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a b s t r a c t

Combined effects of hydrodynamic slip, magnetic field, suction/injection, thermal radiation, nanoparticle
volume fraction and convective boundary conditions on the heat transfer and global entropy generation
in a viscous electrically conducting nanofluid flow through a microchannel with permeable plates are
studied. Analytical solutions of the momentum and the energy equations are obtained in closed form.
Particularly, considering the radiative term, joule heating and viscous dissipation in the energy equation,
the temperature field of the nanofluid is derived analytically. Influences of pertinent parameters on global
entropy generation are discussed in detail and depicted graphically. Analysis of our results indicates that
entropy generation minimization can be achieved by appropriate combination of the geometrical and
physical parameters of the system. It is possible to determine optimum values of radiation parameter,
nanoparticle volume fraction, Hartmann and Biot numbers which lead to a minimum global entropy gen-
eration rate. The Nusselt number is also calculated and explored for different conditions. Optimum values
of nanoparticle volume fraction and magnetic field strength that maximize heat transfer are derived.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, microfluidics become an important area of
research. Analysis of heat and fluid flow at microscale is of great
importance for application in micro heat exchanger systems.
Particularly, study of steady laminar forced convection fluid flow
through parallel plates in a microchannel has many significant
applications in engineering. Starting from the design of cooling
systems for microelectronic devices to various microscale elec-
tromechanical systems, such as MHD micropumps, micro turbines
and fuel cells, this type of geometry can be observed. In this con-
text, nanofluids in microchannels have gained much attention
because the effective thermal conductivity of conventional fluids,
such as water and engine oil, increases remarkably with the addi-
tion of nanoscale metallic particles with high thermal conductivity.
Various investigations have been performed to explore the poten-
tial of nanofluids in heat transfer applications [1–7]. In particular,
the study of nanofluid flow in microchannels has been reported
in the literature [8–13]. Mohammed et al. [8] and Salman et al.
[9] found that nanofluids in the microchannel heat exchangers

dramatically enhance cooling rate compared with conventional
water cooled microchannel heat exchangers.

In the present study optimization of magnetohydrodynamic
(MHD) flow of a nanofluid in a porous microchannel using the
entropy generation minimization method (EGM) and considering
combined effects of slip flow, suction/injection, thermal radiation
and convective heat transfer is carried out. Reducing entropy gen-
eration of nanofluid motion through porous MHD channels can
have a beneficial impact on the input power required to achieve
both desired heat exchange and mass flow rates. Therefore, in
energy optimization problems and design of many heat removal
engineering devices, it is imperative to determine factors that con-
tribute to entropy generation in order to minimize their effects and
maximize available work. A review on entropy generation of
nanofluids shows that suspension of nanoparticles in a conven-
tional fluid can be very beneficial in decreasing of the entropy gen-
eration [6]. Here, hydrodynamic slip is considered on the walls of
the microchannel because it is well known that in some applica-
tions in microfluidic and nanofluidic devices where the surface to
volume ratio is large, slip flow conditions are more typical and slip
boundary condition is usually used for the velocity field [14–17].
Moreover, entropy analysis of ordinary fluid flow through a porous
channel with hydrodynamic slip [18–22] is of interest due to wide
applications in various fields such as diffusion technology, transpi-
ration cooling, hemodialysis processes, flow control in nuclear
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reactors and certain problems of the movement of conductive
physiological fluids. In particular, some works have addressed
the analysis of entropy generation in porous channels considering
MHD flow of a nanofluid [23–25]. In these papers the entropy gen-
eration rate was calculated but effects of thermal radiation on heat
transfer and entropy generation rate were not considered.

