
Microprocessors and Microsystems 45 (2016) 198–207

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

A runtime fault-tolerant routing algorithm based on region flooding in

NoCs

Lu Wang

a , b , ∗, Sheng Ma

a , b , Zhiying Wang

a , b

a State Key Laboratory of High Performance Computing, National University of Defense Technology, China
b College of Computer, National University of Defense Technology, Changsha, China

a r t i c l e i n f o

Article history:

Received 7 April 2015

Revised 9 May 2016

Accepted 12 May 2016

Available online 14 May 2016

Keywords:

Reliability

Network-on-chip

Fault tolerance

Communication protocol

Region flooding algorithm

a b s t r a c t

Aggressive scaling of the CMOS process technology allows the fabrication of highly integrated chips, and

enables the design of the network-on-chip (NoC). However, it also leads to widespread reliability prob-

lems. A reliable NoC system must operate normally even in the face of a lot of transistor failures. Aiming

towards permanent faults on communication links, we introduce a fault-tolerant MPI-like communication

protocol. It detects the link failure if there exist unresponsive requests and automatically starts the new

path exploration. The region flooding algorithm is proposed to search for a fault-free path and reroute

packets to avoid system stalls. The experimental result shows our approach significantly reduces the la-

tency compared with the basic flooding algorithm. The maximum latency reduction is 25% under the bit

complement traffic pattern. Also, it brings only 2% fault tolerance loss.

© 2016 Elsevier B.V. All rights reserved.

M

u

p

a

f

m

[

w

T

c

f

e

r

t

o

c

s

w

n

a

t

1. Introduction

The Moore’s Law scaling is continuing to yield even higher tran-

sistor density with each succeeding process generation, leading

the design of the network-on-chip (NoC). Unfortunately, the deep

sub-micro CMOS process technology is marred by increasing sus-

ceptibility to wear out [1] . Widespread reliability challenges are

expected in nearest fabrication technologies. Building a fault-

tolerant NoC system should be concerned as a necessity. Actually,

traditional fault-tolerant algorithms such as using repetitive struc-

tures [2–4] are infeasible for the NoC due to area restrictions [5] .

Several solutions have been proposed to design a reliable NoC sys-

tem [6–8] , especially for transient or permanent faults on links or

routers. These approaches generally provide reliability from four

different hierarchies: link control, router control, network interface

control and end to end control.

In this article, we mainly address permanent and hard errors

on links which result in flit dropping from the hierarchy of end

to end control. The error control generally involves three basic

steps: detection, containment, and recovery [9] . However, previous

works mostly focus only on one step of them. We try to establish

an integrated hardware-software framework involving the runtime

detection of faulty links, containment of link failure and reconfigu-

ration of healthy routes. Hence, this paper proposes a fault-tolerant
∗ Corresponding author.

E-mail addresses: wwanglu1991@gmail.com , 734809187@qq.com (L. Wang),

masheng@nudt.edu.cn (S. Ma), zywang@nudt.edu.cn (Z. Wang).

i

e

A

http://dx.doi.org/10.1016/j.micpro.2016.05.004

0141-9331/© 2016 Elsevier B.V. All rights reserved.
PI-like communication protocol. It detects link failure if there are

nresponsive requests and automatically starts the new path ex-

loration.

A key issue to be solved is providing a fault-tolerant routing

lgorithm, which is discussed in several works [10–13] . A good

ault-tolerant routing algorithm means low route latencies and

inimal extra consumption. However, most proposed algorithms

10–12] have special restrictions on the number of faulty links as

ell as their locations.

Watchter et al. [13] have coped with this problem recently.

o provide high scalability, they adopted a typical MPI-like proto-

ol for core-to-core communication. The source node detects link

ailure through unresponsive requests and broadcasts seek pack-

ts through the entire mesh NoC to obtain an alternative healthy

oute. This approach takes advantage of the path redundancy be-

ween a pair of nodes and successfully combines high performance

f hardware with high flexibility of software.

Although broadcasting seek packets to all other nodes provides

omplete reachability, it also brings unnecessary packet transmis-

ions. Actually, in most cases, we can find an alternative path

ithin the minimum rectangle defined by source and destination

odes. Based on this observation, we introduce a region flooding

lgorithm to efficiently search for a fault-free path. It makes use of

he NoC’s regular structure to direct a search following the min-

mal path to the destination and dramatically improves network

fficiency by limiting the search area.

Generally, a better fault tolerance means a worse performance.

lthough Wachter et al.’s methodology [13] can perform the best

http://dx.doi.org/10.1016/j.micpro.2016.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.05.004&domain=pdf
mailto:wwanglu1991@gmail.com
mailto:734809187@qq.com
mailto:masheng@nudt.edu.cn
mailto:zywang@nudt.edu.cn
http://dx.doi.org/10.1016/j.micpro.2016.05.004

L. Wang et al. / Microprocessors and Microsystems 45 (2016) 198–207 199

f

m

s

t

w

d

a

[

c

r

n

t

p

t

l

w

2

y

i

t

d

w

t

T

a

u

o

r

a

f

f

r

[

fl

t

c

N

e

g

r

t

p

B

s

M

m

m

m

h

3

3

w

M

a

t

Fig. 1. Basic MPI-like communication protocol between two nodes.

t

a

f

a

r

s

d

b

n

t

b

a

M

e

t

c

e

m

p

t

3

t

w

s

f

h

i

t

d

c

f

n

w

t

t

p

d

s

ault tolerance, our region flooding approach significantly opti-

izes the latency with little fault tolerance loss. By analyzing the

ynthesized influence of fault tolerance and latency, we conclude

hat our approach is suitable for NoCs, especially for large systems

ith low fault rates.

