1,k f2,k f3,k]
T and hk = [h1,k h2,k

h3,k h4,k]
T , respectively. The following model can then rep-

resent the problem in state space:

xk = fk(xk−1,uk) +wk (7)

zk = hk(xk) + vk (8)

where the process noise wk and the measurement noise vk are
zero-mean Gaussian with the covariances Qk and Rk, respec-
tively. Given the state-space model (7) and (8), the mobile robot
location and heading can be estimated using PF. Below, con-
sidering the PF-based localization algorithm, the drawbacks
associated with fast (real-time) localization [14], [18], [19] are
discussed, and then the problem is formulated.

Fig. 2. Situation in which sample impoverishment occurs.

A. PF-Based Localization and Sample Impoverishment

The PF-based approach assumes that the robot coordinates
are first-order Markov processes that evolve from one point to
another with known initial and transition distributions. In turn,
the conditionally independent observations depend only on the
robot coordinates. In order to estimate xk, yk, and θk, PF gener-
ates at each time index k a set of samples that approximates the
distributions of the coordinates conditioned on all past obser-
vations. This process is called resampling and it assumes that
the particles with high weights (i.e., high likelihoods) will sta-
tistically be selected many times. This often leads to a loss of
diversity among the particles, and the resultant particle set con-
tains many repeated particles [19]. This problem is known as
sample impoverishment, and it usually occurs when the pro-
cess/measurement noise has low intensity or when the number
of particles is small.

Fig. 2 gives a graphical illustration of a situation in which
sample impoverishment occurs. In this figure, the dots represent
samples of the predicted measurement ẑ−k,i, which is defined as

ẑ−k,i = hk(x̂
−
k,i) (i = 1, 2, . . . , N) (9)

where hk(·) is the nonlinear function of the measurement
equation, x̂−

k,i is the ith a priori particle (i.e., sample of the
a priori estimated state), and N is the number of samples
(i.e., the number of particles). In the Gaussian likelihood func-
tion, the likelihood (i.e., weight) of each particle is a reciprocal
of the difference between the actual measurement and the pre-
dicted measurement. Thus, the closer the samples of predicted
measurement ẑ−k,i are placed to the actual measurement z∗k, the
higher the weight of the a priori particle. Observing Fig. 2,
one notices that there are only two samples of predicted mea-
surement located within the measurement uncertainty ellipse
(also known as the error ellipse). Only two a priori parti-
cles x̂−

k,i can obtain significant weight, and resampling will

repeat them multiple times as a posteriori particles x̂+
k,i. This

leads to sample impoverishment [14] and failures in PF-based
robot localization. The above-described scenario is mostly due
to low-intensity process/measurement noise and/or the small
number of particles required for fast localization. Other fac-
tors may also cause sample impoverishment; therefore, much
effort has been made by diverse authors to find a solution.
Unfortunately, sample impoverishment is fundamental in PF
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Fig. 3. Flowchart of hybrid particle/FIR filtering algorithm.

and cannot be avoided completely. Moreover, existing algo-
rithms such as those in [20]–[22] are not able to recover the
PF from failures.

III. HYBRID PARTICLE/FIR FILTERING

When a serious failure occurs in the PF algorithm, resetting
the failed PF can be a good remedy. This approach involves
two key processes; 1) detecting failures in the PF; and 2) gen-
erating new particles for the PF. First, to detect PF failures, a
novel diagnosis algorithm based on the Mahalanobis distance
is proposed in this paper. Second, to generate new particles
for resetting PF, an auxiliary filter is utilized. The first require-
ment for the auxiliary filter is robustness. The auxiliary filter
has to produce state estimates under the conditions in which
the PF failure occurs. The auxiliary filter does not have to be
very accurate, but it should be robust and stable. The second
requirement for the auxiliary filter is that it can operate only
occasionally, when necessary. This is necessary for reducing
computational burden. If the PF and the auxiliary filter run
simultaneously, excessive computational burden may become
an issue. For fast computation and real-time processing, reduc-
ing computational burden is essential. The IIR-type filters, such
as the EKF and the unscented Kalman filter (UKF), are not
appropriate for the auxiliary filter, because they have a possibil-
ity of divergence. Moreover, the IIR-type filters require the prior
estimate x̂k−1 for producing the current estimate x̂k. Thus,
the IIR-type filters cannot realize the occasional execution.
However, the FIR filters have built-in bounded-input bounded-
output (BIBO) stability and special robustness against modeling
and computational errors. In addition, the FIR filters can pro-
duce the current state estimate using recent finite measurements
without the prior state estimate. In particular, the EFIR filter
is one of the fastest FIR filters, because it has a Kalman-like

form. Therefore, the EFIR filter is appropriate as the auxiliary
filter.

