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Abstract. Mapping spiking neural networks (SNNs) onto network-on-chips
(NoCs) is pivotal to fully utilize the hardware resources of dedicated multi-core
processors (CMPs) for SNNs’ simulation. This paper presents such a mapping
framework from the aspect of architecture evaluation. Under this framework, we
present two strategies accordingly: The first tends to put highly communicating
tasks together. The second is opposite, which aims at SNN features to achieve
a balanced distribution of neurons according to their active degrees; for
communication-intensive and unbalanced SNNs, this one can alleviate NoC con-
gestion and improve the simulation speed more. This framework also contains a
customized NoC simulator to evaluate mapping strategies. Results show that our
strategies can achieve a higher simulation speed (up to 1.37 times), and energy
consumptions can be reduced or rise very limited.

1 Introduction

The great potential of neural systems has aroused research enthusiasms [1]. Neural
simulation is one of the important research methods. Typically, the neural network
(NN) is expressed as a graph of neurons which take inputs from others and perform
computation to produce an output which is, in turn, issued to other neurons. This model
is known generally as an Artificial Neural Network (ANN). SNNs (Spiking Neural
Networks) can be regarded as the third generation of ANNSs [2]: in addition to neuronal
and synaptic states, SNNs also incorporate the timing of the arrival of inputs (called
spikes) into the operating model. It is believed that SNNs yield higher biological reality
and have the potential of more computational power [3].

To speed up SNN simulation, very-large-scale integration (VLSI) systems have
been widely used to mimic neuro-biological architectures. In addition, a multi-core
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processor (CMP) with a Network-on-Chip (NoC) has some characteristics similar to
those of neural networks, which has emerged as a promising platform for neural
network simulation, including [4-7], etc. On the other hand, a neural network usually
includes a large number of neurons with a complex connectivity-scheme between them,
which is fairly different from common NoC. Consequently, to design an optimized
mapping method for distributing biology-analog networks onto hardware is an
important topic, confronted with following challenges:

e Besides a large number of neurons, one issue is that each neuron is typically
connected to many others; huge amounts of one-to-many communications may take
place between the nodes simulating neurons. In contrast, common NoCs tend to
feature one-to-one and one-to-a-few connections. Thus, much information about the
neuron-connectivity has to be maintained and utilized efficiently.

e To meet timing constraint is another issue. SNNs have taken the arrival time of
spikes into the operating model. But common NoCs usually employ the packet-
switching technology so that shared resources can result in unwanted variation in
transmission latencies, which may impact the accuracy of SNN operations [8].

Fortunately, neural networks also have some friendly characteristics: They show
the locality property, i.e., a homogeneous collection of neurons (called a population)
tends to connect a nearby population densely (the bundle of single connections between
two populations is called a projection). Neurons also tend to fire at a relatively slow rate
(measured in terms of hertz and the upper limit is 1000 Hz) while modern electronics
operates at multiple gigahertz. Thus, time division multiplexing can be used to make a
single processing node or communication channel handle many different neurons or
connections at the same time.

This paper proposes a mapping methodology to cover the aforementioned issues,
from the perspective of architecture evaluation: neural networks are regarded as parallel
tasks and CMPs are the underlying execution substrate, while the mapping mechanism
is a middle layer for optimized resource allocation. Furthermore, neuron populations
can be regarded as sub-tasks while spikes are communications between them. We will
formulate the mapping problem under the framework of application-mapping algo-
rithms for NoCs; thus quite a few architecture-evaluation technologies can be used. In
summary, the following contributions have been accomplished:

e We construct a mapping framework. Several existing SNN simulators are used to
get golden models and running-traces of objective applications. Trace analyses
illustrate that under different inputs, active degrees of one neuron-population are
similar. It also contains a configurable NoC simulator for evaluation, which sup-
ports some proven effective features for SNN simulation.