Our contributions concentrate on two aspects. First of all, our

esign arrives at an optimal trade-off between fault tolerance

nd performance which has not been discussed by previous work

10–17] . Next, our work simultaneously addresses fault detection,

ontainment and recovery.

The rest of the paper is organized as follows. Section 2 reviews

elated work. Section 3 presents a fault-tolerant MPI-like commu-

ication protocol. Section 4 proposes the design of the NoC archi-

ecture and the network interface. Section 5 introduces our ap-

roach of searching for a fault-tolerant route and also discusses

he deadlock avoidance mechanism and router pipeline. The simu-

ation as well as evaluation are presented in Section 6 . After that,

e draw a conclusion in Section 7 .

. Related work

Fault-tolerant routing algorithms have been discussed for many

ears. Previous works mostly focus on adaptive fault-tolerant rout-

ng algorithms for mesh networks. Chien and Kim [10] proposed

he fault-tolerant planar adaptive routing (PAR) algorithm for n-

imensional meshes. Their algorithms can tolerate rectangle faults

ith no overlapping of f-rings. Su and Shin [11] proposed an adap-

ive fault-tolerant routing algorithm for n-dimensional meshes.

heir algorithms can tolerate a disconnected rectangular block in

n n-dimensional mesh. However, these algorithms can only be

sed in special topologies or special region shapes such as L, T

r +.

Recently, some topology-agnostic fault-tolerant routing algo-

ithms are discussed [14–17] . Dumitras et al. [15] proposed a prob-

bilistic flooding scheme. Costas et al. [16] introduced a deadlock

ree hybrid routing algorithm, utilizing load-balancing routing on

ault-free paths to support high performance and providing pre-

econfigured escape path in the vicinity of faults. Aisopos et al.

17] obtained an alternative path by broadcasting reconfiguration

ags upon any number of concurrent network faults in any loca-

ion. Watcher et al. [13] presented a novel fault-tolerant communi-

ation protocol that takes advantage of intrinsic redundancy of the

oC to provide alternative paths between any source-target pair,

ven in the presence of multiple faults. Different from these al-

orithms, our approach restrains the search in a rectangular area

ather than the entire NoC, which dramatically decreases the la-

ency and improves network efficiency.

There is also some work on designing fault-tolerant message

assing libraries as a fault recovery method [18–21] . For instance,

atchu et al. [20] tested unresponsive processes by implementing

elf-checking threads which use heartbeat messages to monitor the

PI/FT progress. Aulwes and Daniel [21] proposed fault-tolerant

echanisms for the MPI such as the checksum, message retrans-

ission, and automatic message re-routing. The timeout seeking

echanism in our proposed fault-tolerant MPI-like communication

as similar idea with these work.

. Fault-tolerant MPI-like communication protocol

.1. Basic communication protocol

The basic communication protocol between nodes in this

ork is message passing. Two MPI-like primitives are adopted:

PI_Send() and MPI_Receive() . The communication protocol in our

pproach derives from the non-blocking synchronous communica-

ion mode. Fig. 1 illustrates the communication procedure between
wo tasks. Particularly, the task A and B are mapped to the node A

nd B respectively.

During one point to point communication, task A executes the

unction MPI_Send () on the source node. First, the node A sends

 request message through the NoC. Being a control message, the

equest message has a single flit. After sending a request message,

ome information such as the destination, the tag, the starting ad-

ress and the size of the data message should be written to ‘ msg

uffer ’ which is a dedicated memory space or register stacks in the

ode A. At the same time, the computation could be carried on in

he task A. Only after an acknowledgment from the destination has

een received, the node A will free the corresponding ‘ msg buffer ’

nd send the data message to the node B.

On the destination node, the task B executes the function

PI_Receive() and waits for a request message. After receiving the

xpected request message, it will send an acknowledgment (ack)

o the source node. Once there exist faulty links in the communi-

ation path which cause interruptions for the request or acknowl-

dgement messages, the data message will not be transferred nor-

ally and the system will stall. So we improve this communication

rotocol by adding fault tolerant designs to ensure service quali-

ies.

.2. Fault tolerant communication protocol

Fig. 2 describes the proposed fault-tolerant communication pro-

ocol. It illustrates two fault scenarios, the link failure from A to B

hen sending a request message and link failure from B to A when

ending an acknowledgment message. In order to tolerate these

aults and provide a reliable service, a timeout seeking mechanism

as been added. We suppose that there are faulty links in the orig-

nal path if the task A cannot receive an acknowledgment from the

ask B during a scheduled time. Particularly, the scheduled time

_time is set according to the average latency in the fault-free cir-

umstances. After that, a seek message will be triggered to find a

ault-free path between source and destination nodes. When the

ode B receives the seek message, it will return a track message

hich contains a recording of the new fault-free route. The node A

hen updates the route table and delivers the data message with

he new healthy route. However, new faults may appear in this

ath. In order to deal with the occasion where new faults appear

uring the current data transmission, the node B should send a

eek packet to the node A if it does not receive expected packets

200 L. Wang et al. / Microprocessors and Microsystems 45 (2016) 198–207

taskA taskB
MPI_Receive（）

request

seek

track

msg

ack

seek

MPI_Send（）

msg

Update
route

Update
route

Write msg
buffer

d_time

Fig. 2. Fault-tolerant MPI-like communication protocol.