Fig. 3 shows the flowchart of the proposed algorithm. The
PF plays the role of the main filter that provides estimation of
the mobile robot coordinates and heading in normal conditions.
The PF is appropriate for the main filter, because it can provide
better performance, when there is no failures, than nonlinear
FIR filters. To use a nonlinear FIR filter as a main filter, the
cumbersome problem of finding a suitable horizon size must be
solved. A diagnosis of PF failures is conducted at every time.
If the PF failure is detected, the auxiliary nonlinear FIR filter
is operated to produce information for resetting the failed PF.
In the following sections, the algorithm of hybrid particle/FIR
filtering will be explained in detail.

A. Diagnosis of PF Failures

Wrong estimates at the PF output can be detected by taking
into account the following features of sample impoverishment.

1) Only a few samples of predicted measurement falling
within the measurement uncertainty ellipse.

2) The samples of the predicted measurement are far from
the actual measurement.

Referring to the first feature, one can diagnose PF failures by
checking the number of samples falling within the uncertainty
ellipse. Classification methods using the uncertainty ellipse
have been used in the area of multitarget tracking; this method
is known as ellipsoidal gating [38]. The ellipsoidal gating for
multitarget tracking is used for classification of the tracked
positions of targets, whereas the proposed method is used to
classify the predicted measurements. In order to recognize
samples falling within the uncertainty ellipse, the Mahalanobis
distance [39] and chi-square distribution [40] are used. The
required chi-square value χ2 is taken from a chi-square table.
For example, the third-order system having three states requires
χ2 = 11.34 for a confidence level of 99%. However, this

Algorithm 1. Diagnosis of PF Failure

Data: χ2

Result: Ifailure

1 begin
2 - Compute the sample mean of the a posteriori particles

at time k: μk = 1
N

∑N
i=1 x̂

+
k,i

3 - Compute the predicted measurement of the sample
mean: ẑk,µ = hk(μk)

4 - Compute the Mahalanobis distance Dk between the
predicted measurement and the actual measurement:

5 Dk = (z∗k − ẑk,µ)R
−1
k (z∗k − ẑk,µ).

6 if Dk > χ2 then
7 Ifailure = 1 (the PF failure occurs).
8 else
9 Ifailure = 0 (the PF failure does not occur).

10 end if
11 end
12 † Ifailure is a variable for indicating the PF failure.
13 † Rk is the covariance of the Gaussian measurement noise

at time k.
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method implies a large computational burden, because each
sample undergoes testing. Thus, an alternative method that
refers to the second feature of sample impoverishment is
proposed. The Mahalanobis distance between the sample mean
of predicted measurements and the actual measurement is
computed. If the computed Mahalanobis distance is larger than
the predetermined χ2, it is judged that the PF failure occurs.
This diagnostic procedure is summarized in Algorithm 1.

B. FIR Filtering Using Nonlinear FIR Filters

When the PF failure is detected by Algorithm 1, an auxiliary
nonlinear FIR filter is operated. In this paper, the EFIR filter
[1], [27], [30] is exploited as the auxiliary filter. This filter does
not require the initial state and ignores the noise statistics that
suit the requirements for an auxiliary filter that operates occa-
sionally. The EFIR filter is based on the Taylor approximation,
which requires computation of Jacobian matrices defined as

Fk � ∂fk
∂x

∣∣∣∣
x̂k

, Hk � ∂hk

∂x

∣∣∣∣
x̂k

. (10)

The EFIR filter equations for computing the state estimate
and the estimation error covariance at time k are presented in
Algorithm 2.

Algorithm 2. EFIR Filter

Data: M
Result: x̂k, Pk

1 begin
2 - t = k −M + 1, s = t+ p− 1.
3 - x̃s = x̂s.
4 - P̃s = Ps.

5 - Hs,t =

⎡
⎣Ht+2Ft+2Ft+1

Ht+1Ft+1

Ht

⎤
⎦.

6 - F t+1
s,0 = FsFs−1 · · ·Ft+1.

