
Enforcement of Security Policy Rules
for the Internet of Things

Ricardo Neisse, Gary Steri, Gianmarco Baldini
European Commission Joint Research Centre, Ispra, Italy,
{ricardo.neisse, gary.steri, gianmarco.baldini}@jrc.ec.europa.eu

Abstract—According to the European Union data protection
legislation, privacy is a fundamental right that should be pro-
tected in the interaction of the citizen with the digital world. In
the evolution of Internet towards new paradigms like Internet
of Things (IoT), protection of privacy can be a challenging task
because IoT connected objects can generate an enormous amount
of data, some of which actually constitute personal data. In
addition, it is difficult to control the flow of data when there
is no user interface or adequate tools for the user. In this
paper we describe an efficient solution to enforcement security
policy rules that addresses this challenge, and takes a more
general enterprise architecture approach for security and privacy
engineering in IoT. This enforcement solution is based on a
Model-based Security Toolkit named SecKit, and its integration
with the MQ Telemetry Transport (MQTT) protocol layer, which
is a widely adopted technology to enable the communication
between IoT devices. In this paper, we describe the motivation and
design of our enforcement solution, demonstrating its feasibility
and the performance results in a case study.

Keywords—Security; Enforcement; Internet of Things

I. INTRODUCTION

The Internet of Things is a new paradigm that according to
[1] links the objects of the real world with the virtual world,
thus enabling anytime, anyplace connectivity for anything and
not only for anyone. It refers to a world where physical
objects and beings, as well as virtual data and environments,
all interact with each other in the same space and time.
Fundamental to this definition is the capability of these things
to efficiently communicate and exchange information in order
to cooperatively provide useful services. On the other side of
the coin, IoT connected objects like wearable sensors, health
monitoring equipment, connected cars and others examples
can generate an enormous amount of data, some of which
actually constitute personal data. There are significant issues
related to providing control to the users on the distribution of
their data through IoT connections and middleware. Adequate
mechanisms should be put in place to control the flow of
data and to enforce policies implementing existing regulations
and users’ preferences. Such mechanisms should be flexible to
support the range of technologies used in IoT infrastructures
and the various contexts (e.g., home, office) where user can
operate.

The research results described in this paper were developed
in the EU funded iCore project [2], which is focused on
the definition of a cognitive framework to support the IoT
paradigm and adopts the Message Queue Telemetry Transport

(MQTT) protocol [3] to enable the communication in the IoT
context. MQTT is a lightweight publish-subscribe connectivity
protocol aimed to resource constraint devices such as mobile
phones and low power embedded sensors. In the IoT context,
MQTT is widely used to enable the communication between
devices using a publish-subscribe messaging approach. Clients
in MQTT exchange messages using a broker by means of
publications and subscriptions to a topic. Specifically in the
iCore project, MQTT has been widely adopted to realize the
IoT concept and support the interaction between services and
IoT devices and systems, which are respectively represented
through abstractions called Virtual Objects (VO) and Compos-
ite Virtual Objects (CVO). Additional details on the VO and
CVO concepts are provided in [2]. In this paper, we focus on
privacy and data protection requirements for IoT connectivity.

Problem. The problem we address in this paper is the lack
of security policy enforcement capabilities in existing MQTT
implementations to address the privacy and data protection re-
quirements of IoT scenarios. The MQTT standard and existing
implementations provide only support for authentication and
simple authorization policies considering only the subscription
of clients to message topics. These policies can be specified
to allow or deny subscription and publication of messages
by clients to specific topics. This is not sufficient in IoT
scenarios where data anonymization, obfuscation, or dynamic
context-based policies are required and should be evaluated
dynamically for each message forwarded by the broker.

Solution. Our solution consists of a Model-based Security
Toolkit named SecKit [4][5] to address security aspects of
the IoT systems including privacy and data protection require-
ments. SecKit supports integrated modeling of the IoT system
design and runtime viewpoints in order to provide integrated
specification of security requirements, risk management, and
usage control policy specification [6][7]. Our focus in this
paper is on the runtime support of SecKit for enforcement
of expressive security policy rules at the MQTT broker level.