Fig. 3. State transition in source node.

Fig. 4. The NoC architecture.

A

b

c

t

‘

s

s

‘

s

f

s

i

t

a

N

u

4

4

4

c

b

d

H

w

f

l

r

4

o

t

m

s

F

T

t

s

t

r

r

in a period of time. Expected packets id should be included in the

seek packet to notify the source node. When the node A receives

the seek packet, it will update the route table again and retransmit

un-received packets of the node B. If the node B receives expected

packets from the first transmission later, it will drop retransmis-

sion packets. However, the possibility of this occasion is very low

because the period of one point to point communication is quite

short. More generally, new faults will appear after the current data

transmission. The node A will detect if there exist faulty links on

this new path again through sending request message in the next

communication with task B and it will also send seek packets to

update route if new faults appear.

3.3. Triggering of seek packets

A critical problem to be settled in the implementation of our

fault-tolerant MPI-like communication protocol is when and how to

trigger a seek packet. In order to handle it, an N-entry seek state ta-

ble (SST) is added to the network interface. The i-th entry records

corresponding state and d_time of the seek packet whose destina-

tion is the node i. Fig. 3 describes the transitions of this 2-bit FSM.

The state is initialized to be the ‘idle’ state. When a request mes-

sage is sent to the target node, it will turn into the ‘wait’ state.
fter receiving the acknowledgment from the destination, it will

e updated to be the ‘idle’ state again. However, if the source node

an not receive an acknowledgment during the scheduled time,

he seek packet will be triggered and the state will turn into the

search’ state. When the source node receives a track packet, the

tate will turn back to be the ‘idle’ state. Hence, each time the

ource node scans its seek state table (SST) , if ‘state’ field is the

wait’ state and the current time overtakes the scheduled time, a

eek packet will be triggered. We will discuss the appropriate value

or the scheduled time later. A fixed amount of time to start the

eek process is not suitable for all applications. A communication

ntensive application may stall for a long period while a computa-

ion intensive application may not. We define this scheduled time

s K × AVG . Here, AVG means the average latency for a fault-free

oC. And K is a constant related to the characteristics of a partic-

lar application.

. Communication architecture

.1. NoC architecture

Fig. 4 shows the block diagram of the NoC architecture with a

 × 4 2D mesh topology in our design. Each node contains a lo-

al processor (Core) and a network interface (NI) module. A FIFO

uffer is leveraged to connect the NI and the router. We use the

istributed XY routing algorithm as the basic routing algorithm.

owever, after a new healthy path is updated in the route table,

e will choose the source routing algorithm. The network inter-

ace is used to support the implementation of fault-tolerant MPI-

ike communication protocol such as triggering seek packets. Also,

oute tables are stored in the NI.

.2. Design of network interface

The network interface is an important module for implementing

ur fault-tolerant MPI-like communication protocol . There are five

ypes of packets: the request, acknowledgment, seek, track and data

essage. When to generate the corresponding packet and how to

elect a correct packet to deliver are illustrated next. As shown in

ig. 5 , four packet generators are added in the network interface.

he Request packet generator is triggered by the MPI_send opera-

ion. The Data message generator is used to build the data mes-

age. It is triggered by receiving an acknowledgment packet or a

rack packet. And related control information, data payloads and

oute information are fetched from the message buffer, cache and

oute table respectively. Once receiving a request packet or a seek

L. Wang et al. / Microprocessors and Microsystems 45 (2016) 198–207 201

Fig. 5. Network Interface diagram.

Table 1

Seek packet format.

src dest type pid f_id m_id hops outport1 outvc1 outport2 outvc2 ... outportN outvcN

p

e

b

s

l

t

e

t

k

5

f

c

P

f

5

s

o

5

g

b

s

s

i

e

‘

p

a

fi

i

S

c

p

t

s

d

i

t

t

5

i

R

R

c

t

t

fi

w

M

u

s

p

acket, an acknowledgment packet or a track packet will be gen-

rated through the corresponding unit. A seek packet is triggered

ased on the seek state table (SST) described in Section 3.3 . And a

ending arbiter is utilized to decide which type of the packet is se-

ected to send. Here, we define the priority of the packet based on

heir types. The acknowledgment and track packets have the high-

st priority. The seek packet takes the second position. Next comes

he data message packet. The request packet bottoms the list of all

inds.

. Fault-tolerant routing algorithm

In this article, we use the region flooding algorithm to search

or a fault-free route in most cases. However, for some special

ases with one or two faults, we can directly reconfigure routes.

articularly, our fault-tolerant routing algorithm provides 100%

ault tolerance for the single fault network.

.1. Region flooding algorithm

Our region flooding algorithm consists of three steps. (1) send

eek packets to find a new healthy path. (2) backtrack the path. (3)

btain a new path and update the route table.