e Through the framework, we analyze some existing mapping strategy and point out
that transmission of any spike should be completed in one SNN cycle (regardless of
the corresponding nominal delay-attribute) to avoid steep increase of the maximum
transmission delay of spikes as the simulation speed is fairly high.

e Two mapping strategies are presented. The first is a relatively conventional
approach that uses the Kernighan-Lin (KL) algorithm to put highly communicating
tasks together. The second is optimized in the opposite direction, which aims at
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SNN features to achieve a balanced distribution of neurons according to active
degrees. Tests on the NoC simulator show that our strategies can achieve a higher
simulation speed (up to 1.37 times) while energy consumptions can be reduced or
rise very limited; for communication-intensive and unbalanced SNNs, the second
can alleviate NoC congestion and improve the speed more.

2 Related Work

Neuromorphic VLSI systems usually consider neurons as the basic network compo-
nents connected by directed edges (synapses) and describe the network in terms of
neurons, their positions and projections (ignoring biological details). Moreover, com-
munication through spikes is based on a dynamic event-driven scheme.

2.1 Neuromorphic Chips and Network-Mapping

Lots of works have been carried out to simulate SNNs using VLSI technologies.
TrueNorth [4, 9] is a digital neuromorphic chip produced by IBM. It also proposed a
programming paradigm, Corelet [10]. Moreover, TrueNorth has formulated the prob-
lem of mapping as a wire-length minimization problem in VLSI placement [11].

Neurogrid [6] is a brain-inspired analog/digital hybrid system. For mapping, three
studies have been carried out: The first maps neuronal models onto neuromorphic
hardware [12]; the second maps computations onto heterogeneous populations of
spiking neurons based on a theoretical framework (Neural Engineering Framework
[13], NEF); the last is to map a network to electronic circuits.

SpiNNaker [5]’s hardware is based on the CMPs of ARM cores. A sequential
neuron-core mapping scheme was presented by [2]; [2] also disclaimed that the locality
issues were not taken into account. In addition, SpiNNaker has provided technical
details of NoC [14]; thus we use it as the reference design.

Dimitrios et al. [15] presented the optimal mapping of a biologically accurate
neuron simulator on the Single-Chip Cloud Computer (SCC). But [15] is not a general
solution; it is dedicated to inferior olive simulations and the SCC platform.

On the other side, there are quite a few studies [16, 17] on neuromorphic circuits to
utilize emerging memory technologies to mimic synaptic behaviors, which are usually
focused on prototype construction.

In addition, a few studies have designed customized NoCs to fix the transmission
latency; the principle is resource-reservation. For example, EMBRACE [18] proposes
such a ring topology for spike communications, which uses a time-stamped broadcast
flow control scheme [19]. Philipp et al. [20] use isochronous connections to reserve
network bandwidth, which relies on global synchronization of all nodes. Our work is
complementary to them from the mapping aspect. Another related job is Vainbrand
et al. [21], which performs the analytical evaluation and comparison of different
interconnect architectures. It is shown that a multicast mesh NoC provides the highest
performance/cost ratio. But no mapping strategy is proposed.
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2.2 Application Mapping Algorithms for NoCs

Many studies have been done in application-to-NoC mapping algorithm. Their prin-
ciples are usually similar: some algorithms have been used to map highly communi-
cating tasks close to each other; and then some heuristic algorithms are used for
optimization. For example, Zhu et al. [22] explored opportunities in optimizing
application mapping for channel-based on-chip networks, based on the Kernighan-Lin
(KL) algorithm. Others include Sahu et al. [23], KLMAP [24], Tosun et al. [25], etc.

As a summary, we compare our work with existing studies; the illuminations from
them and our features are given as follows:

1. We adopt some NoC-architecture features that have been proved efficient for SNN
simulation, including multicast-enabled routing and mesh topology.