Contribution. Our contribution is an extended implemen-
tation of an open source MQTT broker that has been integrated
with SecKit, and is capable of enforcing the expressive security
policies required. We describe in detail the motivation of our
security policies, the design of the enforcement solution, and
also show in a case study the evaluation of our implementation
using real IoT devices (i.e., positioning platforms). Our imple-
mentation consists of the SecKit general purpose components
and a modified version of the Mosquitto open source MQTT

978-1-4799-5041-6/14/$31.00 ©2014 IEEE

2014 Third International Workshop on Internet of Things (IoT) Communications and Technologies

165

broker [8]. Mosquitto has been chosen because in contrast to
other open and closed source MQTT implementations it has
the most advanced and extensible policy enforcement support,
it has a very small and lightweight open source footprint,
which is particularly important in IoT devices, with limited
processing and memory capabilities. Mosquitto is also the
platform choice of many partners in the iCore project.

The paper is organized as follows. Section II describes
the MQTT protocol and architecture, including the non-
standardized security capabilities of the Mosquitto broker,
and motivates the privacy and data protection requirements
provided by our solution. Section III shows the SecKit inter-
face for security policy specification at design time. Section
IV describes the MQTT policy enforcement extensions for
MQTT implemented as part of the SecKit runtime components.
Section V presents a case study and implementation with
IoT development boards including a performance evaluation
of our implementation. Section VI compares our approach
with existing enforcement support for MQTT brokers. Finally,
Section VII presents the conclusions and future developments.

II. MQTT SECURITY AND REQUIREMENTS

Figure 1 shows a simplified behavior diagram of an IoT
system using MQTT. In this behavior model, an IoT System
consists of clients and brokers instantiations that interact with
the final goal of enabling clients to exchange messages using
a publish-subscribe pattern. Clients may publish or subscribe
messages to topics, which are multi-level structures separated
by a forward slash similar to a directory structure. An example
of a topic for publishing GPS location information of an IoT
device could be gps/deviceId.

IoT System

Client c

(1..*)
Broker b

(1..*)

Connect to broker

Publish message in topic

Subscribe to topic

Deliver message to subscriber

Fig. 1. MQTT behavior model

Messages can be published with a Quality of Service (QoS)
parameter indicating that a message should be delivered ”at
most once”, ”at least once” and ”exactly once”. MQTT also
supports persistence of messages to be delivered to future
clients that subscribe to a topic and will messages that are
configured to be sent in specified topics when the client
connection is closed abruptly. Finally, MQTT also implements
keep alive messages, by means of ping request/response that
are not shown in Figure 1.

The MQTT V3.1 Protocol Specification [3] does not define
any security management function in addition to a plain
username/password authentication embedded in the connect

packet. The public review draft of MQTT V3.1.1 [9] in-
cludes a chapter with guidance only about threats and se-
curity mechanisms that should be provided by MQTT im-
plementations. However, each MQTT implementation is free
to implement or provide their own non standard version of
security functions for authentication, authorization, integrity
and privacy. The technical security checklist provided in the
public review draft include: mutual authentication of client and
servers, integrity/privacy of messages and control packages,
non-repudiation of messages, and detecting malicious and
abnormal behaviors of clients/servers.

Mosquitto [8] is a widely adopted open source MQTT
message broker that implements version 3.1.1 of the protocol,
and it is the target of the work proposed in this paper. The non-
standardized security function provided by Mosquitto is nearly
the same as the support provided by other open/closed source
implementations (see Section VI). We performed an analysis
of the authentication and usage control configuration options
in the Mosquitto MQTT broker implementation from a data
protection and privacy perspective.

Mosquitto can be configured to allow connection by anony-
mous unauthenticated clients identified by a client id string,
authentication using a username and password combination,
and mutual client and broker authentication using Public-Key
(PK) cryptography. In the configuration file it is possible to
specify the following authentication options:

• Anonymous: no authentication, identifier (id) is pro-
vided arbitrarily by client;

• Username/password: access control list with allowed
clients to connect;

• Certificates (SSL/TLS): client Common Name (CN)
from the provided certificate is used as username for
access control list. The connection with the broker is
only encrypted with this authentication option, for the
other options connections are in plain.

The Mosquitto broker provides access control functions
using static Access Control Lists (ACLs) with the possibility
of giving users read and write permissions to topics. Control
is limited to allow or deny subscription/publication to a topic
and it is possible to use wild-cards referring to all topics in
a determined path, including the client id as a variable in the
path composition. This wild-card can be used, for example,
to allow a client to read and write to topics where the path
contains the client id and/or username used by the client for
authentication in the connection to the broker (e.g., GPS based
location or client id). A default access policy can be specified
also for anonymous clients that do not provide an username
when connecting to the broker.