.1.1. Seek packet format

In our approach, seek packets are delivered through the re-

ion flooding algorithm to find a fault-free route. Different from

roadcasting seek packets to all neighbors [13] , it restrains each

tep of searching towards the destination. Hence, all paths to be

earched have minimal hops. To trace these paths, corresponding

nformation is recorded in seek packets. The format of seek pack-

ts is described in Table 1 . Bold fields present extra payloads. The
m_id’ field is reserved to distinguish different copies of one seek

acket. This field is initially set to be zero and is updated when

 seek packet replicates during transmission. The 2-bit ‘outport i’

eld records the output port of each hop and the 1-bit ‘outvc

’ records the chosen virtual channel which will be discussed in

ection 5.1.3 in detail. In an n × n network, the maximum hop

ount equals to 2n. So, the length of extra information of the seek

acket is O(n).

To eliminate redundant seek packets, an n × n -bit table initially

o be 0 is added to each router. When a seek packet from the i-th

ource node to the destination j firstly arrives at this router, it up-

ates the (i × n + j) -th bit to be ‘1’. And latter seek packets drop

f the corresponding bit is set to be ‘1’. When the source node ob-

ains a new path, it will request all routers in the searching area

o clear this bit.

.1.2. A delivery example of seek packet

A scenario of two faulty links within a 4 × 4 mesh network is

llustrated in Fig. 6 . In this example, R0 is the source node while

10 is the destination node. M2 is transferred to the current node

5. Because R5 locates in the south-west of the destination, we

hoose the north and east directions to search. M2 is forwarded

hrough the east port and a new generated packet M5 is forwarded

hrough the north port. Particularly, each router only receives the

rst arrival seek packet. The latter arrival ones are dropped since

e need to find the minimal-latency route.

Table 2 shows the content of each packet. First, a seek packet

0 is injected to R0. Then, it routes through the east output port,

pdates the ‘hop’ field and sets ‘outport 1’ field to be ‘E’. At the

ame time, it is replicated into M1 whose output port is the north

ort.

202 L. Wang et al. / Microprocessors and Microsystems 45 (2016) 198–207

Table 2

Key contents of seek packets in Fig. 6 .

packet last router src dest hops outport1 outport2 outport3 outport4

M0 R0 0 10 1 E

M0 R1 0 10 2 E E

M1 R0 0 10 1 N

M2 R1 0 10 2 E N

M2 R5 0 10 3 E N E

M3 R4 0 10 2 N N

M3 R8 0 10 3 N N E

M5 R5 0 10 3 E N N

M5 R9 0 10 4 E N N E

M6 R2 0 10 3 E E N

Fig. 6. Scenario of two faulty links within a 4 × 4 mesh network.

Fig. 7. Virtual channel selection example. R0 is the source node while R10 is the

destination node. Only adaptive virtual channels can be selected in bold links.

Fig. 8. Router pipeline of seek packets.

a

t

5

b

n

t

r

f

t

t

5

d

When it comes to router 1, M0 is transferred through the east

port and ‘outport 2’ field is set to be E. A replicated packet M2

is generated and routed through the north port. Note in router 9,

only the first arrival packet will be forwarded. Assuming M5 ar-

rives R9 earlier, then M3 is discarded. The seeking procedure con-

tinues until the first seek packet reaches the target node. In this

scenario, we get a fault-free path based on M5 which is (E,N,N,E).

5.1.3. Deadlock avoidance and router pipeline

On one hand, in order to minimize the influence on the point to

point transmission, we add extra virtual channels to transfer seek

packets. And we use the round-robin mechanism to select virtual

channels. Through this kind of segregation, network loads caused

by seek packets can hardly influence the point to point communi-

cation. On the other hand, in order to minimize extra resources

and avoid deadlock, two virtual channels, VC1 and VC2 are de-

signed to transmit seek packets. VC1 is used as the escape vir-

tual channel and VC2 is the adaptive virtual channel. Only the XY

routing is allowed in VC1. However, a packet can always use VC2.

Any seek packet residing in VC2 has an opportunity to use VC1.

By using this rule, only VC2 can be selected in bold links for the

example shown in Fig. 7 , while either VC1 or VC2 could be cho-

sen on other links. It’s obvious there is no deadlock in VC1. Hence,

this mechanism is deadlock free [22] . The chosen virtual channel

of each hop is also recorded in the seek packet.

Our baseline router is a speculative VC router [9] . Fig. 8 shows

the router pipeline of seek packets. It replicates inside the router

if multiple output ports are needed to find a healthy path. Partic-

ularly, two output ports are needed in our approach. We use asyn-

chronous replication to eliminate the lock-step traversal. Specifi-

cally, the multicast seek packet is handled as multiple independent

unicast packets in the virtual channel allocation (VA) and switch
llocation (SA) stages, except that a seek flit is not removed from

he input VC until all requested output ports are satisfied [23–25] .

.1.4. Backtrack and update route procedure

When the target node receives the first arrival seek packet, a

acktrack procedure begins. The track packet is injected into the

etwork with corresponding ports and virtual channels recorded in

he seek packet. It uses the source routing algorithm, following the

everse path of the seek packet. The source node obtains a new

ault-free path when receiving the track packet. Then it updates

he route table, including selected ports and virtual channels, and

ransmits the data message using this route.

.2. Route reconfiguration on special cases

Aiming at the network with one or two simultaneous faults, we

irectly reconfigure the route table in some special cases.

(1) Single-fault case

Fig. 9 shows the single-fault cases where the source node

and target node locate in the same row or same column. A

fault-free path marked in bold lines is directly recorded in

the route table. Rules of selecting the path and the method

of avoiding deadlock are as follows. If the source node and

the target node locate in the same row, we first select an

accessible neighbor node in Y-dimension as an intermedi-

ate node and then use the XY routing algorithm to select

L. Wang et al. / Microprocessors and Microsystems 45 (2016) 198–207 203

Fig. 9. Special cases on a single fault network where we directly reconfigure route. Bold lines mark the new route.