2. From the methodology aspect, we try to carry out SNN studies from the computer
architecture perspective and formulate the mapping problem under the application-
mapping framework. Further, we have analyzed the limitation and application scope
of existing mapping method, and then present our strategy accordingly. Especially,
one strategy has extended the above-mentioned mapping framework. As far as we
know, no existing study has done this way.

3 The Framework Design

In this section two essential factors of architecture evaluation have been presented first:
(1) we introduce how to draw models and running-traces of quite a few objective
applications (namely, SNNs), as well as the characteristic analysis; (2) we design and
implement the corresponding simulator of NoC that is customized for SNN. In addi-
tion, we analyze the limitation of some existing mapping strategy.

3.1 Neural Networks from Software Simulators

Software simulation tools [26] have been widely used by the neuroscientists’ com-
munity to obtain precise simulations of a given computational paradigm. Thus we can
construct accurate neural networks and drive them on the simulators.

An SNN simulator (like NEST [27], Nengo [28], etc.) often provides programming
interfaces for users to develop SNN models on the population/projection level; quite a
few attributes of populations, connectivity and models can be set respectively.

The SNN model can be defined by user or set by the simulator under user’s
guidance. After construction, we extract the topological structure with information of
nodes and edges. In addition, information of spikes can be obtained during the sim-
ulation phase; each record contains the ID of the source neuron and the issuing time. It
means we can get the whole information of spikes, namely, running traces.

Then we analyze neurons’ active degrees from the traces of some representative
networks. Here the active degree for a neuron is defined as the average number of its
spike-issues per unit time. For a population, the active degree is the sum of degrees of
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all its neurons. Each SNN model is extracted from one of the following two popular
simulators: NEST (NEural Simulation Tool) [27] and Nengo [28].

The following 11 representative SNNs have been used; for all of them, the neuron
model is the Leaky Integrate-and-Fire (LIF) model and all synaptic weights are fixed.

1. Basal Ganglia [29, 30] (abbreviated to BG), which models the basal ganglia. BG
contains about 1200 neurons of 26 populations.

2. A Question Answering Network (Question). It simulates the question-answering
function, which provides the answer by learning examples. This model includes
about 8000 neurons and 80 populations, available at Nengo web site.

3. A Controlled Question Answering Network (QAWC), which performs question
answering based on storing items in a working memory, under control of a basal
ganglia. It contains 12000 neurons and 60 populations, available at Nengo web site.

4. RBM Digit Recognition (Digit). It is created by training an RBM Deep Belief
Network on the MNIST database. It contains 6000 neurons and 5 populations.

5. Bandit Task [31] (4 NNs), a set of four models to exhibit how a simulated rat
responds different environments. It contains four NNs (arm, env, halflearn and
quarterlearn); each includes more than 1000 neurons and 15-20 populations.

6. Temporal Differentiation (Diff). It performs the computation of temporal differen-
tiation [32], which contains 5000 neurons and 3 populations.

7. Spatiotemporal Processing and Coincidence Detection (Spaf), which aims at sim-
ulating connections between the retina and the cochlea, and realizes a co-incidence
detector. It has 8500 neurons and 63 populations.

8. Neural Path Integrator [33] (Path). It incorporates representations and updating of
position into a single layer of neurons. It has 1600 neurons and 12 populations.

We simulate each network for many times with randomly-selected legal inputs, and
record the spike-information of each neuron. Without loss of generality, active degrees
of neurons of the Question model have been shown in Fig. 1 (others own the similar
feature): for clarity, the degree is illustrated in terms of population. The x-axis is
population IDs; the y-axis is the active degree of each population. Legends represent
different test sequences. Analyses show that each neuron-population’s active degrees
are similar under different inputs.