Investigations of electromagnetic flow of nanofluids with radia-
tion effects are reported by various authors [26–31]. Zhang et al.
[26] performed an analytical study of MHD flow of a nanofluid in
a porousmediumwith variable surface heat flux and chemical reac-
tion using the differential transform base functions method (DTM-
BF). They found that magnetic field and radiation have significant
effects on velocity and temperature fields. Pal and Mandal [27]
studied hydromagnetic convective-radiative boundary layer flow
of nanofluid induced by a nonlinear vertical stretching/shrinking
sheet with viscous and ohmic dissipation. The governing equations
were solved numerically using a fifth order Runge–Kutta–Fehlberg
method with shooting technique. The results revealed that heat
transfer at the boundary layer increases with increasing nanoparti-
cle volume fraction. Ganesh et al. [28] presented analytical and
numerical studies on hydromagnetic flow of a nanofluid over a
stretching sheet with thermal radiation. The dimensionless govern-
ing equations are solved analytically using hypergeometric func-
tions and numerically by the Nachtsheim–Swigert shooting
iteration technique together with the fourth order Runge–Kutta
integration scheme. They analyzed the influence of pertinent
parameters such as magnetic parameter, solid volume fraction of
nanoparticles and radiation parameter. Their results indicated that
when the radiation parameter increases the thermal boundary layer
of the nanofluid decreases. Mushtaq et al. [29] investigated radia-
tion effects in MHD flow of a viscous nanofluid due to solar energy.
The resulting differential equationswere solved numerically using a
fourth-fifth order Runge–Kutta method (RK45) with shooting tech-
nique. The analysis of their results showed that the temperature
and the wall temperature gradient increase with the radiation
parameter. Nandy et al. [30] investigated effects of magnetic field
and thermal radiation on stagnation flow and heat transfer of a
nanofluid over a shrinking surface. A similarity transformation
was used to transform the governing partial differential equations
to a system of nonlinear ordinary differential equations which were
solved numerically using a shooting technique. They concluded that
the magnetic parameter has a strong influence over velocity and
temperature. Rahman et al. [31] investigated the role of a convec-
tive surface on heat transfer of water-based nanofluids in the pres-
ence of thermal radiation. The numerical results were obtained
using a fourth-fifth order Runge–Kutta method (RK45). They
showed that the rate of heat transfer in a nanofluid in the presence
of thermal radiation depends significantly on the surface convec-
tion parameter. In the above studies thermal radiation effects were
considered but entropy generation was not calculated.

Recent works have addressed analysis of entropy generation in
nanofluids with inclusion of thermal radiation [32–37]. Habibi
et al. [32] investigated entropy generation of nanofluid flow in an
MHD channel formed by two parallel isothermal plates considering
thermal radiation effect and using air as main fluid with Al2O3;Cu
and Ti nanoparticles. It was found that there is a minimum value
for the total entropy generation rate versus the radiation parame-
ter. Mahmoodi and Kandelousi [33] studied heat transfer and
entropy generation of kerosene-alumina nanofluid in a channel
with thermal radiation. Differential Transform Method was uti-
lized to solve the governing equations. Their results showed that
the Bejan number has a direct relationship with the radiation
parameter. In [34], a semi-analytical study of hydrothermal behav-
ior and entropy generation of kerosene-alumina nanofluid in a
regenerative cooling channel considering thermal radiation was
performed. The results indicated that entropy generation is a

decreasing function of the radiation parameter. Torabi and Aziz
[35] considered hollow cylindrical geometries with radiation
effect. To solve the energy equation and obtain the entropy gener-
ation, the differential transform method was applied. Torabi and
Zhang [36] evaluated both homogenous and functionally graded
slabs with internal heat generation and radiation effects from the
second law of thermodynamics point of view. In [37], temperature
distribution, and local and total entropy generation rates within
two-layer composite walls using conjugate convection and radia-
tion boundary conditions were investigated. Although the entropy
generation rate was calculated in these investigations, combined
effects of hydrodynamic slip, suction/injection, thermal radiation,
volume fraction of solid nanoparticles and convective boundary
conditions were not considered.

In the present contribution, recent work of Ibáñez [22] is
extended to include effects of thermal radiation and solid volume
fraction of nanoparticles on both heat transfer and entropy gener-
ation in an MHD porous microchannel. The main fluid is water
with Al2O3 nanoparticles. Exact analytic solutions are presented
for velocity and temperature fields in the nanofluid. It is noted that
the present solution reduces to previous results [22] by taking the
radiation parameter (Rd) and the solid volume fraction of nanopar-
ticles equal to zero which provides a useful mathematical check.
Here, the behavior of the local Nusselt number is also explored.
Optimum values of the nanoparticle volume fraction and
Hartmann number that maximize heat transfer are derived.

Although there exist a large number of studies in the literature
dealing with MHD heat transfer in nanofluid flow through a
microchannel under different boundary and geometrical configu-
rations, most of these studies do not take into account simultane-
ously all the effects considered in the present work and their
analysis is mainly focused on local entropy generation. In addition,
optimum operation conditions, namely optimum values of entropy
generation rate and Nusselt number are not always obtained. In
our study optimum conditions where the irreversibilities are min-
imum and heat transfer is maximum are obtained for the system,
therefore the fundamental contributions compared with the exist-
ing literature are: (a) The local and global entropy production in
water-Al2O3 nanofluid flow through a microchannel is determined
from the solution of heat transfer problem considering thermal
radiation, hydrodynamic slip, suction/injection, magnetic field,
nanoparticle volume fraction and convective heat transfer effects,
simultaneously, (b) All relevant design parameters for the system
are optimized by minimizing the global entropy generation. Partic-
ularly, optimum values of the radiation parameter and the
nanoparticle volume fraction that minimize entropy generation
are found, (c) Optimum values of nanoparticle volume fraction
and magnetic field strength that maximize heat transfer are
obtained and (d) Effects of solid volume fraction of nanoparticles
on optimum values of some other parameters in which entropy
is minimum are analyzed.