Fig. 10. Special cases on network with double faults where we could directly re-

configure route. Bold lines show an alternative route.

6

6

s

S

S

p

Table 3

Simulation configuration.

Characteristic Value

Topology(mesh) 4 × 4

VC configuration 8VCs/port,8flits/VC

VC allocation VC0,VC1:

request and message

VC2,VC3:acknowledgment

VC4,VC5:seek packet

VC6,VC7:track packet

Request message uniform,transpose

Traffic pattern bitcomp,neighbor,tornado

AVG 50cycle

k 2

Fault number 1

Injection rate 0 .04

n

d

t

n

k

t

V

a

S

s

l

r

k

t

t

r

c

w

t

[

w

t

i

t

t

g

path from the intermediate node to the target node. How-

ever, if the source node and the target node locate in the

same column, we select the X-dimension accessible neigh-

bor node as the intermediate node and adopt the YX routing

algorithm from this node to the target node. The selection

of virtual channel is the same as the method described in

Section 5.1.3 to avoid deadlock.

(2) Double-fault case

A special case is illustrated in Fig. 10 on the network with

double faults. Two output links toward destination interrupt.

We first select an accessible neighbor node in X-dimension

(R4) and then use the YX routing algorithm to select a path

from this node to the target node. The method of avoiding

deadlock is the same as that in the single-fault case. Bold

lines in Fig. 10 show an alternative fault-free path.

. Evaluation

.1. Performance evaluation

To evaluate our approach, we modify the cycle-accurate book-

im simulator [9] to support our router pipeline described in

ection 5.1.3 and the network interface design described in

ection 4.2 .

Table 3 summarizes basic configurations in the latency com-

arison. Eight VCs are designed to avoid the protocol-level and
etwork-level deadlock. Two of them are used for requests and

ata messages, which are injected based on synthetic traffic pat-

erns [9] , including uniform random, transpose, bit complement,

eighbor and tornado. The VC2 and VC3 are specialized for ac-

nowledgment packets which are injected to the network when

he target node receives the request packet. Seek packets use the

C4 and VC5, one is the escape VC and the other one is the

daptive VC, to avoid the network-level deadlock described in

ection 5.1.3). According to our design, track packets and data mes-

ages use the source routing algorithm. The virtual channel is se-

ected statically according to payloads of the seek packet and the

oute table respectively. We test the sum of the request and ac-

nowledgement latencies under synthetic traffic patterns to obtain

he average network latency AVG . And we set a constant K related

o real applications to be 2.

In our experiment, a new fault-free path is fetched from the

oute table when the originally distributed XY routing algorithms

annot offer a healthy path. In order to compare our approach

ith the basic flooding algorithm which broadcasts seek packets

hroughout the entire network, we also implement Wachter et al.’s

13] work. Fig. 11 shows the latency of seek packets. Compared

ith the basic flooding algorithm, our approach reduces the la-

ency under different traffic patterns. Specifically, the region flood-

ng algorithm presents the largest latency decrease as 25% under

he bit complement traffic pattern. However, under the transpose

raffic pattern, different seek methods have the minimum latency

ap which is only 9%.

204 L. Wang et al. / Microprocessors and Microsystems 45 (2016) 198–207

Fig. 11. The average latency of seek packets between region flooding algorithm and

basic flooding algorithm under different traffic patterns.

Fig. 12. The latency gap and average hop under different traffic patterns.

0

0.2

0.4

0.6

0.8

1

0.02 0.04 0.06 0.08 0.1 0.12 0.16 0.2

fa
ul

t t
ol

er
an

ce

permenant fault rate

region seek

global seek

Fig. 13. Fault tolerance comparison of region flooding algorithm and basic flooding

algorithm in a 4 × 4 mesh network.

w

H

F

d

a

t

t

w

t

i

t

u

n

a

o

a

t

6

w

a

0

o

t

l

f

s

i

r

d

w

m

i

t

c

d

b

l

i

1

i

e

s

In order to explain this phenomenon, we analyze the rela-

tionship between the latency gap and the average hop under

different traffic patterns. As shown in Fig. 12 , the latency gap gen-

erally changes with the average hop. The latency gap accumulates

during each hop of transmission. Specifically, the region flooding

algorithm mainly applies two output ports to deliver packets. It

costs at least two cycles in the switch allocation (SA) phase. How-

ever, the basic flooding algorithm needs at least three cycles in the

SA phase. Hence, large average hops lead to large latency gaps. The

bit complement traffic pattern has large average hops, so it leads

to largest latency gaps. In comparison, the transpose traffic pattern

obtains minimum latency gap because it has least average hops.

6.2. Fault tolerance evaluation

Compared with Wachter et al.’s [13] design, our approach re-

duces the latency, but at the expense of fault tolerance. We define

fault tolerance as the percentage of scenarios where a healthy path

can be found by using a certain seek method.

First, we evaluate the effect of the permanent fault rates on

fault tolerance. We conduct 10,0 0 0 simulations at each fault rates

on different size networks. One simulation randomly sets the

source node and the target node as well as faulty links based on

fault rates. The experiment is performed to compare fault tolerance

of our approach with the basic flooding algorithm in a 4 × 4 2D

mesh network.

