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a b s t r a c t 

In this paper, we present new results related to the Voronoi Tessellation (VT) and Hidden Markov Ran- 

dom Field (HMRF) based Fuzzy C-Means (FCM) algorithm (VTHMRF-FCM) for texture image segmenta- 

tion. In the VTHMRF-FCM algorithm, a VTHMRF model is established by using VT to partition an image 

domain into sub-regions (Voronoi polygons) and HMRF to describe the relationship of neighbor sub- 

regions. Based on the VTHMRF model, the objective function of VTHMRF-FCM is defined by adding a 

regularization term of Kullback–Leibler (KL) divergence information to FCM objective function. The pro- 

posed algorithm combines the benefits stemming from robust regional HMRF and FCM based clustering 

segmentation. Segmentation experiments on synthetic and real images by the proposed and other im- 

proved FCM algorithms are performed. Their results demonstrate that the proposed algorithm can obtain 

much better segmentation results than other FCM based methods. 

© 2016 Published by Elsevier B.V. 
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. Introduction 

Segmentation is an essential process in image analysis with ap-

lications to pattern recognition, object detection, scene classifica-

ion, etc., and decomposes a given image domain into homogenous

egions among and in which the pixels’ attributes are distinct and

elf-similar [14] . Up until now, a variety of well-established im-

ge segmentation techniques have been developed [1] , including

istogram-based, thresholding, region growing, region splitting and

erging, clustering/classification, graph theoretic approach, rule-

ased or knowledge-driven approach, as well as some more so-

histicated techniques [9,13,15,21] . Because of the diversity and

omplexity of natural images, designing robust and efficient seg-

entation algorithms is still challenging. When the problem of im-

ge segmentation is achieved by a process of classification, cluster-

ng approach is favorable. In fact, as its simplicity and efficiency,

lustering approach is one of the first techniques used for the seg-

entation of (textured) natural images [7] . Fuzzy C-means (FCM)

4] is one of the most popular fuzzy clustering approaches that are

pplied successfully in image segmentation [4,17,26] . 

Although the original FCM algorithm provides satisfactory re-

ults for segmenting noise free images, the noises and blurs of im-

ges limit its segmentation accuracy. Its sensitivity for noises is es-

entially due to the absence of the information on the spatial po-

ition of pixels to be clustered. In order to circumvent the prob-
∗ Corresponding author. Fax: + 86 418 3350479. 
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em, many modified FCM approaches have been proposed. Ahmed

t al. [2] proposed the FCM with Spatial constraints algorithm

FCM_S) by introducing a regularization term in its objective func-

ion and the regularization term is the weighted averages of the

uclidian distances from gray levels of neighbor pixels to cluster

enters. One disadvantage of FCM_S is that the neighborhood la-

els should be computed in each iteration step. Consequently, it

s very time-consuming. In order to speed up the algorithm, Chen

nd Zhang [9] proposed its two variants: FCM_S1 and FCM_S2, in

oth of which the neighborhood actions are presented by mean-

nd median-filtering images, respectively. Another improvement of

CM_S for reducing its execution time is the Enhance FCM (En-

CM) algorithm [24] . In EnFCM, the influence of neighbor pixels is

reformed with a mean-filtering-like image, which is in advance

enerated from gray level of a pixel and its local neighbor average

ray level. Instead of pixels of the filtering image, the clustering

f EnFCM is carried out on its gray level histogram. Consequently,

he computation time is considerably reduced, since in a grayscale

mage the number of its gray levels is much less than that of its

ixels. Cai et al. [6] proposed the Fast Generalized FCM (FGFCM) al-

orithm. Firstly, FGFCM fuses both spatial and spectral information

o define a local similarity measure. Then a new mean-filtering im-

ge is formed on the basis of the measure. In order to preserve ro-

ustness and noise insensitiveness, Krinidis and Chatzis [18] pro-

osed the Fuzzy Local Information C-Means (FLICM) algorithm. In

LICM, a new fuzzy factor is introduced into its objective func-

ion, which incorporates the spatial and spectral information of

he pixels within a local window and controls the influence of the

http://dx.doi.org/10.1016/j.patrec.2016.11.019
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neighborhood pixels depending on theirs distances from the cen-

tral pixel. Similar to FCM_S algorithm, its cluster center can also

be calculated from a mean-filtering-like image which is generated

with the fuzzy factor. Similarly, Xia et al. [27] proposed a Fuzzy

Clustering of Spatial Patterns (FCSP) algorithm which defines dis-

similarity composed of feature and spatial items in the designed

neighborhood and introduced it into FCM to make the FCSP more

robust to noise. 