If the access control list is not enabled, Mosquitto does not
perform access control and all clients are allowed to publish
and subscribe to messages in all topics. If the access control
list is enabled the broker operates in a white-listing mode,
where if no access is explicitly granted by the access control
list the client is denied read and write to all topics. Mosquitto
provides a plugin mechanism to enable custom specification

2014 Third International Workshop on Internet of Things (IoT) Communications and Technologies

166

of authentication operations, and plugin implementations are
provided to integrate Mosquitto with different technologies
containing the user credentials and authorization permissions
(e.g. MySQL databases) [10].

Mosquitto does not implement support to modify the
messages being delivered, for example, to anonymize or to
obfuscate part of the content for a particular client. Further-
more, in order to prevent real-time tracking and to protect the
privacy of IoT system users, it may also be desirable to delay
the delivery of messages.

Access control at the topic level without considering the
delivery of individual messages is a major drawback of the
Mosquitto authorization model. After the access to a topic
subscription is granted, it is not possible to revoke it, or
perform the access control considering the context or payload
of individual messages. This is a problem in dynamic environ-
ments like a smart home where authorization decisions may
change due to variations in the context, for example, if a smart
home user is at home (s)he may decide to allow the delivery
of some messages while these messages should be inhibited,
anonymized, or obfuscated when (s)he is away from home.

Finally, Mosquitto does not provide a mechanism for
logging of messages or for defining reaction rules. IoT device
owners may be willing to be informed about certain types of
behaviors even tough they do not want to deny all accesses.
For example, a Smart TV may be allowed communication with
the Internet in order to update its firmware once per month.
In case access happens more than once a month the owner of
the device should be informed to initiate further investigation
about the misbehavior. This is one example of an abnormal
behavior mentioned in the public review draft of MQTT V3.1.1
[9]. An important aspect is also the user consent, that must be
provided and checked on a per-request basis considering the
purpose of access according to the EU regulations such as the
new Data Protection Regulation [11][12].

The lack of MQTT implementations that fulfill these re-
quirements was our main motivation for the work presented
in this paper. In addition, MQTT is a good example of the
issues related to the deployment of middleware in large scale
IoT infrastructures in Europe, where it is of fundamental
importance that security and privacy requirements are fulfilled
on the basis of EU regulations. The following list summarizes
our contributions in contrast to the missing features in current
MQTT implementations:

1) modification of messages and identity obfuscation in
addition to simply allow or deny;

2) delaying of messages to prevent real-time tracking of
devices and users;

3) enforcement when a message is delivered to a client
in addition to enforcement when a client subscribes
to a topic;

4) support for reactive rules to notify, log, or request
user consent;

5) misbehavior checking rules, for Denial-of-Service
(DoS) attack detection.

III. POLICY DESIGN USING SECKIT

For the specification of security policies at the MQTT level
we propose the Model-based Security Toolkit (SecKit) [4]. The
SecKit foundation is a collection of metamodels that provides
the basis for security engineering tooling, add-ons, runtime
components and extensions to address security, data protection
and privacy requirements. In contrast to other approaches, the
SecKit takes an integrated perspective to security engineering
tooling and precisely specifies the relation between the security
concepts and other security-relevant system concepts. The
SecKit metamodels describe:

• Data: data types mapped one-to-one to the ECore
metamodel of the Eclipse Modeling Framework
(EMF) [13]. Data types can be specified using the
EMF tooling and imported in SecKit;

• Time: time units, timestamps, time durations, and time
intervals;

• Identity: identity types and attributes;

• Role: role types and hierarchy;

• Context: context information, context situations, and
Quality-of-Context attributes;

• Structure: entities and interaction point mechanisms;

• Behavior: behavior and activities (actions and interac-
tions);

• Trust: aspect-specific trust relationships;

• Rule: Event-Condition-Action (ECA) rule templates
and configurations;

• Risk: assets, vulnerabilities, threats, risk, and counter-
measures mapped to rules or trust relationships.