In the following sections, the problem is formulated, analyzed,
solved and discussed. Section 2 consists of the transport problem
analysis which contains the momentum and energy balance equa-
tions and their solutions. Section 3 contains the determination of
the entropy generation rate and the Nusselt number for this prob-
lem, and graphical representation of results and their discussion.
Section 4 contains the concluding remarks.

2. The model fluid and the governing equations

We consider steady fully developed flow of a viscous MHD
nanofluid through a microchannel with two horizontal parallel
porous plates separated by a distance a in the presence of a con-
stant longitudinal pressure gradient dp=dx0 and under a uniform

90 G. Ibáñez et al. / International Journal of Heat and Mass Transfer 100 (2016) 89–97



transverse magnetic field B0. The upper plate is located at y0 ¼ a
and the lower plate is at y0 ¼ 0; y0, denoting the transversal coordi-
nate. It is assumed that the parallel plates are infinite so that the
velocity and temperature profiles are fully developed, also the fluid
is injected uniformly into the microchannel at the lower plate and
fluid suction occurs at the upper plate. The microchannel lower
plate exchanges heat by convection with a hot fluid with temper-
ature Th while the upper plate is in contact with the ambient tem-
perature. For the solution of the momentum balance equation we
assume that the velocity satisfies the slip condition at the plates.
In turn, the heat transfer equation is solved using convective
boundary conditions and considering thermal radiation flux, vis-
cous dissipation and Joule heating. A schematic view of the MHD
porous microchannel is shown in Fig. 1.

2.1. Velocity and temperature fields

Given the previous assumptions the momentum equation is

qnfv0
du0

dy0
¼ � dp

dx0
þ gnf

d2u0

dy02
� rnf B

2
0u

0: ð1Þ

Let us assume that the surface roughness of each plate is in gen-
eral different. Then, the slip lengths, although taken to be constant,
do not have the same value on both plates. Therefore, Eq. (1) must
satisfy the boundary conditions

u0 � a0
1
du0

dy0
¼ 0; at y0 ¼ 0; ð2Þ

u0 þ a0
2
du0

dy0
¼ 0; at y0 ¼ a; ð3Þ

where v0 is the uniform suction/injection velocity at the
microchannel plates. Here, gnf is the dynamic viscosity, rnf is
the electrical conductivity and qnf is the density of the nanofluid,
while a0

1 and a0
2 are the slip lengths of the lower and upper plates,

respectively.
The energy balance equation in the fluid reduces to [26]

ðqCÞnfv0
dT
dy0

¼ knf
@2T
@y02

þ gnf
du0

dy0

� �2

þ rnf B
2
0u

02 � @qr

@y0
: ð4Þ

The boundary conditions that Eq. (4) must satisfy are

knf
dT
dy0

� h1ðT � ThÞ ¼ 0; at y0 ¼ 0; ð5Þ

knf
dT
dy0

þ h2ðT � TaÞ ¼ 0; at y0 ¼ a; ð6Þ

where T is the nanofluid temperature, Th is the hot fluid tempera-
ture, Ta is the ambient temperature, knf and Cnf are the thermal con-
ductivity and heat capacitance of nanofluid, respectively, while h1

and h2 are the convective heat transfer coefficients for each plate.
The third term on the right-had side of Eq. (4) is the Joule dissipa-
tion described in terms of Ohm’s law and the fourth term takes into
account heat flux due to thermal radiation.

The thermal radiation flux considering diffusion method of radi-
ation transfer can be written as follows (Rosseland diffusion
approximation):

qr ¼ � r
3k�

T3
b
dT
dy0

; ð7Þ

where Tb is the bulk temperature that is the average temperature of
the nanofluid, r is the Stefan–Boltzmann constant and k� is the
Rosseland mean absorption coefficient.