Recently, some approaches mixing statistical model into FCM

algorithm have been developed. Chatzis and Varvarigou [8] dealt

with Hidden MRF (HMRF) under FCM frame and developed a so-

called HMRF-FCM algorithm. In the proposed algorithm, the dis-

similarity function is defined with negative log-likelihood in HMRF

and its objective function is formulated using Kullback–Leibler

(KL) divergence information [6,22] , in which the prior probabili-

ties are obtained on the basis of the mean-field-like approxima-

tion of the HMRF. Though HMRF-FCM offers enhancement for other

FCM-based segmentation algorithms to some extent, it still ex-

hibits the disadvantage on the sensitivity of noise because only the

effects from neighbor pixels are considered. In order to further en-

hance robustness to noise, the interactions among pixels from a

large region rather than neighbors must be introduced. To this end,

many region based algorithms have been proposed to segment

high resolution images [10,11] . Among of them, a class of geometry

tessellation-based methods is proposed [16,25] . The idea behind

these methods is that the image domain is first partitioned into

sub-regions by a tessellation technique, and then the extension of

the HMRF model is explored to model the relationship between

sub-regions instead of neighbor pixels. Li and Li [21] demonstrated

that the use of a geometry tessellation based method which inte-

grates Voronoi Tessellation (VT) [23] , Bayesian inference, and Max-

imum A Posterior (MAP) algorithms is effective in SAR image seg-

mentation. To introduce the region based idea into the HMRF-FCM,

a VT and HMRF based FCM (VT-HMRF FCM) algorithm is proposed

in this paper. The proposed algorithm explores the VT and HMRF

model to define the fuzzy objective function and then utilizes the

KL divergence information to regularize the defined function. It

combines the benefits stemming from region based segmentation

and HMRF-FCM algorithm. 

This paper is organized as follows. In Section 2 , the VT-HMRF

model is described. In Section 3 , the standard FCM, KL informa-

tion based FCM are presented and VT-HMRF FCM algorithm is pro-

posed in detail. In Section 4 , the experimental evaluation of the

image segmentation performance of the proposed and other FCM-

based algorithms is given, and finally, the conclusion is exposed in

Section 5 . 

2. VT-HMRF model 

An observed image z = { z i ( x i , y i ): ( x i , y i ) ∈ D, i = 1, …, n }, where

i is the index of pixels, ( x i , y i ) and z i are the site and intensity of

pixel i , respectively, n is the number of pixels of z , D is its domain,

can be viewed as a realization of a discrete random field (called

observed or feature field) defined on D , Z = { Z i ( x i , y i ): ( x i , y i ) ∈ D,

i = 1, …, n }, where Z i is a random variable on ( x i , y i ). Let �Z be the

space of all possible realizations of Z . 

In order to model an image z regionally, VT is used to parti-

tion its domain D into m Voronoi polygons (or sub-regions), D = { P j: 
j = 1, …, m }, by m generating points G = {( u j , v j ): ( u j , v j ) ∈ D, j = 1,

…, m }, where P j is j ’th polygon generated by generating point ( u j ,

v j ) and can be defined as, 

P j = 

{
(x, y ) : d 

(
(x, y ) , ( u j , v j ) 

)
≤ d 

(
(x, y ) , ( u j ′ , v j ′ ) 

)
, 

( u j , v j ) , ( u j ′ , v j ′ ) ∈ G, j � = j ′ 

}
(1)

where d ( �, �) is the Euclidian distance of two points in R 2 . 
Consider an image containing k homogenous regions ( k is

nown a priori ). Its domain is partitioned into m sub-regions by

T. Assign a label L j ∈ {1, …, k } to P j to indicate the homogenous

egion to which the polygon belongs. It implies that all pixels in

 j share the same label. Thereby, the labels of all polygons forms a

abel field L = { L j : j = 1, …, m }. Equivalently, L can also be defined

n pixels, L = { L ( i ): i = 1, …, n }, where L ( i ) is the label of pixel i and

 ( i ) =L j if and only if ( x i , y i ) ∈ P j . Assume that L has a prior dis-

ribution p ( L ), which characterizes the relationship among neigh-

or polygons with respect to their labels. In this paper, the sta-

ionary second-order Potts model [3] that characterizes the depen-

ence between neighbor pixels in the vertical, horizontal and di-

gonal directions is extended to model the correlation of labels of

eighbor polygons. Two distinct polygons P j and P j ′ are neighbors,

enoted by P j ∼ P j ′ , if and only if P j and P j ′ have a mutual bound-

ry, where the operator ∼ denotes neighborhood relationship. For

 given polygon P j , let NP j ={ P j ′ : P j ′ ∼ P j } be the set of its neighbor

olygons. 