Figure 2 shows the MQTT behavior design in SecKit
Graphical User Interface (GUI), which is a design of the
model already presented in Figure 1. In the behavior model
the behavior and activity types (actions and interactions), and
activity instantiations are specified. Activity types instantiate
data and identity attributes, which represent the produced
results of the respective activities. Behavior types are assigned
to entity types in the structural design model.

Figure 3 shows the structural design model of the iCore
framework. This model specifies and IoT system, which con-
sists of VO, CVO, and Service containers. The containers
instantiate the respective types of abstractions (VOs, CVOs,
and Services), and communicate using a Network interaction
point with a middleware. In this specific instantiation of the IoT
system the middleware is an MQTT broker, which is assigned
to the Broker behavior type. The container types are assigned
to the MQTT client behavior.

Figure 4 shows the context design model GUI, which spec-
ifies Context Information and Context Situations types. Context
information is related to data values about an entity that is
acquired at a particular moment in time. Context situations are
composed data types that model a specific condition that begins

2014 Third International Workshop on Internet of Things (IoT) Communications and Technologies

167

Fig. 2. SecKit GUI behavior design model

Fig. 3. iCore structural design model

and finishes at a specific moments in time [14]. For example,
the GPS location is an example of a context information type,
while In 100 meters range is an example of a context situation
type where a target entity is not more than 100 meters away
from a set of nearby entities with their reciprocal roles. The
monitoring of context information and context situations is
done in SecKit by a Context Manager component, which
interfaces and periodically generates context information and
situation events for the Policy Decision Point (PDP).

Authorizations and obligations are specified in SecKit by
means of parametrized rule templates that must be explicitly

Fig. 4. Context design model

instantiated using template configurations. The rule templates
follow an Event-Condition-Action (ECA) structure, whenever
the event (E) is observed, and the condition (C) evaluates
to true, the action (A) is performed. The event part is in
fact an event pattern, which may be an activity event (action
or interaction), context information and situation events, and
lifecycle events for entities and data instances. Events may
represent the start, ongoing, and completion of an activity or
context situation.

A rule template declares variables that are assigned by
the configuration, with the possibility of recursive nesting and
re-use of templates and configurations. A configuration also
specifies when the rule should be disposed, using the same
ECA rule structure for the management of the rule lifecycle.
For example, a template configuration can be specified to
instantiate a set of policy rule templates when an MQTT client
connects to the broker and to disposed this set of rules when
the client disconnects.

For activities, two types of events are represented: tentative
and actual events. These two types of events model an activity
that is ready to start but has not yet being executed (e.g.,
message ready to be sent by the broker to a MQTT client), or
an activity that has already completed. From an enforcement
perspective, these types of events allow the specification of
reactive and preventive enforcement since tentative events sig-
nal activities that can still be denied, modified or delayed. The
specification of message modifications requires the modeling
of the data types and identity types used in the MQTT message
payload.

The condition part of a rule template consists of event
pattern matching, propositional, temporal, and cardinality op-
erators. The temporal and cardinality operators supported are:
always, before; since, within, during, repSince, repMax, and
repLim. The formal semantics of these operators is based on
past time Linear Temporal Logic (LTL) with discrete time
steps, and a detailed description of the operators is already
published in [7]. The granularity of the time steps depends
on the requirements of the policy, for example, if we want
to evaluate that one event happens three hours before another
event the time step size could be one hour.

Figure 5 shows a context-based policy rule template, that
allows the deliver of messages published in the GPS topic

2014 Third International Workshop on Internet of Things (IoT) Communications and Technologies

168

Fig. 5. Policy to allow nearby entities access to their GPS location

by a target for the nearby entities. This policy template illus-
trates the use of activity events, context situation events, and
variables in the specification of complex rules. This template
follows the ECA structure, with the event part being the
tentative action of delivering a message to the subscriber. When
this tentative event is observerd, and the condition of being in
100 meters range is also satisfied, the rule evaluates to true
and the activity is allowed. The variables specify that client
receiving the message (nearbyEntity) from the source (target)
must be the same client that is detected in the 100 meters
range.