Fig. 13 shows the results; the X-axis is the fault rate of links and

the Y-axis is the fault tolerance. We observe that under the low

fault rates such as 2% or 4%, our approach obtains almost the same

fault tolerance as the basic flooding algorithm, approximately 98%.

In other words, our approach dramatically decreases latencies and

almost has no influence on fault tolerance. However, as fault rates

increase, the fault tolerance of our method drops quickly compared
ith that of the basic flooding algorithm which generally levels off.

ence, our approach is especially adequate to low fault rate cases.

Then we discuss the effect of network sizes on fault tolerance.

ig. 14 illustrates how fault tolerance changes with fault rates un-

er different network sizes by using the region flooding algorithm

s well as the basic flooding algorithm. They present an opposite

rend of fault tolerance under high fault rate cases (over 12%). With

he increase of network size, fault tolerance of our approach drops

hile the basic flooding algorithm increases. In other words, fault

olerance of the region flooding algorithm reveals a poor scalability

n high fault rate cases. However, it generally remains stable when

he fault rate of network is less than 10%.

So, our approach can be applied to all sizes of mesh networks

nder low fault rate occasions while only be applied to the small

etwork when the fault rate exceeds 12%. From the discussion

bout latencies, we know that latency gap of seek packets using

ur approach and the basic flooding algorithm is proportional to

verage hops. Hence, the region flooding algorithm presents a bet-

er superiority in large size networks with low fault rates.

.3. Area and power analysis

To evaluate the hardware overhead, we implement our work as

ell as Watcher et al.’s [13] by using Verilog HDL. Both designs

re synthesized in NangateOpenCell 45 nm library under 1.0 V and

.5 GHz. The area and power consumption are calculated by Syn-

psys Design Compiler. We also compare these two kinds of fault-

olerant designs with the basic router which does not support MPI-

ike communication protocol and fault tolerance. For the sake of

airness, all the routers in the comparison are equipped with the

ame amount of buffers per port. Table 4 shows the configuration

nformation. MPF unit refers to the components in the NI which are

elated to MPI-like communication and fault tolerance. The main

ifference between our work and Watcher et al.’s [13] work is the

idth of the routing table. In a 4 × 4 mesh network, the maxi-

um hop of a fault-free path in our design is 8. However, the max-

mum hop in basic flooding algorithms is 16. Two bits are needed

o describe the output port of each hop. Fig. 15 compares the area

ost. Comparing with the basic router, the extra area cost of our

esign is 10%. Most extra consumption comes from the MPF unit

ecause we need a lot of buffers to support our fault-tolerant MPI-

ike communication protocol. However, the area cost of our design

s 5.2% lower than Watcher et al’s [13] design in the MPF part and

% lower in the router part. The decrease of the width of rout-

ng table is one of the reasons. Another one is that in Watcher

t al.’s [13] design, the information of each hop in the delivery of

eek packets is recorded in the router while our design decreases

L. Wang et al. / Microprocessors and Microsystems 45 (2016) 198–207 205

Fig. 14. Fault tolerance comparison under different network sizes.

Table 4

Hardware evaluation configuration.

Basic router Our design Watcher et al.’s design

Router configuration VCs per port 8VCs 8VCs 8VCs

Buffers per VC 8 buffers 8 buffers 8 buffers

flit 128 bits 128 bits 128 bits

MPF configuration Maximum message size 512 bits 512 bits

Message buffer size 8 buffers 8 buffers

SST width 16 bits 16 bits

Routing table width 16 bits 32 bits

0

50

100

150

200

250

300

350

400

Router MPF

ar
ea

 c
on

su
m

pt
io

n
(1

0-3
m

m
2

)

basic router

our design

Watcher et al.'s design

Fig. 15. Area consumption comparison.

t

c

[

6

t

o

m

t

i

c

7

p

t

c

i

p

s

t

c

m

c

i

A

d

t

P

H

2

R

he area cost of this part by recording to the flit. As for the power

onsumption, our design is generally the same as Watcher et al.’s

13] , which is 12% higher than the basic router.

.4. Discussion

Our experiment on the fault tolerance and performance evalua-

ion are conducted through simulations. In order to obtain results

n the real efficiency of our proposed algorithm, we aim to imple-

ent our design in FPGA and inject physical faults in the real sys-

em in the future. Then we can observe the error correction abil-

ties and latency influence on real applications. These deep works

an make our design more practical.

. Conclusion

In order to implement a reliable NoC system, this paper pro-

oses a fault-tolerant MPI-like communication protocol. It detects

he link failure if there exist unresponsive requests and automati-

ally starts the new path exploration at runtime. The region flood-
ng algorithm is utilized to find a fault-free path. It improves

erformance by restricting routes to be minimal. Simulation results

how that our approach dramatically reduces the latency. The la-

ency decrease is generally proportional to the average hop. Also, it

auses only 2% fault tolerance loss for low fault rate cases. What’s

ore, the real hardware consumption is low. Our fault-tolerant

ommunication protocol and region flooding algorithm can be eas-

ly extended to other NoC architecture.

cknowledgments

This work is supported by the National Natural Science Foun-

ation of China (No. 61572508 , No. 61272144 , No. 61303065), Doc-

oral Fund of Ministry of Education (No. 20134307120028), Hunan

rovincial Natural Science Foundation (No. 14JJ3002) and National

igh Technology Research and Development Program of China (No.