Assume that the conditional distributions for labels of all poly-

ons are independent of each other. Consequently, the joint proba-

ility density function (pdf) of L can be expressed as 

p(L| β) = 

m ∏ 

j=1 

p( L j | β, L j ′ , P j ′ ∈ N P j ) = 

m ∏ 

j=1 

exp 

( 

β
∑ 

P j ′ ∈ N P j 
t( L j , L j ′ ) 

) 

k ∑ 

l=1 

exp 

( 

β
∑ 

P j ′ ∈ N P j 
t(l, L j ′ ) 

) 

(2)

here β ( > 0) characterizes the spatial interaction of neighbor

olygons and t is the indicator function where t ( x, y ) = 1 if x = y ,

therwise, t ( x, y ) = 0. 

Given an observed field Z , assume that the random variables Z 1 ,

, Z n are independent and their pdfs depend only on the values

f their label L j , if ( x i , y i ) ∈ P j , respectively. Assume that Z i can be

odeled by conditional Gaussian distribution with mean μ( L i ) 
and

ariance σ 2 
( L i ) 

depending on the class to which the P j belongs. As a

esult, let θ= ( θ1 , …, θk ) = (( μ1 , σ 1 ), …, ( μk , σ k )), where θ is the

ector of unknown parameters. 

Under those assumptions, the conditional pdf of Z given L can

e written as 

p(Z| L, θ) = 

m ∏ 

j=1 

∏ 

( x i , y i ) ∈ P j 
p( Z i | L j , θL j ) 

= 

m ∏ 

j=1 

∏ 

( x i , y i ) ∈ P j 

1 √ 

2 πσ 2 
L j 

exp 

( 

− (Z i − μL j ) 
2 

2 σ 2 
L j 

) 

(3)

Using Bayes’ rule and substituting Eqs. (2) and ( 3 ), VT-HMRF

odel can be defined as 

p(L| Z, θ, β) ∝ p(Z| L, θ) p(L| β) 

= 

m ∏ 

j=1 

∏ 

( x i , y i ) ∈ P j 
1 √ 

2 πσ 2 
L j 

exp 

(
− (Z i −μL j 

) 
2 

2 σ 2 
L j 

)
×

m ∏ 

j=1 

exp 

( 

β
∑ 

P 
j ′ ∈ N P j 

t( L j , L j ′ ) 

) 

k ∑ 

l=1 

exp 

( 

β
∑ 

P 
j ′ ∈ N P j 

t(l, L j ′ ) 

) 

(4)

Eq. (4) provides an approximation of the posterior probability

 ( L | Z ) and guarantees its Markovianity, though more complicated

ssumptions can be employed [5] . 
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. VT-HMRF FCM algorithm 

.1. Standard FCM model 

The standard FCM based image segmentation algorithm [4] par-

itions the image z into k clusters by iteratively minimizing the fol-

owing objective function 

 F CM 

= 

k ∑ 

l=1 

n ∑ 

i =1 

r 
ξ
( li ) 

d 2 
( li ) 

(5) 

here d ( li ) = || z i − v l || 2 is the Euclidean distance between pixel in-

ensity z i and the prototype (or cluster center) of the l th cluster v l ,

he fuzzifier of the clustering ξ is the weighting exponent on fuzzy

emberships and controls the degree of fuzziness, r ( li ) is the fuzzy

embership of the i th pixel belonging to the l th cluster, subject

o r ( li ) ∈ [0, 1], ∀ i = 1, …, n , and l = 1, …, k , 
k ∑ 

l=1 

r (li ) = 1 , ∀ i = 1, …,

 ; 0 < 

n ∑ 

i =1 

r (li ) < n , ∀ l = 1, …, k . Minimizing Eq. (5) under the above

onstraints, the fuzzy membership functions r ( li ) and cluster center

 l can be calculated [4] . 