Figure 6 shows another policy that illustrates a modification
example, where the full name attribute of a Verify Identity
activity is modified to the string ‘anonymous’. Indeed the
presented policy could also be extended to allow the IoT
objects, under the supervision of the MQTT, to forge ad-
hoc crafted soft-identities with which get (or provide) the
access to services/messages, with the aim of minimizing the
disclosure of sensitive information, according to pre-designed
scenarios. In the policy of Figure 5, an additional delay
could also be specified for the provisioning of GPS location
or the obfuscation of GPS coordinates to enable privacy by
design. The action part also allows the specification of behavior
execution, for example, to log or notify users.

Fig. 6. Policy to anonymize the user identity

In order to be useful for concrete implementation scenarios,
the SecKit must be extended with technology specific runtime
monitoring components. In the iCore project we provide one
extension to support monitoring and enforcement of policies
for a MQTT broker. The following section describes the
runtime component we have implemented and evaluated.

IV. MQTT POLICY ENFORCEMENT

The policy enforcement support for MQTT consists of a
custom Policy Enforcement Point (PEP) component imple-
mented in the C language according to the SecKit interface

specifications. Our PEP is a connector that intercepts the
messages exchanged in the broker with a publish-subscribe
mechanism, notifies these messages as events in the SecKit
PDP implemented in Java, and optionally receives an enforce-
ment action to be executed: allow, deny, modify, and delay.
The PEP has been embedded in the Mosquitto broker using an
already available extension mechanism called security plugin.
This enforcement architecture is described in Figure 7.

SecKit Runtime Components

Context
Manager

PDPContext Situation

Events

PEP

Activity
Events

Enforcement
Actions

SecKit Design Models

Input for

MQTT Broker PEP

PEP
embedding

Fig. 7. Enforcement Architecture

A security plugin in Mosquitto can be embedded to im-
plement custom authentication and authorization function in
the broker to control authorization to publish (write) or to
subscribe (read) to topics. We have extended the internal
plugin interface mechanism already implemented to support
additional checks when a client connects and when messages
published are delivered to subscribers. Our extension supports
additional checks of the client IP address and enforcement on
the message payload when clients publish messages and when
these messages are delivered to each subscriber. This additional
check allows the enforcement of policies for publishers and
subscribers when messages arrive and when messages leave,
and not only when the subscriptions to topics are performed. In
this way, we can also monitor flooding of connect messages
from specific clients to identify potential Denial of Service
(DoS) attacks or harmful client behavior.

By enforcing complex security policy rules inside the
broker the overhead in the IoT devices is reduced, which is
a positive aspect since the enforcing of these policies could
lead to faster battery draining due to the processing overhead.
However, this requires a trust model where the broker must
be secure and under control of the users with guarantees that
the deployed policies are not being circumvented in the broker.
We foresee a deployment architecture where the owners of IoT

2014 Third International Workshop on Internet of Things (IoT) Communications and Technologies

169

devices will manage their own brokers with help of the SecKit,
and the integration with cloud services and other IoT systems
will be done using bridged brokers. Bridged brokers share
published messages in topics, which in our case are restricted
to a set of messages on which security policies have already
been enforced.

One drawback of our approach is the high overhead when
one publisher has many interested subscribers, and a policy
needs to be checked for every subscriber. This seems a neces-
sary overhead considering privacy and data protection issues,
since authorization policies may be different for each sub-
scriber and message received. In summary, using our toolkit,
extension policies can be enforced when a client connects, a
client publishes messages in a topic, a client subscribes to a
topic, the broker sends messages to subscribers, or when ping
request/response messages are sent to clients.

V. CASE STUDY

In order to evaluate our PEP implementation for MQTT
we set up a case study where two IoT development boards
regularly publish their GPS location in a topic. The boards
should only be allowed to see each other’s location when they
are nearby, meaning within a 100 meters range. The SecKit
Context Manager component subscribes to the GPS location
of all boards. We have specified and executed this policy in
our enforcement infrastructure, which is shown in Figure 8.

IoT
Board A

MQTT Broker

SecKit
Runtime

PEP

Subscribe to
GPS

IoT
Board B

Subscribe/
publish GPS

Subscribe/
publish GPS

Events/

Enforcement Actions

Fig. 8. Scenario Implementation

The two boards used are equipped with a 400 MHz
ARM9 processor and 256 MB of DDR2 RAM, running a
Linux Debian operating system (kernel 3.13.6). They have
an external module which embeds different kind of sensors
(e.g., accelerometers, gyroscopes, magnetometers etc.) and a
GPS receiver, employed to get the position and to synchronize
the clock of the boards. They reach via WiFi a base station
to which is connected via Ethernet a laptop (Intelr Core i5
with Windows 7) running the SecKit enforcement components

together with the modified MQTT broker and our embedded
PEP.