Introducing dimensionless variables

u ¼ qf au
0

gf
; y ¼ y0

a
; a1 ¼ a0

1

a
; a2 ¼ a0

2

a
and h ¼ T � Ta

Th� Ta
;

Eqs. (1)–(6) become

qnf

qf
Re

du
dy

¼ P þ gnf

gf

d2u

dy2
� rnf

rf
M2u; ð8Þ

u� a1
du
dy

¼ 0; at y ¼ 0; ð9Þ

uþ a2
du
dy

¼ 0; at y ¼ 1; ð10Þ

ðqCÞnf
ðqCÞf

Pe
dh
dy

¼ knf
kf

þ Rd
� �

@2h
@y2

þ EcPr
gnf

gf

du
dy

� �2

þ rnf

rf
M2u2

" #
;

ð11Þ
knf
kf

dh
dy

� Bi1ðh� 1Þ ¼ 0; at y ¼ 0; ð12Þ

knf
kf

dh
dy

þ Bi2ðhÞ ¼ 0; at y ¼ 1; ð13Þ

where

qnf

qf
¼ ð1� /Þ þ /

qs

qf
; ð14Þ

ðqCÞnf
ðqCÞf

¼ ð1� /Þ þ /
ðqCÞs
ðqCÞf

; ð15Þ

gnf

gf
¼ 1

ð1� /Þ2:5
; ð16Þ

knf
kf

¼ ks þ 2kf � 2/ðkf � ksÞ
ks þ 2kf þ /ðkf � ksÞ ; ð17Þ

rnf

rf
¼ 1þ

3/ðrs
rf
� 1Þ

ðrs
rf
þ 2Þ � /ðrs

rf
� 1Þ : ð18Þ

Here, / is the solid volume fraction of nanoparticles (Al2O3),
qf ; ðqCÞf ;gf ; kf and rf are the density, heat capacitance, dynamic
viscosity, thermal conductivity and electrical conductivity of the
base fluid (water), respectively, while qs; ðqCÞs;gs; ks and rs are

Fig. 1. Geometry of the flow.
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the density, heat capacitance, dynamic viscosity, thermal conduc-
tivity and electrical conductivity of the nanoparticles, respectively.

P ¼ a3qf

g2
f
ð� dp

dx0Þ is the pressure gradient parameter, Re ¼ v0aqf =gf is

the Reynolds number, Pr ¼ gf Cf =kf is the Prandtl number,

Ec ¼ v2
0=Cf ðTh � TaÞ is the Eckert number, Pe ¼ RePr is the Peclet

number, Rd ¼ 16rT3b
3k�kf

is the radiation parameter, M ¼ Boa
ffiffiffiffiffiffiffiffiffiffiffiffi
rf =gf

q
is

the Hartmann number and Bii ¼ ahi=kf is the Biot number for each
plate. Subindices i ¼ 1;2 refer to the lower and upper plates,
respectively.

2.2. Results

The solution to Eq. (8) with the boundary conditions (9 and 10)
is given by

u ¼ F3 þ e
F1
2 yðC1 sinh½Ay� þ C2 cosh½Ay�Þ; ð19Þ

where

C1 ¼ F3

Aa1
1� ðAa1 þ F4Þð2� a1F1Þ

ð2� a1F1ÞF4 þ 2Aa1F5

� �
;

C2 ¼ �2F3ðAa1 þ F4Þ
ð2� a1F1ÞF4 þ 2Aa1F5

;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
1

4
þ F2

s
;

F1 ¼ gf

gnf

qnf

qf
Re;

F2 ¼ gf

gnf

rnf

rf
M2;

F3 ¼ gf P

gnfM
2 ;

F4 ¼ e
F1
2 sinh½A� 1þ a2

F1

2

� �
þ Aa2 cosh½A�

� �
;

F5 ¼ e
F1
2 cosh½A� 1þ a2

F1

2

� �
þ Aa2 sinh½A�

� �
:

In Fig. 2 the velocity profile is shown for different values of slip
parameter, a, and Hartmann number, M, for P ¼ 1;Re ¼ 1 and
/ ¼ 0:1. It is evident that the velocity increases with the slip
parameter, while the main effect of the Hartmann number on the
flow velocity is to flatten the profile, decreasing the velocity. This
can be attributed to the presence of Lorentz force acting as a resis-
tance to the flow. With a1 ¼ a2 ¼ 0, the velocity profile given by
Eq. (19) reduces to the result of [38] in the non-slip flow case
through an MHD porous channel, while when the volume fraction
of nanoparticles, /, is equal to zero, the velocity profile reduces to
the result of [22].

In Fig. 3, effects of the volume fraction of nanoparticles and Rey-
nolds number on the velocity profile are shown. The velocity
decreases with volume fraction of nanoparticles due mainly to
the increment in nanofluid viscosity. When Reynolds number
increases, an increase of both injection from the lower permeable
plate and suction at the upper permeable plate is presented. This
causes a decrease of the velocity profile and this profile will be
skewed towards the upper plate.