7 - Gs = F t+1
s,0 (HT

s,tHs,t)
−1(F t+1

s,0 )T .
8 for l = s+ 1 : k do
9 - x̃−

l = fl(x̃l−1,ul).
10 - P̃−

l = FlP̃l−1F
T
l +Ql.

11 - Gl = [HT
l Hl + (FlGl−1F

T
l )

−1]−1.
12 - Kl = GlH

T
l .

13 - x̃l = x̃−
l +Kl[zl − hl(x̃

−
l )].

14 - P̃l = (I−KlHl)P̃
−
l (I−KlHl)

T +KlRlK
T
l .

15 end for
16 - x̂k = x̃k,Pk = P̃k.
17 end
18 † M is the horizon size of the EFIR filter.
19 † p is the dimension of the state vector.
20 † x̂s and Ps are the estimated state and the estimation

error covariance, respectively, at time s, which can be
obtained by using the extended minimum variance FIR
(EMVF) filter [34].

In Algorithm 2, the EFIR filter is aided by the EMVF fil-
ter [34]. The EFIR filter is initialized by setting x̂s and Ps,
which can be obtained from other nonlinear filters (e.g., EKF)

[1], [30]. As the EFIR filter is operated occasionally in the pro-
posed hybrid RP/EFIR filtering, the EKF is not appropriate for
the purpose of initialization. The EKF cannot be occasionally
operated in the same manner with the EFIR filter, because the
EKF requires x̂k−1 for producing x̂k. Thus, the EMVF filter,
which can be operated in the same manner with the EFIR filter,
is used to initialize the EFIR filter. The EMVF filter requires
auxiliary signals z̃k and ũk, which are defined, respectively, as

z̃k � hk(x̂k)−Hkx̂k

ũk � fk(x̂k)− Fkx̂k.
(11)

Algorithm 3. EMVF Filter

Data: M
Result: x̂k, Pk

1 begin
2 - Obtain the state estimate, x̃k, using the following

equations:
3 x̃k = L (Y −GU) +KU,

4 L = J

[
W1,1 W1,2

WT
1,2 W2,2

]−1
[
H

T

G
T

]
R

−1
,

5 J = [F̃n,m F̃n,m+1 F̃n,m+2 · · · F̃n,nI],
6 F̃g,h = Fg × Fg−1 × Fg−2 × · · · × Fh (g ≥ h),
7 F̃g,g = Fg ,

8 W1,1 = H
T
R

−1
H,

9 W1,2 = H
T
R

−1
G,

10 W2,2 = G
T
R

−1
G+Q

−1
,

11 H =

⎡
⎢⎢⎢⎢⎢⎣

Hm

Hm+1F̃m,m

Hm+2F̃m+1,m

...
HnF̃n−1,m

⎤
⎥⎥⎥⎥⎥⎦,

12 G =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
Hm+1 0 . . . 0 0

H̃m+2,m+1 Hm+2 . . . 0 0
...

...
...

...
...

H̃n,m+1 H̃n,m+2 . . . H̃n 0

⎤
⎥⎥⎥⎥⎥⎦,

13 H̃g,h = HgF̃g−1,h (g > h),

14 R =

⎡
⎣diag(

p︷ ︸︸ ︷
Rm Rm+1 · · ·Rn)

⎤
⎦,

15 Q =

⎡
⎣diag(

p︷ ︸︸ ︷
Qm Qm+1 · · ·Qn)

⎤
⎦,

16 Y = [z̃Tm z̃Tm+1 · · · z̃Tn ]T ,
17 U = [ũT

m ũT
m+1 · · · ũT

n ]
T ,

18 K = [F̃n,m+1 F̃n,m+2 · · · F̃n,n I].
19 - Obtain the estimation error covariance, Pk, using the

following equation:
20 Pk = KQKT + LRLT

21 end
22 † m = k −M and n = m+ p− 1 are the initial and final
points, respectively, on the horizon of the EMVF filter.
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The EMVF filter equations to obtain x̂k and Pk are presented
in Algorithm 3. Substituting s into k in Algorithm 3, x̂s and
Ps can be obtained. Note that the horizon size (i.e., averaging
interval) of the EMVF filter is set to be the same as p, which is
the dimension of the state vector and is the minimum available
horizon size. The EMVF filter produces x̂s and Ps using the
measurements on the interval [k −M,k −M + p− 1], and the
EFIR filter updates them and produces x̂k and Pk using the
measurements on the interval [k −M + p, k].