.2. KL information based FCM 

Since the fuzzifier ξ in J FCM 

is introduced as the exponent on

uzzy membership, the fuzzy objective function J FCM 

seems to be

ather unnatural [20] . There are several algorithms proposed to

mprove the FCM clustering. Miyamoto and Mukaidono [22] sug-

ested that fuzzification can be obtained by means of a regular-

zation technique where an entropy term is added into the fuzzy

bjective function as follows, 

 EN = 

k ∑ 

l=1 

n ∑ 

i =1 

r (li ) d (li ) + λ
k ∑ 

l=1 

n ∑ 

i =1 

r (li ) log r (li ) (6) 

here the entropy term acts as the fuzzifier and the parameter

decides the fuzzy degree of clustering model. Ichihashi et al.

19] proposed another FCM variant by introducing a regularization

erm with KL information. Under this consideration, the fuzzy ob-

ective function is defined as 

 KL = 

k ∑ 

l=1 

n ∑ 

i =1 

r (li ) d (li ) + λ
k ∑ 

l=1 

n ∑ 

i =1 

r (li ) log 
r (li ) 

π(li ) 

(7) 

here π ( li ) is the prior probability (weight) of i th pixel belonging

o l th cluster. 

.3. VT-HMRF based FCM algorithm 

In order to design regionalized fuzzy clustering algorithm, a

ew FCM objective function is defined by combining VT-HMRF

odel into the regularized KL information fuzzy objective function

n Eq. (7) . Analogy to the definition of the label field L on polygons

nd pixels, the membership function is also defined on them, i.e.,

or the P j to affirm the feature class l with the membership r lj , it

eans that all pixels in P j share the same membership r lj . Further-

ore, their memberships to the class l can be denoted as 

 (li ) = r l j ⇔ ( x i , y i ) ∈ P j (8)

Instead of using Euclidean distance, the dissimilarity function

 ( li ) is defined as the negative log-likelihood of pixel Z i with L ( i ) = l ,

hat is, 

 (li ) = − log p( Z i | μL (i ) = l , σL (i ) = l ) (9)

The prior probabilities of pixels i in P j for the l th class π ( li ) are

he same, that is, π ( li ) =π lj ⇔ ( x i , y i ) ∈ P j , which can be obtained
y the distribution of the label L j conditional on the labels of its

eighbor polygons 

l j 
�= p( L j = l| L j ′ , j ′ ∈ N P j ) = 

exp 

( 

β
∑ 

P j ′ ∈ N P j 
t( L j = l, L j ′ ) 

) 

k ∑ 

l ′ =1 

exp 

( 

β
∑ 

P j ′ ∈ N P j 
t( L j = l ′ , L j ′ ) 

) 

(10) 

Combine Eqs. (8) –( 10 ), the objective function in Eq. (7) can be

ewritten as 

 V H = 

k ∑ 

l=1 

m ∑ 

j=1 

[
r l j D l j 

]
+ λ

k ∑ 

l=1 

m ∑ 

j=1 

[
N j r l j log 

r l j 

πl j 

]
(11) 

here N j =#{( x i , y i ) ∈ P j } is the number of pixels in P j , and 

 l j = 

∑ 

( x i , y i ) ∈ P j 
d (li ) = 

∑ 

( x i , y i ) ∈ P j 
p( Z i | L j = l, μl , σl 

2 ) (12) 

.4. Model parameters estimation 

The estimation of VT-HMRF FCM parameters, ѱ = { R , θ, G },

here R = [ r lj ] k ×m 

and G = {( u j , v j ): j = 1, …, m }, can be carried

ut by iteratively minimizing the fuzzy objective function in Eq.

11) over R , θ and G , respectively. Let ѱ ( t ) stands for the parame-

ers of t th iteration. In t + 1th iteration, it is necessary to obtain an

stimation of the prior probabilities π lj 
( t ) using Eq. (10) , in which

 

( t ) can be obtained by the defuzzification of the fuzzy member-

hips r lj 
( t ) 

 j 
(t) = arg 

k 
max 

l=1 

{
r l j 

(t) 
}

(13) 

After acquiring π lj , the model parameters ѱ = { R , θ, G } can be

erived as follows. 