Using the Mosquitto libraries we developed a simple
Python client to read GPS positions and send them to the
MQTT broker in two different topics, one for each board.
When a message is sent to the broker, a timestamp (CPU
time with 1 µs accuracy) is registered. The same happens
when a message is received. In this way, since the boards are
synchronized1, we can calculate the exact time elapsed since
the publication of a message in the broker and its delivery
to a subscriber, having the possibility to evaluate the delay
introduced by the PEP. In this case the message was delivered
only when the policy specified (boards within a 100 meters
range) was satisfied. Next subsection presents our performance
evaluation results.

A. Performance Evaluation

The architecture described above moves all the load of
policy enforcement to the MQTT broker, where the PEP is em-
bedded. The end devices do not execute any extra calculations
due to the enforcement. In other words, the performance of the
system strictly depends on the overhead of the extra operations
performed by the broker to call the PEP and, obviously, on the
processing power of the machine that runs the broker.

We first measured the performance of the system with
a standard setup of the MQTT broker (i.e., with the PEP
disabled): in this reference configuration, published messages
are immediately delivered to subscribers and the average time
elapsed between sending and receiving a message was 0.515 s,
with 1243 messages exchanged (maximum delay of 1 second).
After having enabled the PEP, this average time increased
to 0.525, that is around 10 ms of extra delay to call the
enforcement point. Figure 9 shows the comparison of the
averaged delay values and their evolution with and without
the PEP. It can be observed a packet delay variation (jitter),
which is slightly bigger when the PEP component is deployed.
We monitored the processing time of MQTT messages in
the broker network interface using a network sniffer and we
confirmed that this jitter is due to the network layer packet
propagation and is not a jitter internal of the broker message
processing delay.

The delay introduced by the policy enforcement can be
divided in two main components that apply for all broker ac-
tivities when policies that reference these activities are defined:
connect, publish, subscribe, deliver, and ping messages. The
first is the more constant delay introduced by the PEP to stop
the activity by the broker, to generate an event in a format
understood by the PDP, to signal this event to the PDP, and to
process/enforce the response by the PDP. The second part is the
variable delay introduced by the PDP to evaluate the deployed
policy when an event is received from the PEP, and to decide
the response to be sent considering the policy evaluation result.
The PDP delay is variable since it depends on the number and

1To check the synchronization we also did the test with the same device
publishing on and subscribing for the same topic, so that the clock employed
to measure sending and receiving time was the same.

2014 Third International Workshop on Internet of Things (IoT) Communications and Technologies

170

Fig. 9. Average delay with and without PEP

structural complexity of the deployed policies. Our focus on
this paper is on the delay introduced by the PEP only, since the
PDP performance evaluation is already presented in a previous
publication [4].

In this case study we implemented a simple policy rule that
does not overload the PDP and simply evaluates to allow when
the context situation event ‘In 100 meters range’ is observed
for the event corresponding to the activity ‘Deliver Message to
Subscriber’. The situation events are generated by the context
manager and the evaluation of the policy has no overhead at
all since the condition is a simple check for this situation event
(see the policy in Figure 5). We have not specified in our case
study any policy to control the publishing of the GPS location
by the boards.

Our performance measurements show that the introduction
of the PEP in the broker does not produce a relevant delay
in the broker and that 98% of this delay is inherent to the
normal functioning of the broker in a distributed environment
(network protocols and devices play a very important role).
The delay measured by us includes the HTTP calls to the PDP
by the PEP, which was running in another machine (a standard
Intelr Core i7 with Windows 7) connected via Ethernet to the
broker, and the encoding of the events in JSON (JavaScript
Object Notation) format. An important detail that contributed
to this result is the caching of HTTP connections implemented
between PEP and PDP, which avoids reconnection delays.

VI. RELATED WORK

The OASIS MQTT Security Subcommittee has been cre-
ated to provide guidance on MQTT security and integration
with other security standards. In the subcommittee page [15],
a set of documents are provided including meeting minutes and
discussion descriptions on how MQTT solutions may be made
secure, and how this may mesh with existing security standards
(e.g., the NIST Cybersecurity Framework). The solution pro-
posed by us on this paper addresses issues related to security
policy specification and enforcement without considering some
of the issues mentioned in these documents such as identity
management architectures, device tamper-proofness, etc.