Question Answering Network

Populations

Active Degrees of

O S5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Population IDs

2 3 -

6 7 8 9 10

Fig. 1. Active degrees of populations
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3.2 NoC of SNN Simulation

Metrics. From the aspect of NoCs’ configuration, there is a very large design space.
For simplification, we introduce one widely-used design option, multicast-enabled
mesh, as the foundation, which has been proved highly efficient for simulation of
neural networks [21]. In addition, the 2D-mesh NoC is widely used by CMP products,
like SCC [34] and Tile [35]. Accordingly, the tree-based distributed routing is con-
sidered for multicast. Compared with the source routing mechanism, it has been proved
that the distributed routing will introduce less storage overheads. Moreover, there are
quite a few existing multicast routing strategies (Enright et al. [36], Fidalgo et al. [37],
Rodrigo et al. [38] and so on) belonging to this category. Accordingly, the size of a
multicast routing table will affect the ensuing energy and access time; thus the routing
table size is considered a metric in evaluating mapping strategies.

The next metric is simulation speed. Usually, a real-time neuromorphic system
means the simulated network is working as ‘fast’ as the real biological system. Con-
sidering a simulated neuron issues one spike per 1 ms (it is the upper bound for
biological cells), from the aspect of the NoC electronics operating at hundreds of
megahertz or gigahertz, 10° or 10° cycles will elapse between two issues. Therefore,
the simulation speed can be denoted by its times as fast as the real-time speed
(1000 Hz). Apparently, with the speed increase, more spikes per unit time will be
inserted into the NoC and may cause traffic congestions, which inversely hinders the
further speed improvement; otherwise some spike-packets with long latencies will
violate timing constraints.

Multicast Routing. For the tree-based routing, a multicast continues along a common
path and then branches the message when necessary to achieve a minimal route to each
destination. At each hop, the router will complete corresponding operations based on
the source ID of the incoming packet. By default, the X-Y routing strategy is used for
each single message to avoid dead-lock. Specially, a two-level routing strategy is used
as following:

As mentioned above, SNN models of software simulators usually represent pro-
jections between populations. Thus it looks beneficial to distribute all neurons of a
population into one core as much as possible, or into several nearby cores if one cannot
occupy all (it is just the principle of the existing sequential mapping strategy).
Accordingly, we take the population ID as the look-up key of routing tables.

The second level is inside a core: on receipt of a spike, the target core will check
which internal population should deal with it (if one node contains neurons from
multiple populations). It is achieved by looking up a local table; the key is the
source-population ID in the incoming packet.

Moreover, we propose that synaptic weights and other attributes are kept at the
post-synaptic end (in the aforementioned local table). Hence, no synaptic information
needs to be carried in a spike, which makes the multicast mechanism efficient.

Based on the above design, we can give the structure of entries of the routing table
on a router, as well as the organization of a NoC-packet. The latter is simple, which just
represents the arrival of a spike from some neuron. Correspondingly, a packet consists
of only one flit (32-bit width): the first 8 bits represent the population ID; the second
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14-bit is the neuron ID in the population and the subsequent 6-bit illustrates the issue
time, so that the receiver can judge whether the incoming spike is in time or not. The
remaining bits are reserved, which can be used to support inter-chip communication.

Moreover, the common scratchpad memory can be used as the routing table rather
than expensive CAM (content addressable memory): population IDs are defined as a
series of consecutive integers; thus they can be regarded as memory addresses to access
the scratchpad. Accordingly, one entry of the routing table is represented in Table 1.
We also use the turn-table routing: if population id is not found in the routing table, the
default straight routing will be used. The same method can be applied to the local table,
using the population & neuron ID as address.

Table 1. Entry of the routing table

Field Up ‘ Down ‘ Left ‘ Right ‘ Core | Valid | Reserved

Description | To which directions the 1/0 |2 bits
package should be transmitted

Storage Consumptions of Routing. As mentioned previously, each router owns a
routing table that can be regarded as common on-chip memory; population IDs are
used as memory addresses. Therefore, the size of each table is not larger than the
amount of populations (denoted as k) and the total consumption n cores is k x n. k is
usually limited as shown before.