012AA010905).

eferences

[1] H. Kim , A. Vitkovskiy , P.V. Gratz , V. Soteriou , Use it or lose it: wear-out

and lifetime in future chip multiprocessors, in: Proceedings of the 46th An-
nual IEEE/ACM International Symposium on Microarchitecture, ACM, 2013,

pp. 136–147 .
[2] I. Koren, Z. Koren, Defect tolerance in vlsi circuits: techniques and yield analy-

sis, Proc. IEEE 86 (9) (1998) 1819–1838, doi: 10.1109/5.705525 .

[3] S. Makar, T. Altinis, N. Patkar, J. Wu, Testing of vega2, a chip multi-processor
with spare processors, in: Test Conference, 20 07. ITC 20 07. IEEE International,

IEEE, 2007, pp. 1–10, doi: 10.1109/TEST.2007.4437584 .
[4] S. Shamshiri, K.-T. Cheng, Yield and cost analysis of a reliable noc, in: VLSI

Test Symposium, 2009. VTS ’09. 27th IEEE, 2009, pp. 173–178, doi: 10.1109/VTS.
2009.34 .

[5] M. Pirretti, G.M. Link, R.R. Brooks, N. Vijaykrishnan, M. Kandemir, M.J. Irwin,
Fault tolerant algorithms for network-on-chip interconnect, in: IEEE Computer

Society Annual Symposium on VLSI, 2004. Proceedings, IEEE, 2004, pp. 46–51,

doi: 10.1109/ISVLSI.2004.1339507 .
[6] A. Prodromou, A. Panteli, C. Nicopoulos, Y. Sazeides, Nocalert: an on-line and

real-time fault detection mechanism for network-on-chip architectures, in:
45th Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), 2012, IEEE, 2012, pp. 60–71, doi: 10.1109/MICRO.2012.15 .

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0001
http://dx.doi.org/10.1109/5.705525
http://dx.doi.org/10.1109/TEST.2007.4437584
http://dx.doi.org/10.1109/VTS.2009.34
http://dx.doi.org/10.1109/ISVLSI.2004.1339507
http://dx.doi.org/10.1109/MICRO.2012.15

206 L. Wang et al. / Microprocessors and Microsystems 45 (2016) 198–207

[

[

[

[7] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, D. Blaauw, A highly re-

silient routing algorithm for fault-tolerant nocs, in: Proceedings of the Confer-

ence on Design, Automation and Test in Europe, European Design and Automa-
tion Association, 2009, pp. 21–26, doi: 10.1109/DATE.2009.5090627 .

[8] T. Lehtonen , P. Liljeberg , J. Plosila , Self-timed noc links using combinations of
fault tolerance methods, in: Proceedings IEEE Design Automation and Test in

Europe (DATE), 2007 .
[9] W.J. Dally , B.P. Towles , Principles and Practices of Interconnection Networks,

Elsevier, 2004 .

[10] A .A . Chien, J.H. Kim, Planar-adaptive routing: low-cost adaptive networks for
multiprocessors, J. ACM (JACM) 42 (1) (1995) 91–123, doi: 10.1145/200836.

200856 .
[11] C.-C. Su, K.G. Shin, Adaptive fault-tolerant deadlock-free routing in meshes

and hypercubes, IEEE Trans. Comput. 45 (6) (1996) 666–683, doi: 10.1109/12.
506423 .

[12] S.-P. Kim, T. Han, Fault-tolerant wormhole routing in mesh with overlapped

solid fault regions, Parallel Comput. 23 (13) (1997) 1937–1962, doi: 10.1016/
S0167-8191(97)0 0 093-8 .

[13] E. Wachter, A. Erichsen, L. Juracy, A. Amory, F. Moraes, Runtime fault recovery
protocol for noc-based mpsocs, in: International Symposium on Quality Elec-

tronic Design (ISQED), 2014, pp. 132–139, doi: 10.1109/ISQED.2014.6783316 .
[14] E. Wachter, A. Erichsen, A. Amory, F. Moraes, Topology-agnostic fault-tolerant

noc routing method, in: Proceedings of the Conference on Design, Automation

and Test in Europe, EDA Consortium, 2013, pp. 1595–1600, doi: 10.7873/DATE.
2013.324 .

[15] T. Dumitra ̧s , S. Kerner , R. M ̆arculescu , Towards on-chip fault-tolerant commu-
nication, in: Proceedings of the 2003 Asia and South Pacific Design Automation

Conference, ACM, 2003, pp. 225–232 .
[16] C. Iordanou, V. Soteriou, K. Aisopos, Hermes: architecting a top-performing

fault-tolerant routing algorithm for networks-on-chips, in: 32nd IEEE Interna-

tional Conference on Computer Design (ICCD), 2014, IEEE, 2014, pp. 424–431,
doi: 10.1109/ICCD.2014.6974715 .
[17] K. Aisopos, A. DeOrio, L.-S. Peh, V. Bertacco, Ariadne: agnostic reconfiguration
in a disconnected network environment, in: International Conference on Paral-

lel Architectures and Compilation Techniques (PACT), 2011, IEEE, 2011, pp. 298–
309, doi: 10.1109/PACT.2011.61 .

[18] P. Mahr, C. Lorchner, H. Ishebabi, C. Bobda, Soc-mpi: a flexible message passing
library for multiprocessor systems-on-chips, in: International Conference on

Reconfigurable Computing and FPGAs, 2008. ReConFig’08, IEEE, 2008, pp. 187–
192, doi: 10.1109/ReConFig.2008.27 .