• Calculating the fuzzy membership 

The fuzzy membership can be attained by minimizing the ob-

ection function in Eq. (11) over r lj under the constraint 
k ∑ 

l=1 

r l j = 1

 j = 1, …, m . Introduce a Lagrange multiplier ηl for each polygon

o enforce the constraint, have 

∂ 

∂ r l j 

[ 

J V H −
m ∑ 

j=1 

ηl ( 
k ∑ 

l ′ =1 

r l ′ j − 1) 

] 

= 0 (14) 

hich eventually yields 

 l j 
(t+1) = 

πl j 
(t) exp 

(
− 1 

λN j 
D l j 

(t) 
)

k ∑ 

l ′ =1 

πl ′ j (t) exp 

(
− 1 

λN j 
D l ′ j 

(t) 
)

= 

πl j 
(t) exp 

(
− 1 

λN j 

∑ 

( x i , y i ) ∈ P j 
d (li ) 

(t) 

)
k ∑ 

l ′ =1 

πl ′ j (t) exp 

(
− 1 

λN j 

∑ 

( x i , y i ) ∈ P j 
d (l ′ i ) 

(t) 

) (15) 

here 

 (li ) 
(t) = − log p 

(
Z i | L j (t) = l, μl 

(t) , σl 
(t) 

)
= 

1 

2 

log (2 π) + log σl 
(t) + 

(
Z i − μl 

(t) 
)2 

2 

(
σl 

(t) 
)2 

(16) 

• Calculating the model parameters 
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Fig. 1. (a) Voronoi tessellation with six generating points, (b) Voronoi tessellation 

after moving generating point ( u 2 , v 2 ) to ( u 2 
∗ , v 2 

∗). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Template, (b) Simulated image, (c) Simulated image with Salt & pepper 

noise. 

Table 1 

Means and standard deviations of Gaussian distributions. 

parameters 

Region 

I II III IV V 

mean 160 40 200 120 120 

std. 30 10 20 10 30 
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To obtain the estimations of the model parameters μl and σ l ,

the objective function is rewritten as Eq. (17) by substituting Eq.

(12) into Eq. (11) , 

J V H = 

k ∑ 

l=1 

m ∑ 

j=1 

r l j 

∑ 

( x i , y i ) ∈ P j 

[
1 

2 

log (2 π) + log σl + 

( Z i − μl ) 
2 

2 ( σl ) 
2 

]

+ λ
k ∑ 

l=1 

m ∑ 

j=1 

[
N j r l j log 

r l j 

πl j 

]
(17)

Then conduct the minimization of Eq. (17) over μl 
( t ) and

( σ l 
( t ) ) 2 , have 

μl 
(t+1) = 

m ∑ 

j=1 

(
r l j 

(t+1) 
∑ 

( x i , y i ) ∈ P j 
Z i 

)
m ∑ 

j=1 

(
N j r l j 

(t+1) 
) (18)

(
σl 

(t+1) 
)2 = 

m ∑ 

j=1 

r l j 
(t+1) 

∑ 

( x i , y i ) ∈ P j 

(
Z i − μl 

(t+1) 
)2 

m ∑ 

j=1 

(
N j r l j 

(t+1) 
) (19)

• Updating G 

Find a new VT to minimize the objective function defined in Eq.

(11) . Randomly select a generating points from G 

( t ) ={( u 1 
( t ) , v 1 

( t ) ),

…, ( u m 

( t ) , v m 

( t ) )}, say ( u j 
( t ) , v j 

( t ) ). Move ( u j 
( t ) , v j 

( t ) ) to a candidate

position ( u j 
∗, v j 

∗) ∈ P j . As a result, the new collection of gener-

ating points is G m 

∗ ={( u 1 
( t ) , v 1 

( t ) ), …, ( u j 
∗, v j 

∗), …, ( u m 

( t ) , v m 

( t ) )}.

Accordingly, P j is changed to P j 
∗. It is noteworthy that moving a

generating point ( u j , v j ) will change both of P j and its neighbor

polygons. Fig. 1 shows an example of the changes of Voronoi poly-

gons when ( u 2 , v 2 ) move to ( u 2 
∗, v 2 

∗), where the solid lines de-

note the boundaries of Voronoi polygons and the dash lines in Fig.

1 (b) are variant boundaries. Accordingly, when VT changes, the dis-

similarity d lj and fuzzy membership r lj of the varied polygons, and

corresponding the model parameters should be recalculated with

Eqs. (15) , ( 16 ), ( 18 ) and ( 19 ), respectively. After that, the objective

function of VT-HMRF FCM can be calculated according to Eq. (11) ,

if J V ( G m 

∗) < J V ( G 

( t ) ), the moving operation will be accepted and

d ( t ) = ( d ( li ) 
( t ) : l = 1, …, k, i = 1, …, n ) , r ( t ) = ( r lj 

( t ) : l = 1, …, k, j = 1, …,

m ) and θ ( t ) are updated. 

3.5. Summary of VT-HMRF FCM algorithm 

The proposed algorithm can be summed up as follows. 

• Generating m initial generating points G 

(0) ={( u j 
(0) , v j 

(0) ): j = 1,

…, m } and the initial P 

(0) ={ P j 
(0) : j=1, …, m } from G 

(0) . 