Remark 1: The horizon size M is a key design parameter
affecting the estimation performance of FIR filters [29], [34].
To achieve the best performance using FIR filters, M should be
chosen to be an optimal horizon size. In nonlinear FIR filter-
ing, such as the EFIR and the EMVF filtering, nonlinear system
models are converted into linear time-varying (LTV) system
models by means of the Taylor approximation. Thus, the opti-
mal horizon size Mopt is also time-varying, which means Mopt

should be found at each time step in nonlinear FIR filtering.
Finding time-varying Mopt is a challenging problem in nonlin-
ear FIR filtering. However, in the hybrid particle/FIR filtering,
users do not need to worry about finding Mopt. This is because
the nonlinear FIR filter is an auxiliary filter that is used to
recover a failed PF. The recovery process by the nonlinear FIR
filtering is performed very occasionally. For the most part of
filtering time, the main filter (i.e., PF) produces state estimates.
When the main filter fails, the auxiliary FIR filter provides a
rough estimate of the current state. Using this information, the
PF is reset and rebooted. Over time, the rough estimate of state
obtained from the FIR filter is refined by the particle filtering.
The nonlinear FIR filter is used to produce a rough estimate of
state for resetting of the PF. Therefore, there is no need to find
Mopt in the hybrid particle/FIR filtering. A roughly selected M
is enough for the hybrid particle/FIR filtering. A small horizon
size is advantageous for fast computation or real-time process-
ing. However, the minimum horizon size, which is the same as
the dimension of the state vector, may exhibit poor estimation
performance owing to insufficient noise suppression. Thus, it
is better to set the horizon size to be a slightly larger than the
minimum available horizon size. Accordingly, in this paper, the
horizon size was taken as M = 5, which is slightly larger than
the minimum available horizon size M = 4.

C. Hybrid RP/EFIR Filter

The proposed hybrid particle/FIR filtering is a general algo-
rithm that can adopt various particle and FIR filters. In this
paper, an example of possible hybrid particle/FIR filters is
presented. Combining the RPF [14], [19], [20] and the EFIR
filter (Algorithm 2), the hybrid RP/EFIR filter is obtained. The
choice of the RPF is due to its better robustness against sam-
ple impoverishment compared to the standard PF. Moreover,
the performance of the RPF has been verified by a variety
of applications. The algorithm of the RPF can be found in
many studies [14], [19], [20]. In turn, the EFIR filter [1],
[27], [30] is a state-of-the-art nonlinear iterative unbiased FIR
filter having computational efficiency. The hybrid RP/EFIR
filtering (Algorithm 4) follows the procedure shown in
Fig. 3.

Algorithm 4. Hybrid RP/EFIR Filter

Data: N , M , χ2

Result: x̂k

1 begin
2 - Generate N initial particles.
3 for k = 1, 2, · · · do
4 - Perform filtering using the RPF and obtain the a

posteriori particle set {x̂+
k,i}Ni=1.

5 - x̂k = x̂k,RPF = 1
N

∑N
i=1 x̂

+
k,i.

6 - Compute the Jacobian matrices Fk and Hk defined
in (10), and save them in the memory.

7 - Compute the auxiliary signals z̃k and ũk defined in
(11), and save them in the memory.

8 if k > M then
9 - Diagnose the RPF failure by using

Algorithm 1.
10 if Ifailure == 1 then
11 - s = t+ p− 1.
12 - For initialization of the EFIR filter,

execute the EMVF filter (Algorithm 3) and
obtain x̂s and Ps.

13 - Perform filtering using the EFIR filter
(Algorithm 2) and obtain x̂k,EFIR and
Pk,EFIR.

14 - x̂k = x̂k,EFIR.
15 - Reset the RPF by generating new a

posteriori particles using Gaussian
distribution: x̂+

k,i ∼ N (x̂k,EFIR,Pk,EFIR).
16 end if
17 end if
18 end for
19 end
20 † x̂k,EFIR and Pk,EFIR are the estimated state and the

estimation error covariance obtained using the EFIR filter.
21 † x̂k,RPF is the estimated state obtained by using the RPF.
22 † x̂k is the output of the hybrid RP/EFIR filter.