Once the velocity field is known, the temperature field for the
fluid is determined from the solution of the previous boundary

value problem, Eq. (11) under boundary conditions (12 and 13).
The analytic result for the temperature profile is

hðyÞ ¼ C3 þ C4eF6y: ð20Þ
Here, C3 and C4 are function of P;Re;Bi; Ec;M;a; Pr and y. These

functions are given by

C3 ¼ ðqCÞf Ec
ðqCÞnf Re

Z gnf

gf

du
dy

� �2

þ rnf

rf
M2u2

" #
dyþ E

¼ ðqCÞf Ec
ðqCÞnf Re

P2

M2 yþ F11 þ F12

 !
þ E;

C4 ¼ � ðqCÞf Ec
ðqCÞnf Re

Z gnf

gf

du
dy

� �2

þ rnf

rf
M2u2

" #
e�F6ydyþ F

¼ ðqCÞf Ec
ðqCÞnf Re

P2

F6M
2 e

�F6y � F13 � F14

 !
þ F:

where

F6 ¼
kf
knf

� � ðqCÞnf
ðqCÞf Pe

1þ kf
knf

Rd
;

gnf

gf

du
dy

� �2

þ rnf

rf
M2u2

" #
¼ P2

M2 þ e
F1
2 y F7 sinh½Ay� þ F8 cosh½Ay�ð Þ

þ eF1y F9 cosh½2Ay� þ F10 sinh½2Ay�ð Þ;

0 0.2 0.4 0.6 0.8 1
y

0.04

0.06

0.08

0.1

0.12

0.14

u

0.2 M 1.0
0.1 M 1.0
0.1 M 0.5

Fig. 2. Velocity profile for different values of a and M. P ¼ 1;/ ¼ 0:1;Re ¼ 1.
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Fig. 3. Velocity profile for different values of Re and /. P ¼ 1;a ¼ 0:05;M ¼ 1.
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F7 ¼ 2PC1;

F8 ¼ 2PC2;

F9 ¼ qnf

qf

 !2
gf

gnf

Re2

4
þ rnf

rf
M2

2
4

3
5ðC2

1 þ C2
2Þ þ

qnf

qf
ReAC1C2;

F10 ¼ 2
qnf

qf

 !2
gf

gnf

Re2

4
þ rnf

rf
M2

2
4

3
5C1C2 þ

qnf

qf

Re
2
AðC2

1 þ C2
2Þ;

F11 ¼ 2e
F1
2 y

F2
1 � 4A2 ðF1F8 � 2AF7Þ cosh½Ay� þ ðF1F7 � 2AF8Þ sinh½Ay�Þ½ �;

F12 ¼ eF1y

F2
1 �4A2 ðF1F9 �2AF10Þcosh½2Ay�þ ðF1F10 �2AF9Þsinh½2Ay�Þ½ �;

F13 ¼ 2eð
F1
2 �F6Þy

ðF1 � 2F6Þ2 � 4A2 F15;

F14 ¼ eðF1�F6Þy

ðF1 � F6Þ2 � 4A2 F16;

F15 ¼ ððF1 � 2F6ÞF8 � 2AF7Þ cosh½Ay� þ ððF1 � 2F6ÞF7 � 2AF8Þ
� sinh½Ay�;

F16 ¼ ððF1 � F6ÞF9 � 2AF10Þ cosh½2Ay� þ ððF1 � F6ÞF10 � 2AF9Þ
� sinh½2Ay�:

The integration constants E and F that appear in the expressions
for C3 and C4 are solved by the boundary conditions, Eqs. (12) and
(13). These constants, that are lengthy and function of
Re;a;M; P; Ec; Pr; Bi;/ and Rd have been generated by making use
of the Solve command in Mathematica. Here, the results are similar
to those observed in [22]. The temperature of the system near the
lower plate is higher than the fluid temperature near the upper
plate due to convective heating and hot fluid injection at the lower
plate. In all Figures, the values of the fixed parameters are
Re ¼ 1;a ¼ 0:01;M ¼ 0:6; P ¼ Ec ¼ Pr ¼ 1;/ ¼ 0:1 and Rd ¼ 0:8
while the value of the Biot number is Bi ¼ 1 except in Fig. 5 where
Biot number is fixed to Bi ¼ 10.

Fig. 4 shows effects of volume fraction of nanoparticles, /, and
radiation parameter, Rd, on the temperature profile. As / increases,
the temperature of the nanofluid in the microchannel increases,

while as Rd increases, the temperature decreases. Fig. 5 shows
the influence of Ec and Re numbers on the temperature profile.
As Ec number increases, the temperature in the channel increases
due to the viscous heating, while as Re number increases, the tem-
perature also increases due mainly to the increase in the injection
of hot fluid at the lower porous plate. From Fig. 6, it is observed
that increase in Prandtl increases the fluid temperature and
increase in Biot number decreases the temperature since the heat
transfer to the surroundings is higher. Fig. 7 depicts effects of an
increase in both slip flow and Hartmann number on the tempera-
ture profile. The temperature of the system decreases with slip

Fig. 4. Temperature profile for different values of / and Rd. Re ¼ 1;a ¼ 0:01;
M ¼ 0:6; P ¼ 1; Ec ¼ 1; Pr ¼ 1;Bi ¼ 1.
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M 2 0.10
M 2 0.01
M 1 0.01

Fig. 5. Temperature profile for different values of M and a. Re ¼ 1; P ¼ 1; Ec ¼ 1;
Pr ¼ 1;/ ¼ 0:1;Rd ¼ 0:8;Bi ¼ 1.