Implementation of the NoC Simulator. We greatly modify Noxim [39] to implement
a detailed, cycle-accurate simulator for NoCs that provides not only the flexibility
needed in a high-level simulator but also detailed modeling of all key components of a
router. Our modification is focused on the tree-based multicast. We have referenced the
micro-architecture design of the VCTM multicast router [36]. Moreover, as a NoC
packet contains only one flit, the store-and-forwarding flow control is used, which
simplifies the channel management and does not impair the transfer latency. Accord-
ingly, the wire link latency is set to 1 cycle and the maximum routing latency is
2 cycles.

We use the Orion 3.0 tool to get the energy consumption of each pipeline stage. For
routing tables, the CACTI tool [40] is used. Now the NoC simulator supports the
2D-mesh topology with different scales and the simulation speed can be configured.

3.3 Preliminary Tests

Owing the framework, we can map representative SNNs onto our NoC simulator and
drive it with traces from SNN simulators. Specially, we use the strategy of SpiNNaker
as the reference because it presented enough details. Currently SpiNNaker just uses a
sequential mapping scheme: Neurons are numbered so that IDs of all neurons in one
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population are continuous. Then, they are uniformly distributed to NoC nodes in order.
Thus, neurons in one population will be distributed into one core or nearby cores.

The NoC working frequency is set to 1 GHz while the SNN’s is 1 kHz. The
number of neurons that one processing node can occupy is set to 64, 128 and 256
respectively.

We study the effect of simulation speed on transmission delay. The distribution of
transmission delays under different speeds has been presented. Without loss of gen-
erality, QAWC SNN is taken as the example (in Fig. 2) to show the cumulative
distribution curve of spike-transmission delay. The y-axis stands for transmission
delays and the x is the ratio of the spikes whose delays are less than the calibration
value.

From Fig. 2(a), we can see that as the speed is relatively slow (600 times or less),
the cumulative distributions are almost the same (in Fig. 2(a) all curves are overlapped
with each other): The maximum transmission delay is 1660 NoC cycles while one
simulated SNN contains 1667 NoC or more cycles, which means that all spikes can
reach target nodes in one SNN cycle. Conversely, if not all spikes issued in one SNN
cycle can reach their targets in the same cycle, the maximum transmission delay of
spikes will be steeply raised: Fig. 2(b) shows that as the speed is 700 times or more,
transmission delays of more than 3% of all spikes will reach 10°> NoC cycles, far larger
than several simulated SNN cycles. The reason lies in that during a short period, the
number of issued spike from a population will remain relatively constant. Thus, when
the previous case occurs, more and more delayed spikes will be accumulated to
exacerbate the symptom.

More analyses can prove this situation: For the packets with long latencies, the ratio
of the latency caused by channel-congestion to the total is over 90%. Thus, the effect of
congestion on transmission will become vital as the speed is higher.

So far one preliminary conclusion can be drawn: the transmission of any spike
should be completed in one SNN cycle to meet the timing constraint, regardless of its
nominal delay-attribute that is usually one or several SNN cycles. The inference lies in
that the decrease of the maximum transmission delay can improve simulation speed,
which is one main target of optimized mapping.

Transmission delays

Transmission delays

Ratio Ratio

(a) (b)

Fig. 2. Distribution of transmission delays under different speeds
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4 Algorithm Design and Evaluations

Based on the aforementioned work, SNN mapping can be formulated under the
application-mapping framework for NoCs.

Definition 1: Given an application characteristic graph, G(V,E), it is a directed
weighted graph in which v; € V represents a task in the application; e;; € E represents
the connection between v; and v; while b;; is the traffic between v; and v;. From the
SNN aspect, because we can get the activity degree of each population (as described in
Sect. 3.1) that has shown similarity under different inputs, b;; can be set to the degree
of Vi.