In Algorithm 4, the Gaussian kernel [14], [19] is used for the
regularization process of the RPF. The optimal bandwidth of
the Gaussian kernel is computed as

hopt = [4/(p+ 2)]
1

p+4N− 1
p+4 (12)

where p is the dimension of the state vector [19]. Algorithm 4
is computationally efficient, because the EFIR filter operates on
short horizons and only by request. Unlike the existing versions
of PFs [16], [20]–[22], which were designed to alleviate sam-
ple impoverishment, Algorithm 4 provides recovery of the RPF
when the RPF failures occur.

IV. MOBILE ROBOT LOCALIZATION USING WSN VIA

HYBRID PARTICLE/FIR FILTERING

In this section, the designed hybrid RP/EFIR filter is
applied to the mobile robot localization using a WSN. Various
conditions that may cause the RPF to fail are considered.
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Fig. 4. Mobile robot localization under the ideal conditions of no sample
impoverishment. (a) Robot trajectory. (b) Instantaneous positioning errors.

Four receivers (Fig. 1) are assumed to be installed at points
(0, 0), (0, 20), (20, 0), and (20, 20), all in meters. In all subse-
quent simulations, the horizon size of the EFIR filter is taken as
M = 5.

A. Circular Robot Trajectory

First, the proposed hybrid RP/EFIR filter is tested under ideal
conditions (i.e., when sample impoverishment is negligible
and localization is thus provided with highest accuracy).
A robot departs from point (10 and 5 m) and travels counter-
clockwise along a circular trajectory. The noise covariances
are set as Qk = [diag(0.12 0.12 12)] and Rk = [diag(0.52

0.52 0.52 12)]. The generated number of particles is N = 104.
The positioning error is computed by

Epos =
√

(xk − x̂k)2 + (yk − ŷk)2 (13)

where (xk, yk) is the true position of a mobile robot and
(x̂k, ŷk) is its estimated position. Fig. 4(a) shows how well the
estimated location fits an actual trajectory. In Fig. 4(b), the same
errors are observed in the RPF and the hybrid RP/EFIR filter, as
would be expected with no sample impoverishment. Note that
the auxiliary EFIR filter stays out of service here and the hybrid
RP/EFIR filter operates as a pure RPF.

1) Localization With Small Measurement Noise: In robot
localization, sample impoverishment typically occurs when a

Fig. 5. Mobile robot localization with small measurement noise. (a) Actual
robot trajectory and its estimates. (b) Instantaneous positioning errors.

sensor is accurate and measurement noise is small. A curios-
ity of this situation is that an increase in sensing accuracy
causes more frequent localization failures [18]. Under this
condition of low measurement noise caused by very accu-
rate measurement of the WSN, the hybrid RP/EFIR filter is
tested. The measurement noise covariance is taken as Rk =
[diag(0.052 0.052 0.052 0.12)]. Fig. 5 sketches the localization
errors. As can be seen in Fig. 5(a), the RPF completely fails
in tracking across all points due to sample impoverishment.
Even though the RPF is more robust than the standard PF, it
was unable to avoid sample impoverishment entirely with small
measurement noise. On the contrary, the hybrid RP/EFIR filter
does this work perfectly, and Fig. 5(b) shows extremely low
positioning errors.

2) Localization with Small Number of Particles: A small
number of particles is always desirable from the standpoint of
fast (real-time) filtering. This requirement typically cannot be
obeyed because it leads to poor performance and PF failures.
A large number of particles (e.g., N = 10 000) are commonly
generated.

Fig. 6 sketches a typical effect associated with a small num-
ber of particles (N = 1000). As can be seen, the RPF has a
transient region lasting up to k = 30 in this case. This can be
explained in the following way. As suggested by the optimiza-
tion theory for an unknown initial target’s position, the particles
are commonly generated to have a uniform distribution. This
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Fig. 6. Mobile robot localization with a small number of the particles (N =
1000). (a) Actual and estimated trajectories. (b) Positioning errors.

should be so for infinity N . Otherwise, if N is finite, the distri-
bution histogram is not uniform and particles are concentrated
in certain areas. This biased estimate of the initial state causes
localization errors. In the RPF scheme, the bias error typically
diminishes during a long transience. The EFIR filter is unbi-
ased and its estimate is produced on a short horizon M = 5,
which is statistically more accurate than that obtained for PF
with small N . Therefore, in contrast, transients in the RP/EFIR
filter appear to be much shorter [Fig. 6(b)].