• Initializing fuzzy membership r lj 
(0) randomly. 
• Defuzzifying the fuzzy membership r lj 
( t ) to determine the la-

bel field L ( t ) and calculate prior probability π lj 
( t ) using Eq.

(10) . 
• Calculating the fuzzy membership r lj 

( t ) by Eq. (15) . 

• Estimating the parameters μ ( t ) ={ μ1 
( t ) , …, μk 

( t ) } and σ
( t ) ={ σ 1 

( t ) , …, σ k 
( t ) } by Eqs. (18) and ( 19 ), respectively. 

• Updating G to obtain the optimal tessellation. 
• If | J VH 

( t ) – J VH 
( t − 1) | < T c , T c is a threshold, exit iteration, oth-

erwise, set t = t + 1 and return to the third step. 

. Experimental results and discussions 

The proposed method is applied to simulated and real images.

n addition, some comparisons to the performances of pixel and

eighbor based FCM segmentation methods have been done. In the

xperiment, the parameter β is set as 0.5, λ is set as 0.04, T c is set

s 0.001 and the maximum iteration is set as 5000 for all tested

mages. In practice, the number of polygons m could be set as a

ariable, but from our experiments, within a certain range (from

8 to 128 for 128 ×128 images), the number has not significantly

ffect on segmentation results and variable m is very time consum-

ng. In this experiment, m is taken as 96. Under the environment

f IntelCore22.53 Ghz/1 G memory, the segmentation takes about

5 min for 128 ×128 images, and the complexity of the proposed

lgorithm is O ( N 

2 ). 

.1. Simulated image segmentation 

A quantitative evaluation of segmentation algorithms can only

e effectuated on simulated images, as one needs to know the ex-

ct regions in advance. To this end, the simulated image is gener-

ted as in Fig. 2 (b). It consists of five statistically homogeneous re-

ions as in the template image Fig. 2 (a), in each of which the pixel

ntensities follow an Gaussian distribution with mean and standard

eviation listed in Table 1 . In Fig. 2 (b), region V and VI have same

ean value, while region II and IV have same standard deviation.

ig. 2 (c) shows image with the salt & pepper noises added on Fig.

 (b) with density of 0.01. 

Fig. 3 shows the histograms of each homogeneous regions in

ig. 2 (b), it can be seen that some of histograms have moderate

verlap with each other. 

Fig. 4 (a1)–(a3) and (b1)–(b3) illustrates VT and segmentation

esults of Fig. 2 (b) at the 10 0 0 iteration, 30 0 0 iteration, and the fi-

al state (at 50 0 0 iterations), respectively, Fig. 4 (a4) and (b4) illus-

rates VT and segmentation results of Fig. 2 (c) at final state where

ach polygon is displayed with a color randomly selected. It can

e seen from Fig. 4 (b1)–(b4), at 10 0 0th iteration each homogenous
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Fig. 3. Histogram of different homogeneous regions. 

Fig. 4. (a1)–(a3) Tessellation results of Fig. 2 (b) with 10 0 0, 30 0 0, final iterations, 

respectively; (b1)–(b3) Segmentation results of Fig. 2 (b) with 10 0 0, 30 0 0, final it- 

erations, respectively; (a4)–(b4) Tessellation and segmentation results of Fig. 2 (c), 

respectively. 

Fig. 5. (a1)–(a6) Segmentation results of Fig. 2 (b) by FCM, EnFCM, FGFCM, FLICM, 

HMRF-FCM, K-means; (b1)–(b6) Segmentation results of Fig. 2 (c) by FCM, EnFCM, 

FGFCM, FLICM, HMRF-FCM, K-means. 
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Fig. 6. (a1) and (a2) outlines of segmented regions of Fig. 2 (b) and (c); (b1) and 

(b2) outlines overlaid on original image. 

Table 2 

Expectation and variance estimated of Gaussian distribution parameters. 