Definition 2: Given a NoC topology graph, P(R, P).r; € R is a processing node of the
NoC; p;; € P represents a link between r;and r; and £;; is the Manhattan distance from
ri tor it

Accordingly, the mapping framework can be formulated as follows: Input G(V, E)
and P(R, P) and output a mapping solution to distribute G(V, E) onto P(R, P), which
will be evaluated based on the maximum transmission delay.

4.1 Strategy One

We propose a mapping algorithm that tends to put densely-communicating populations
close together, and formulate it under the above-mentioned mapping framework.

Allocating highly-communicating populations onto nearby cores also accords with
the principle of existing NoC mapping strategies [22—-24] that map highly communi-
cating tasks together. In addition, TrueNorth has formulated the problem of mapping
neurons to cores as a wire-length minimization problem in VLSI placement [11],
whose principle is similar with ours. Therefore, we outline this strategy here.

Without loss of generality, we use the Kernighan-Lin (KL) partitioning strategy' as
the starting point. It bipartitions a set of modules, so that highly connected modules are
kept in one partition. This procedure is applied (recursively and alternately along the
two directions of 2D-mesh NoC, ‘x” and ‘y’) till only the closest two nodes are left in
any of the final partitions in a mesh. The motivation for using this algorithm is that the
cores with more communication requirement should be attached nearby routers in the
NoC. During the mapping phase, these partitions are taken into consideration to
minimize the communication cost between mapped cores.

As the result depends on the initial partitioning, we run it for T (preset) times, each
starting with a randomly generated initial partition. The best one is used for subsequent
improvement; here the best means the sum of traffic (b;;) of the edges across partitions
is the smallest. Afterward, the simulated annealing (SA) algorithm is used for opti-
mization; its energy function is the total hop count of transmission.

! https://en.wikipedia.org/wiki/Kernighan%E2%80%93Lin_algorithm.
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The whole workflow is given below:

Step 1: To draw the connection matrix of a SNN (we can get them from models on a
SNN simulator, as mentioned in Sect. 3.1).

Step 2: To distribute neuron-populations to cores. It distributes all neurons in a
population to a core as much as possible, or to nearby cores if one cannot
occupy all.

Step 3: Placement of cores based on the previous algorithms.

Step 4: Based on Step 2 & 3, all table entries of each router can be filled: a multicast
packet will follow the X-Y routing to complete common path before branch.

4.2 NoC Congestion

Now we carry out the evaluation of the first mapping strategy through our simulator.
The simulation configuration is just the same as those of Sect. 3.3.

Results that for most models, the KL&SA algorithm improve the simulation speed.
In other words, it can often decrease the maximum transmission delay because it tends
to reduce the communication cost between mapped cores; results are presented in
Table 2. The interesting point lies in that for Diff and Spat, the delay increases.

Detailed analyses show that as the KL&SA algorithm may aggravate the traffic
congestion and lead to performance degradation: the default mapping principle tends to
put neurons from the same population together and such neurons usually share the
same set of destinations. In each simulated SNN cycle, those cores that contain active
populations may produce a lot of packets, which often share the same destinations and
may be blocked in the channel between the core and router or in some local queues.

Table 2. Maximum transmission delays (the number of neurons in one node is 64)

SNN model | SpiNNaker’s sequential mapping | KL&SA
arm 128 80
eny 123 115
halflearn 121 85
quarterlearn | 136 110
bg 406 291
path 663 627
digit 165 125
diff 994 1034
spat 2035 2358
question 2460 1969
gawc 1648 1606

For example, Fig. 3 gives the average spike-processing time of each route for the
two SNNs. We can see that after KL&SA, the maximum processing time is longer and
the average delay on each router is more unbalanced. In addition, according to
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- Diff Spat

Average Latency

10 19 28 37 4 55 o4 73 1 12 23 34 45 56 67 78 89 10

KL&SA SWap = eeesscane SpNNaker KL&SA Swap

Fig. 3. Average transmission-delays of each router (the unit of the Y-axis is a NoC cycle; the
X-axis is the router ID. Three strategies)

spike-traces, these two SNNs are the most active: their average active degrees per
neuron are 398 and 57 respectively. In contrast, the maximum degree of others is only
16. Thus, it indicates that for communication-intensive SNNs, some local congestion
has happened to impede the improvement of simulation. Therefore, we present a new
mapping strategy in the next subsection.