Fig. 7 gives typical average localization errors produced by
the RPF and the hybrid RP/EFIR filter for 1000 � N � 5000.
The hybrid RP/EFIR filter is more successful in terms of accu-
racy than the RPF, and the error difference between these filters
vanishes as N increases. Note that N > 104 makes errors in
both filters almost equal.

The effect of N on the positioning errors is much more pro-
nounced when the number of generated particles is very small
(e.g., N < 500). Fig. 8 gives the number of failures detected
in the RPF and the hybrid RP/EFIR filter in 100 Monte Carlo
runs. An estimator was deemed to fail (i.e., localization failure)
if an average positioning error exceeded 1m. As can be seen, an
unacceptably large number of failures is produced by the RPF
with N = 100 and the number of failures decreases when N
grows. On the contrary, one failure was not detected with the
hybrid RP/EFIR filter.

Fig. 7. Typical average positioning errors as functions of the number N of the
particles for RPF and hybrid RP/EFIR filter.

Fig. 8. Localization failures detected in the RPF and hybrid RP/EFIR filter with
very small N values.

Fig. 9. Example of the computation time consumed by the RPF and hybrid
RP/EFIR filter to localize a robot with an error of 10 cm.

Operated on short horizons (e.g., M = 5), an auxiliary EFIR
filer does not consume much extra time, so for N = 104, the
total operation time measured was 155.12 s in the RPF and
155.47 s in RP/EFIR filter. A dramatic reduction in computa-
tion time is indicated if measuring it for the same positioning
error, as shown in Fig. 9. The two bars represent the total time
consumed by the RPF and hybrid RP/EFIR filter to localize a
mobile robot with an error of 10 cm. More specifically, the RPF
required 33.22 s to provide a localization with an error of 9.5 cm
for N = 2000. In turn, the hybrid RP/EFIR filter required 6.84 s
to provide a localization with an error of 8.9 cm for N = 400.
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Fig. 10. “Kidnapped robot problem.” (a) Mobile robot trajectory and its
estimates. (b) Positioning errors.

B. Kidnapped Robot Problem

The kidnapped robot problem is one of the most challeng-
ing in mobile robot localization. It requires that the localization
algorithm has an ability to recover from extreme failures [16].
Below, the RPF and hybrid RP/EFIR filter are tested by the kid-
napped robot problem. The simulation scenario is as follows.

1) A mobile robot starts from point (7 and 5 m) and travels
along a straight line.

2) At the 200th step, the robot suddenly “jumps” (is kid-
napped) to (7 and 12 m).

3) Thereafter, it keeps traveling along the straight line in the
same direction.

This scenario is somewhat artificial as long as sudden jumps
are unfeasible in robotics. Even so, it allows localization algo-
rithm testing under unpredictable behaviors such as the “kid-
napped robot problem.” Fig. 10 gives an idea about tracking
abilities of both filters before and after the breakpoint of the
“kidnapping.” As can be seen, the RPF completely loses any
ability for tracking at the breakpoint, whereas the RP/EFIR fil-
ter still tracks a robot after a short period of transience. This
simulation also speaks in favor of the proposed hybrid filter.

V. CONCLUSION

The hybrid particle/FIR filtering algorithm proposed in this
paper has demonstrated the ability to recover a completely

failed PF algorithm. This effect was achieved by the PF reset-
ting using an auxiliary FIR filter that has special robustness
and stability. Simulation results and statistical analyses demon-
strated that the hybrid RP/EFIR filter improves reliability of
localization compared to the RPF. Under harsh conditions, such
as low measurement noise or a small number of particles, the
hybrid RP/EFIR filter did not fail and was successful in tracking
the robot position, whereas the RPF exhibited large positioning
errors or completely failed localization results. In addition, the
hybrid RP/EFIR filter reached the required localization accu-
racy with a much smaller number of particles compared to
the RPF. Thus, the proposed hybrid filter structure can offer a
dramatic reduction in computation time.

The greatest advantage of the proposed algorithm is that it
can adopt any PF and any FIR filter. By combining state-of-the-
art filters, an upgraded hybrid particle/FIR filter can be made.
The present authors are now developing and testing a new FIR
filter that can overcome the intermittent measurement condi-
tion. Using the new FIR filter, a new hybrid particle/FIR filter
for overcoming the NLOS situation will be made. In addition,
we plan to experiment the indoor mobile robot localization
using the proposed algorithm. The results of those studies are
expected to be published in the near future.
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