The MQTT standard does not specify security requirements
and features to be supported by implementations, and many

of the open source and proprietary implementations available
support some set of authentication and authorization features.
From a standardization perspective each implementation of
MQTT broker is free to add different types of security func-
tions. Many open source and proprietary implementations of
MQTT are available, and even though it is widely adopted
there is no common view of how security policies should be
specified and enforced. A complete list of MQTT broker soft-
ware including commercial, free, and open source is available
at the MQTT.org website [16].

Some of the MQTT implementations available include
HiveMQ, Active-MQ, and RabbitMQ. HiveMQ is an MQTT
broker implementation focused on enterprise systems, and it is
not completely open source or free for more than 25 connected
clients. HyveMQ supports lightweight authentication and au-
thorization [17] with group-based authorization and static
access control rules to topics, not in a message level but in a
per-topic basis. Security can also be implemented in HyveMQ
using plugins [18], which are mostly implementations of very
specific hard-coded security function such as logging or file
authentication.

In Active-MQ [19] MQTT is supported using a mapping to
the Java Messaging Service (JMS), with a JAAS mechanism
for authentication, and read/write with an access control list
which suffers from the same limitations of Mosquitto. In
Active-MQ it is possible to implement a custom ‘MessageAu-
thorizationPolicy’, which is also a possible implementation
choice for a SecKit PEP. Active-MQ was not chosen because
it is not a popular choice for IoT developers due to its
large general purpose disk/memory footprint and complex
JMS configuration options. In fact, some enterprise service
bus implementations also support MQTT like RabbitMQ [20],
which also include support for many different protocols and
mapping function. These brokers can also be extended and
some plugins including support for the XACML [21] pol-
icy language are provided. From a enforcement perspective,
our solution supports more enforcement types than XACML,
which only supports the standard allow and deny, and our
policy language is also more expressive with temporal and
cardinality operators.

Other protocols targeting the IoT world include CoAP

2014 Third International Workshop on Internet of Things (IoT) Communications and Technologies

171

(Constrained Application Protocol), XMPP (Extensible Mes-
saging and Presence Protocol), and RESTful HTTP over TCP
[22]. These protocols could also benefit from the solution
presented in this paper, the only requirement would be the im-
plementation of technology specific SecKit PEP components.
From a policy specification and relevance perspective, Context-
based authorizations is a current ongoing topic of discussion
in the mailing list of the Authentication and Authorization for
Constrained Environments (ACE) working group [23], linked
to the IETF standardization working group on Constrained
RESTful Environments (CoRE).

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the motivation, design, imple-
mentation, and evaluation of a solution for the enforcement
of security policy rules at the MQTT layer, which can be
used to support security and privacy requirements. Our solution
is part of the Model-based Security Toolkit (SecKit) and has
been implemented as an extension to the open source broker
Mosquitto. Our performance results are promising since we
are able to enforce complex security policies with a very small
additional delay of 10 ms in contrast to the normal operation
of the broker.

As future work we are investigating identity manage-
ment aspects of IoT systems including support for identity
generation and identity management policies to improve the
privacy of IoT device owners. We also plan to perform a
more extensive study of the performance considering different
network configurations, battery constraints and introducing
mobile nodes for the broker and SecKit components. This
evaluation will be done as part of a pilot deployment of a smart
home environment with different IoT devices communicating
using MQTT.

Acknowledgments. This work was supported by the EU-
funded project iCore grant agreement n. 287708. The authors
would like to thank Igor Nai Fovino for his valuable comments
and suggestions to improve the quality of the paper.

REFERENCES

[1] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelffl, “Visions
and challenges for realising the internet of things,” Available at:
http://bookshop.europa.eu/en/vision-and-challenges-for-realising-the-
internet-of-things-pbKK3110323/, 2010, cluster of European Research
Projects on the Internet-of-Things (CERP-IoT).

[2] P. Vlacheas, R. Giaffreda, V. Stavroulaki, D. Kelaidonis, V. Foteinos,
G. Poulios, P. Demestichas, A. Somov, A. Biswas, and K. Moessner,
“Enabling smart cities through a cognitive management framework for
the internet of things,” Communications Magazine, IEEE, vol. 51, no. 6,
pp. –, 2013.