4.3 Optimization in the Opposite Way

Under the existing application-mapping framework for NoCs, normally, any subtask is
sequential and cannot be divided further. But SNN populations are different: they are
divisible. Accordingly, we present a new strategy to reduce congestion. The principle is
to swap neurons with each other in populations with different active degrees, to achieve
a balanced distribution. As there is no connection among a single population, it will not
introduce extra spikes.

However, the swap mechanism makes populations fragmented: neurons of a single
population will be distributed into more cores, which causes more communications and
longer paths (it is why we call it optimization in the opposite way). Thus, there is a
tradeoff between the fragmentation and balance of active degrees: apparently, if the gap
of two populations’ degrees is limited, it is unnecessary to switch their neurons.

Accordingly, after the KL&SA mapping, we first sort all cores in a queue based on
their active degrees. Second, the most active and most inactive cores will exchange half
of neurons before removed from the queue, if the ratio of their degrees is larger than a
threshold. This procedure will repeat till there is no exchange or all populations have
been browsed. For the threshold, our test shows that 2 is a proper value. From the
aspect of routing tables, the storage consumption is fixed, as we use the on-chip
memory for storage and use population IDs as memory addresses.

After swap, the imbalance is weakened (in Fig. 3, too). Figure 4 gives the maxi-
mum delays under different mapping strategies: For cases of 64 neurons per node, the
swap strategy decreases the maximum delay for 10 SNNs and 7 of them outperform
the KL&SA; the latter decreases the maximum delay of 9 SNNs. For cases of 128, the
three values are 11, 7 and 9 respectively. For cases of 256, they are 11, 8 and 11.
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For KL&SA, the maximum improvement is 37% and the average improvement is 11%.
For swap, the maximum is 36% and the average is 16%.

Statistics also show that compared with the sequential mapping, the KL&SA
algorithm decreases the average transmission delay in all cases: For cases of 64 neurons
per node, the average reduction is 4.3%; for 128 the reduction is 7.3%; for 256, it is
9.6%. For the swap strategy, because it makes populations fragmented, the average
delay in cases of 128 increases a little, by 1.1%. In cases of 64 and 256, it decreases by
6.7% and 6.0% respectively.

Corresponding energy consumptions are presented in Fig. 5. The swap strategy
causes more communications and more energy consumptions: compared with linear
mapping, it increases the consumption by 1.7% averagely for cases of 64 neurons per
node; for cases of 128, the average increase is 2.4%; for 256, the value is almost the
same. KL&SA decreases the consumptions, by 14%, 16% and 14% respectively.

As a summary, two mapping optimizations are presented. The KL&SA tends to put
highly communicating tasks close while the swap tries to achieve the balance in terms
of populations’ active degree. From the aspect of the simulation speed (the maximum
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Fig. 5. Energy consumptions of a simulated second
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delay), the swap achieves better results. However, it consumes more energies because
of fragmentation. Anyway, it gives a new optimization direction, considering the
tradeoff between simulation speed and energy consumption. Specially, it is more
suitable for communication-intensive and unbalanced SNNs.

5 Conclusion

This paper presents a methodology for the SNN-to-NoC mapping problem, from the
aspect of architecture evaluations. Based on analyses of running traces from neural
network simulators that model representative networks, we find that distributions of
neurons with diverse active degrees show similarities to a great extent. Accordingly, we
formulate the SNN mapping problem under the application-mapping framework for
NoCs. We also present strategies that are optimized in the opposite directions, which
extend the existing mapping framework.

We believe it not only benefits the exploration of design space but also bridges the
gap between applications and neuromorphic hardware.
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