[19] F. Fu, S. Sun, X. Hu, J. Song, J. Wang, M. Yu, Mmpi: a flexible and efficient

multiprocessor message passing interface for noc-based mpsoc, in: IEEE Inter-
national SOC Conference (SOCC), 2010, IEEE, 2010, pp. 359–362, doi: 10.1109/

SOCC.2010.5784695 .
[20] R. Batchu , Y.S. Dandass , A. Skjellum , M. Beddhu , Mpi/ft: a model-based ap-

proach to low-overhead fault tolerant message-passing middleware, Cluster
Comput. 7 (4) (2004) 303–315 .

[21] R.T. Aulwes, D.J. Daniel, N.N. Desai, R.L. Graham, L.D. Risinger, M.A. Taylor,

T.S. Woodall, M.W. Sukalski, Architecture of la-mpi, a network-fault-tolerant
mpi, in: Proceedings. 18th International Parallel and Distributed Processing

Symposium, 2004, IEEE, 2004, p. 15, doi: 10.1109/IPDPS.2004.1302920 .
22] J. Duato, A new theory of deadlock-free adaptive routing in wormhole net-

works, IEEE Trans. Parallel Distrib. Syst. 4 (12) (1993) 1320–1331, doi: 10.1109/
71.250114 .

23] Y.H. Kang , J. Sondeen , J. Draper , Multicast routing with dynamic packet frag-

mentation, in: Proceedings of the 19th ACM Great Lakes symposium on VLSI,
ACM, 2009, pp. 113–116 .

[24] L. Wang, Y. Jin, H. Kim, E.J. Kim, Recursive partitioning multicast: a bandwidth-
efficient routing for networks-on-chip, in: Proceedings of the 2009 3rd

ACM/IEEE International Symposium on Networks-on-Chip, IEEE Computer So-
ciety, 2009, pp. 64–73, doi: 10.1109/NOCS.2009.5071446 .

25] S. Ma, N.E. Jerger, Z. Wang, Supporting efficient collective communication in

nocs, in: High Performance Computer Architecture (HPCA), 2012 IEEE 18th
International Symposium on, IEEE, 2012, pp. 1–12, doi: 10.1109/HPCA.2012.

6168953 .

http://dx.doi.org/10.1109/DATE.2009.5090627
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0009
http://dx.doi.org/10.1145/200836.200856
http://dx.doi.org/10.1109/12.506423
http://dx.doi.org/10.1016/S0167-8191(97)00093-8
http://dx.doi.org/10.1109/ISQED.2014.6783316
http://dx.doi.org/10.7873/DATE.2013.324
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0015
http://dx.doi.org/10.1109/ICCD.2014.6974715
http://dx.doi.org/10.1109/PACT.2011.61
http://dx.doi.org/10.1109/ReConFig.2008.27
http://dx.doi.org/10.1109/SOCC.2010.5784695
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0020
http://dx.doi.org/10.1109/IPDPS.2004.1302920
http://dx.doi.org/10.1109/71.250114
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30040-0/sbref0023
http://dx.doi.org/10.1109/NOCS.2009.5071446
http://dx.doi.org/10.1109/HPCA.2012.6168953

L. Wang et al. / Microprocessors and Microsystems 45 (2016) 198–207 207

d technology from the National University of Defense Technology (NUDT) in 2015. She is
ter, NUDT. Her research interests include Network on-chip and reliable system designs

r science and technology from the National University of Defense Technology (NUDT) in

oronto from Sept. 2010 to Sept. 2012. He is currently an Assistant Professor of the School
 networks, SIMD architectures and arithmetic unit designs.

ineering from the National University of Defense Technology in 1988. He is currently a

ted over 10 invited chapters to book volumes, published 240 papers in archival journals
30 keynotes. His main research fields include computer architecture, computer security,

m and asynchronous circuit. He is a member of the IEEE and ACM.

Lu Wang received the B.S. degree in computer science an
currently a first year Ph.D.student in the School of Compu

Sheng Ma received the B.S. and Ph.D. degrees in compute

2007 and 2012, respectively. He visited the University of T
of Computer, NUDT. His research interests include on-chip

Zhiying Wang received the Ph.D. degree in electrical eng

Professor with School of Computer, NUDT. He has contribu
and refereed conference proceedings, and delivered over

VLSI design, reliable architecture, multicore memory syste

	A runtime fault-tolerant routing algorithm based on region flooding in NoCs
	1 Introduction
	2 Related work
	3 Fault-tolerant MPI-like communication protocol
	3.1 Basic communication protocol
	3.2 Fault tolerant communication protocol
	3.3 Triggering of seek packets

	4 Communication architecture
	4.1 NoC architecture
	4.2 Design of network interface

	5 Fault-tolerant routing algorithm
	5.1 Region flooding algorithm
	5.1.1 Seek packet format
	5.1.2 A delivery example of seek packet
	5.1.3 Deadlock avoidance and router pipeline
	5.1.4 Backtrack and update route procedure

	5.2 Route reconfiguration on special cases

	6 Evaluation
	6.1 Performance evaluation
	6.2 Fault tolerance evaluation
	6.3 Area and power analysis
	6.4 Discussion

	7 Conclusion
	 Acknowledgments
	 References