Fig. 6. Temperature profile for different values of Pr and Bi. Re ¼ 1;a ¼ 0:01;
M ¼ 0:6; P ¼ 1; Ec ¼ 1;/ ¼ 0:1;Rd ¼ 0:8.

Fig. 7. Temperature profile for different values of Re and Ec. a ¼ 0:01;M ¼ 0:6;
P ¼ 1; Pr ¼ 1;/ ¼ 0:1;Rd ¼ 0:8;Bi ¼ 10.
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flow since the fluid friction decreases. On the other hand, at high
values of Hartmann number (high magnetic field intensity), the
temperature of the system increases since the ohmic dissipation
in the fluid is higher and this effect dominates over the decrease
in the viscous dissipation due to the decrease in the local velocity
gradient. Also, when Bi1 ¼ Bi2 ! 1 the temperature profile given
by (20) reduces to the expression corresponding to uniform
temperature boundary conditions, while the solution of the ordi-
nary non-MHD flow can be obtained in the limit M ! 0 and
Re ¼ 0. Although, here is not shown, the increase in Reynolds and
the decrease in Hartmann and radiation parameter cause a lower
increment of the temperature with the volume fraction of
nanoparticles.

3. Entropy generation

The velocity and temperature fields already obtained will be
used for the determination of the entropy generation rate within
the MHD porous microchannel. In flow of a viscous, electrically
conducting nanofluid between two porous parallel plates
immersed in a magnetic field, entropy generation must consider
irreversibilities caused by fluid friction, electric conduction and
heat flow. In dimensionless terms, local entropy generation rate
can be written explicitly as [26]

_S ¼ knf
kf

1

H2

@H
@y

� �2

þ EcPr
H

gnf

gf

du
dy

� �2

þ rnf

rf
M2u2

" #
; ð21Þ

where _S is normalized by kf =a2. In Eq. (21), the first term accounts
for irreversibilities caused by heat flow in the nanofluid while the
second and third terms express local entropy generation due to
fluid friction and ohmic dissipation in the nanofluid, respectively.

The global entropy generation rate, < _S >, is determined by inte-

grating _S in the whole volume occupied by the microchannel. Once
integrated, this quantity only depends on the dimensionless param-
eters Re;a;M; P; Ec; Pr;/;Rd and Bi that govern the performance of
the system. In all cases, the dimensionless pressure gradient, P,
has been fixed to P = 1. Further, due to the small Reynolds and Hart-
mann numbers in MHD microfluids, their values are chosen lower
than or equal to unity (M ¼ Re � 1) in the majority of cases.

In Fig. 8 the global entropy generation rate is reported as a func-
tion of the solid volume fraction of nanoparticles, /, for different
values of M and Rd. Re ¼ 3;a ¼ 0:01; Ec ¼ 1; Pr ¼ 1 and Bi ¼ 0:8.
Each curve in Fig. 8 shows that entropy generation reaches mini-
mum values. These minima move to lower values of / when both
M and Rd increase. The minimum value of global entropy increases
with M and remains approximately constant with Rd. A separate
analysis of the different contributions to global entropy generation
shows that most of the entropy is generated due to irreversibilities
by both heat conduction and viscous dissipation in the nanofluid
while the value of ohmic dissipation is lower. Entropy generation
produced by heat conduction in the fluid decreases for small values
of / due mainly to decrease in the temperature gradient and
reaches a minimum value. Once the minimum value is reached,
this term exhibits an increase as / grows. On the other hand, the
term associated with viscous dissipation in the fluid increases with
/ due to decrease in the temperature of nanofluid; while the term
associated with ohmic dissipation always decreases with / due
mainly to decrease in the nanofluid velocity. For small values of
/, this reduction in irreversibilities associated with heat conduc-
tion and ohmic disssipation dominates over the increment in the
term associated with viscous dissipation in the fluid in such a
way that global entropy shows a minimum value. In addition,
when bothM and Rd increase, the increment in the term associated
with viscous dissipation in the fluid dominates over the reduction

in the terms associated with heat conduction and ohmic dissipa-
tion at lower values of /, therefore the higher the values of M
and Rd the lower the optimum value of / where the minimum is
reached. It is important to note that for low values of Re (Re < 1),
the minimum of the term associated with heat conduction disap-
pears and the global entropy generation does not reach a minimum
value.