Parameters Region 

I II III IV V 

Estimated means & 

their errors 

(non-noise / 

noise) 

159.39/ 

159.28 

(0.4%/ 

0.4%) 

39.88/ 

39.87 

(0.3%/ 

0.3%) 

199.76/ 

199.66 

(0.1%/ 

0.2%) 

119.76/ 

119.77 

(0.2%/ 

0.2%) 

120.14/ 

119.95 

(0.1%/ 

0.04%) 

Estimated std. & 

their 

errors(non-noise 

/ noise) 

29.79/ 

29.82 

(0.7%/ 

0.6%) 

10.27/ 

10.28 

(2.7%/ 

2.8%) 

20.34/ 

20.61 

(1.7%/ 

3.0%) 

10.08/ 

10.05 

(0.8%/ 

0.5%) 

30.79/ 

30.15 

(2.6%/ 

0.5%) 
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egion can be segmented roughly, after 30 0 0 iterations the result

ecomes more accurate, at 50 0 0 iterations the results are excellent

n the experiment, and the result of Fig. 2 (c) is also excellent. Be-

ause the proposed algorithm introduces the regional effect, so it

nhances robustness and noise insensitiveness, as a result, it seg-

ents different regions well and there are no obvious misclassified

ixels. 

Fig. 5 (a1)–(a6) and (b1)–(b6) show respectively the segmenta-

ion results of image of Fig. 2 (b) and (c) using FCM [4] , EnFCM [24] ,

GFCM [6] , FLICM [18] and HMRF-FCM [8] and mean filter followed
y K-means clustering algorithm. All above algorithms can not dis-

inguish region V and IV because the two regions have the same

ean value. Besides, the results from the FCM in Fig. 5 (a1) and

b1) are unacceptable since only pixel itself is taken into account

n FCM algorithm. By contrast, Fig. 5 (a2)–(a5) and (b2)–(b5) are

etter than Fig. 5 (a1) and (b1) because the spatial context can pay

 critical role in image segmentation. Fig. 5 (a6) and (b6) can seg-

ent region I, II and III well because before segmentation, median

lter is adopted on original image. 

To visually illustrate the accuracy of the segmented results of

he proposed algorithm, the outlines of the segmented homoge-

ous regions are delineated and overlaid on the simulated images

ig. 2 (b) and (c), as shown in Fig. 6 (a1), (a2) and (b1), (b2), respec-

ively. Fig. 6 illustrates that the delineated outlines match well the

oundaries of the homogeneous regions. 

Table 2 lists the estimated Gaussian distribution parameters and

heir percentage errors. The maximum percentage error is only 3%

or segmentation results of Fig. 2 (b) and (c). The results listed in

able 2 indicate that the proposed algorithm can accurately es-

imate the model parameters for both non-noise image and the

oise image. 

In order to perform accuracy estimations quantitatively, the

onfusion matrix is calculated in terms of the segmentation re-

ults shown in Fig. 5 and the segmentation results by the pro-

osed algorithm shown in Fig.(b3) and (b4). A direct comparison

egmented regions with their corresponding real homogenous re-

ions is the most commonly used schemes. Accordingly, the mea-

urements such as producer’s accuracy, consumer’s accuracy, over-

ll accuracy and Kappa coefficient, can be calculated and listed in

able 3 . From Table 3 , the accuracy measurements of the proposed

lgorithm are higher than that for all others, and the overall ac-

uracy and the kappa coefficient are up to 99% and 0.99, respec-

ively. General interpretation rules to assess thematic accuracy in-

icate that a Kappa coefficient between 0.81 and 1.0 is almost per-

ect [12] . 

.2. Real image segmentation 

Fig. 7 shows real images for testing purpose. Fig. 7 (a) is an op-

ical image with different textures and Fig. 7 (b) is a SAR intensity

mage with RADARSAT II HH polarization, in which dark, bright

nd gray areas correspond to the sea, urban and forest. 
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Table 3 

Comparison of accuracies and kappa values. 

Algorithm Measurement Region 

I II III IV V 

FCM (non-noise/noise) U (%) 49 .9/47.5 92 .4/90.3 80 .5/79.6 46 .1/46.2 33 .7/33.6 

P (%) 44 .3/43.2 100/99 .5 68 .3/63.4 52 .2/51.5 25 .9/36.9 

O (%) = 58.9/57.5; kappa = 0.49/0. 47 

EnFCM (non-noise/noise) U (%) 83 .3/80.3 99 .9/98.7 93 .5/92.6 45 .4/42.7 88 .8/63.9 

P (%) 72 .9/63.6 98 .1/65.8 90 .1/86.2 99 .9/76.5 13 .3/37.3 

O (%) = 72.8/71.2; kappa = 0.66/0. 64 

FGFCM (non-noise/noise) U (%) 93 .8/90.6 99 .9/99.9 96 .2/95.1 48 .8/47.5 60 .4/70.9 