[3] IBM and Eurotech, “Mqtt v3.1 protocol specification,” Avail-
able at: http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/
mqtt-v3r1.html, 2010.

[4] R. Neisse, I. N. Fovino, G. Baldini, V. Stavroulaki, P. Vlacheas,
and R. Giaffreda, “A model-based security toolkit for the internet of
things,” The 9th International Conference on Availability, Reliability
and Security (ARES), 2014, available at: http://ricardo.neisse.name/
images/publications/neisse-ares2014.pdf.

[5] R. Neisse and J. Doerr, “Model-based specification and refinement
of usage control policies,” 11th International Conference on Privacy,
Security and Trust (PST), 2013.

[6] R. Neisse, A. Pretschner, and V. D. Giacomo, “A trustworthy usage con-
trol enforcement framework,” Proceedings 6th International Conference
on Availability, Reliability and Security (ARES), 2011.

[7] R. Neisse, A. Pretschner, and V. D. Giacomo, “A trustworthy usage
control enforcement framework,” International Journal of Mobile Com-
puting and Multimedia Communications, 2013.

[8] Mosquitto, “An open source mqtt v3.1/v3.1.1 broker,” Available at: http:
//mosquitto.org, 2014.

[9] A. Banks and R. Gupta, “Mqtt version 3.1.1 - committee specification
draft 01 / public review draft 01,” Available at: http://docs.oasis-open.
org/mqtt/mqtt/v3.1.1/csprd01/mqtt-v3.1.1-csprd01.html, 2013.

[10] J.-P. Mens, “Authentication plugin for mosquitto with multiple back-
ends (mysql, redis, cdb, sqlite3),” Available at: https://github.com/
jpmens/mosquitto-auth-plug, 2014.

[11] “European parliament - directive 95/46/ec on the protection of indi-
viduals with regard to the processing of personal data and on the
free movement of such data,” Available at: http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML, 1995.

[12] “European parliament - proposal for a regulation of the euro-
pean parliament and of the council on the protection of individ-
uals with regard to the processing of personal data and on the
free movement of such data (general data protection regulation),”
Available at: http://http://ec.europa.eu/justice/data-protection/document/
review2012/com 2012 11 en.pdf, 2014.

[13] “Eclipse foundation - eclipse modeling framework project (emf),”
Available at: https://www.eclipse.org/modeling/emf, 2014.

[14] P. D. Costa, I. T. Mielke, I. Pereira, and J. P. A. Almeida, “A
model-driven approach to situations: Situation modeling and rule-based
situation detection,” in EDOC. IEEE, 2012, pp. 154–163.

[15] G. Brown, “Oasis mqtt security subcommittee page,” Available at:
https://www.oasis-open.org/committees/tc home.php?wg abbrev=
mqtt-security, 2014.

[16] MQTT.org, “Mqtt software - brokers,” Available at: http://mqtt.org/wiki/
doku.php/brokers, 2014.

[17] HiveMQ, “Lightweight authentication and authorization for mqtt
with stormpath,” Available at: http://www.hivemq.com/lightweight-
authentication-authorization-mqtt-stormpath/, 2014.

[18] HiveMQ, “Security plug-ins,” Available at: http://www.hivemq.com/
plugins/security/, 2014.

[19] Apache, “Activemq - connectivity, protocols, mqtt,” Available at: http:
//activemq.apache.org/mqtt.html, 2014.

[20] RabbitMQ, “Messaging that just works,” Available at: http://www.
rabbitmq.com, 2014.

[21] E. Rissanen, “extensible access control markup language v3.0,” Avail-
able at: http://docs.oasis-open.org, 2010.

[22] P. Duffy, “Beyond mqtt: A cisco view on iot protocols,” Avail-
able at: http://blogs.cisco.com/ioe/beyond-mqtt-a-cisco-view-on-iot-
protocols/, 2013.

[23] IEFT, “Constrained restful environments working group (core wg) -
authentication and authorization for constrained environments (ace)
mailing list,” Available at: http://www.ietf.org/mail-archive/web/ace/
current/maillist.html, 2014.

2014 Third International Workshop on Internet of Things (IoT) Communications and Technologies

172