Fig. 9 presents global entropy generation versus radiation
parameter, Rd, in the presence of different values of M and /. In
addition, Re ¼ 1;a ¼ 0:01; Ec ¼ 1; Pr ¼ 1 and Bi ¼ 1. Once more,
entropy generation reaches minimum values for all curves. When
the solid volume fraction of nanoparticles increases the optimum
value of the radiation parameter in which entropy generation is
minimized remains approximately constant while when the
Hartman number increases this value of the optimum radiation
parameter decreases.

Fig. 10 shows global entropy generation versus Hartman num-
ber, M, for different values of / and Rd. The other parameter values
are Re ¼ 1;a ¼ 0:01; Ec ¼ 1; Pr ¼ 1 and Bi ¼ 1. For each value of /
and Rd explored, there is a minimum value for global entropy gen-
eration. As the solid volume fraction of nanoparticles, /, increases,
this minimum value tends slightly towards lower Hartman num-
bers while when the radiation parameter increases the optimum
value of Hartmann number with minimum entropy moves to lower
values. Furthermore, the minimum of global entropy generation
when the solid volume fraction of nanoparticles increases attains
a lower value.

Fig. 8. Global entropy generation as a function of / for different values of M and Rd.
Re ¼ 3;a ¼ 0:01; P ¼ 1; Ec ¼ 1; Pr ¼ 1;Bi ¼ 0:8.

Fig. 9. Global entropy generation as a function of Rd for different values ofM and /.
Re ¼ 1;a ¼ 0:01; P ¼ 1; Ec ¼ 1; Pr ¼ 1;Bi ¼ 1.
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In Fig. 11 global entropy generation rate is reported as a func-
tion of a single plate slip length (symmetric slip conditions), a, nor-
malized by its value when a ¼ 0 for different values of / and Rd.
Re ¼ 1;M ¼ 1; Ec ¼ 1; Pr ¼ 1 and Bi ¼ 1. Optimum operation condi-
tions are obtained for all curves with minimum entropy genera-
tion. At higher values of both solid volume fraction of
nanoparticles and radiation parameter, the minimum value of glo-
bal entropy generation occurs at higher value of slip flow.

Fig. 12 shows global entropy generation rate as a function of the
Biot number of the lower wall, Bi1, for different values of / and
Rd. The other parameters are Re ¼ 1;a ¼ 0:1;M ¼ 0:2; P ¼ 1;
Ec ¼ 1; Pr ¼ 1 and Bi2 ¼ 1. For this case the global entropy genera-
tion rate presents a minimum value for two values of / and two
values of Rd explored. It is possible to find an optimum Biot
number for the lower surface, Bi1opt , which leads to a minimum glo-

bal entropy generation rate < _S >. Here, Joule dissipation in the

fluid is rather small and just leads to a slight decrease in entropy
generation rate. When Bi1 increases, irreversibilities associated
with viscous dissipation always increase due to decrease in the
fluid temperature promoted by higher heat transfer to the ambient
temperature; however, the term associated with dissipation by
heat conduction decreases for small values of Bi1 and reaches a
minimum value. This behavior in irreversibilities associated with
heat conduction dominates over increase in the term associated
with viscous dissipation in such a way that < _S > shows a mini-
mum value. In addition, the higher the value of / the higher the
optimum value of Bi1;Bi1opt , where the minimum is reached. The
effect of Rd over Bi1opt is not significant. Similar to what was
reported in [39,40], we found that when the Biot numbers of each
wall are the same (symmetric cooling), global entropy generation
rate is always a monotone increasing function of Bi and reaches a
limiting value as Bi tends to infinity.

Figs. 13 and 14, show effects of both Prandtl number, Pr, and
Reynolds number, Re, on the global entropy generation rate for
different values of / and Rd, respectively and a ¼ 0:01;M ¼ 0:4;
Ec ¼ 1 and Bi ¼ 2. In Fig. 13, Re ¼ 1, while in Fig. 14, Pr ¼ 1. Each
curve in both, Figs. 13 and 14, show that global entropy generation

rate, < _S >, decreases as Pr and Re increase, reaches a minimum
and then increases. This means that there is an optimum value of
both Pr and Re, that minimizes irreversibilities associated with this
system, provided the other parameters remain fixed. These opti-
mum values of Pr and Re, where entropy generation is minimal,
increase with both solid volume fraction of nanoparticles and radi-
ation parameter. In Fig. 13, the smallest entropy generation is
obtained at the highest value of /, while the effect of Rd on this
smallest value of entropy generation is not significant. In Fig. 14,
the smallest entropy generation is obtained at the highest values

Fig. 10. Global entropy generation as a function of M for different values of Rd and
/. Re ¼ 1;a ¼ 0:01; P ¼ 1; Ec ¼ 1; Pr ¼ 1;Bi ¼ 1.