P (%) 90 .2/88.2 97 .8/96.1 96 .9/95.2 70 .0/97.2 40 .9/11.9 

O (%) = 78.3/75.9; kappa = 0.730. 70 

FLICM (non-noise/noise) U (%) 95 .5/90.5 99 .9/99.9 98 .9/98.5 52 .8/49.3 62 .4/53.8 

P (%) 91 .4/90.0 98 .3/97.8 96 .7/92.9 79 .4/60.6 40 .4/47.3 

O (%) = 80.2/77.1; kappa = 0.75/0. 71 

HMRF FCM (non-noise/noise) U (%) 51 .0/75.9 98 .6/98.4 97 .4/93.9 54 .7/95.8 52 .7/49.1 

P (%) 70 .4/29.7 100/99 .5 30 .0/99.1 100/61 .8 29 .2/89.1 

O (%) = 64.2/75.5; kappa = 0.55/0. 69 

K-means (non-noise/noise) U (%) 89 .8/89.2 95 .7/96.8 100/100 41 .7/44.9 0/54 .4 

P (%) 90 .3/89.5 97 .9/97.3 40 .5/87.5 95 .1/81.6 0/22 .5 

O (%) = 64.0/74.2; kappa = 0.55/0. 68 

VT-HMRF FCM (non-noise/noise) U (%) 99 .4/99.0 100/100 99 .9/99.9 99 .6/100 98 .5/96.8 

P (%) 99 .6/99.6 99 .6/99.7 99 .5/99.8 99 .1/96.5 99 .4/99.4 

O (%) = 99.5/99.0; kappa = 0.99/0. 99 

U: user precision, P: product precision, O: overall precision. 

Fig. 7. (a) Texture image, (b) SAR image. 

Fig. 8. (a1)–(a3) Tessellation results of Fig. 7 (a) with 10 0 0, 30 0 0, final iterations, 

respectively, (b1)–(b3) Segmentation results of Fig. 7 (a) with 10 0 0, 30 0 0, final iter- 

ations, respectively; (a4)–(a6) Tessellation results of Fig. 7 (b) with 10 0 0, 30 0 0, final 

iterations, respectively; (b4)–(b6) Segmentation results of Fig. 7 (b) with 10 0 0, 30 0 0, 

final iterations, respectively,. 

 

 

 

 

Fig. 9. (a1)–(a6) Segmentation results of Fig. 7 (a) by FCM, EnFCM, FGFCM, FLICM, 

HMRF-FCM, K-means, (b1)–(b6) Segmentation results of Fig. 7 (b) by FCM, EnFCM, 

FGFCM, FLICM, HMRF-FCM, K-means. 
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Fig. 8 shows the tessellation and segmentation results of Fig.

7 . Fig. 8 (a1)–(a3) are the tessellation results at 10 0 0, 30 0 0 iter-

ations and final state(at 50 0 0 iteration) of Fig. 7 (a), respectively,

and Fig. 8 (b1)–(b3) are the corresponding segmented results of
ig. 8 (a1)–(a3), Fig. 8 (a4) and (b4) are the tessellation and seg-

entation results at final state of Fig. 7 (b). As shown in Fig. 8 , the

egmentation results are excellent and become stable soon. 

Fig. 9 shows the segmentation results of Fig. 7 (a) and (b) by the

lassical FCM based and k-mean clustering algorithm. Fig. 9 (a1)–

f1) and (a2)–(f2) are the segmentation results by FCM, EnFCM,

GFCM, FLICM, HMRF-FCM and k-means, respectively. Combined

ig. 8 , It can be seen that for these images the proposed algorithm

s robust and can segment different textures very well and can pro-

ides significantly better performance than other FCM-based and

-means algorithms. 

Fig. 10 gives the results from other real images obtained by the

roposed algorithm. It can be seen that for these images the pro-
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Fig. 10. (a1)–(a4) Texture images, (b1)–(b4) optimal segmentations. 
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osed algorithm is robust and can segment different textures very

ell. 

. Conclusion 

The analysis of the VTHMRF FCM algorithm described in this

aper implies that the proposed algorithm can be viewed as re-

ional and HMRF based, FCM type, fuzzy clustering strategy, to the

xtent that the algorithm combines the benefits stemming from

obust regional and HMRF based segmentation and the increased

exibility of FCM. We presented experimental results to demon-

trate the performance of the algorithm, and compared these re-

ults with those obtained by the FCM, FCM_S, EnFCM, FGFCM,

LIFCM and HMRF_FCM. Our results for simulated image and real

mages show that the VHMRF-FCM algorithm performs signifi-

antly better than others. 
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