Fig. 11. Normalized global entropy generation as a function of a for different values
of Rd and /. Re ¼ 1;M ¼ 1; P ¼ 1; Ec ¼ 1; Pr ¼ 1;Bi ¼ 1.

Fig. 12. Global entropy generation as a function of Bi1 for different values of Rd and
/. Re ¼ 1;a ¼ 0:1;M ¼ 0:2; P ¼ 1; Ec ¼ 1; Pr ¼ 1;Bi2 ¼ 1.

Fig. 13. Global entropy generation as a function of Pr for different values of Rd and
/. Re ¼ 1;a ¼ 0:01;M ¼ 0:4; P ¼ 1; Ec ¼ 1;Bi ¼ 2.

Fig. 14. Global entropy generation as a function of Re for different values of Rd and
/. a ¼ 0:01;M ¼ 0:4; P ¼ 1; Ec ¼ 1; Pr ¼ 1;Bi ¼ 2.
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of both / and Rd. The results obtained for Pr in Fig. 13 are also valid
for Peclet number because in this case Re ¼ 1 and therefore
Pr ¼ Pe.

Finally, Fig. 15 shows global entropy generation rate as a
function of Eckert number, Ec, at different values of / and Rd when
Re ¼ 1;a ¼ 0:01;M ¼ 0:5; Pr ¼ 1 and Bi ¼ 2. The optimum values of
Ec move to highest values when the values of both / and Rd
increase. Furthermore, Fig. 15 shows that when / is increased
the minimum value of entropy decreases, while this minimum
value increases when Rd is increased.

3.1. Nusselt number

The local Nusselt number at the upper wall of the microchannel
is given by [41,42]

Nu ¼ � aknf
kf ðT ðy0¼aÞ � TbÞ

@T
@y0

� �
y0¼a

¼ �
knf ðdHdyÞy¼1

kf ðHy¼1 �HbÞ ; ð22Þ

where Tb and Tðy0¼aÞ are the dimensional expressions of the bulk
temperature (i.e. the cross-section averaged temperature of the
stream) and the wall temperature at y0 ¼ a, respectively.

The dimensionless bulk temperature is defined as

Hb ¼
R 1
0 uHdyR 1
0 udy

: ð23Þ

Fig. 16 shows effect of the volume fraction of nanoparticles, /,
on the dimensionless convective heat transfer coefficient, Nu, for
different Hartmann numbers. In addition, Re ¼ 1;a ¼ 0:1; P ¼ 1;
Ec ¼ 1; Pr ¼ 1;Rd ¼ 0:1;Bi1 ¼ 5 and Bi2 ¼ 0:1. For a given nanofluid
and microchannel geometry, changes in M mean variations in the
externally applied magnetic field. Results show that for all curves
there exists a volume fraction of nanoparticles which leads to max-
imum heat transfer through the microchannel walls. The behavior
observed in the figure indicates that the higher the Hartmann
number the higher the maximum value of Nusselt number and
the lower the / value where this maximum is reached. Similar
behavior is obtained when Nusselt number is plotted versus /
for different values of the radiation parameter Rd, namely,
maximum values of Nusselt number are obtained for all values of
Rd and the higher the radiation parameter, Rd, the higher the
maximum value of Nusselt number and the lower the / value
where this maximum is reached. In turn, in Fig. 17 the Nusselt
number is shown as a function of the Hartmann number for
different volume fraction of nanoparticles, while Re ¼ 0:1;
a¼ 0:1;P¼1;Ec¼1;Pr¼1;/¼0:05 Rd ¼ 1;Bi1 ¼ 2 and Bi2 ¼0:1.
Once more, Nu reaches maximum values which correspond to
maximum heat transfer. These maximum values of Nusselt become

lower as / increases. The optimum value of M, where the heat
transfer is maximum, decreases slightly with the volume fraction
of nanoparticles. Although not shown, the Nusselt number is a
monotonic increasing function of Rd. The above results are very
important in the design of heat exchangers in which maximum
heat transfer is required.

4. Summary and conclusion

In this paper we have applied the entropy generation minimiza-
tion method to the optimization of a water-based Al2O3 nanofluid
flowing through a porous MHD microchannel with thermal radia-
tion and slip flow. The main objective was to explore combined
effects of radiation parameter, hydrodynamic slip, suction/injec-
tion, magnetic field, volume fraction of solid nanoparticles and
convective boundary conditions on thermal behavior of nanofluid
flow, and to show existence of optimal values of these quantities
consistent with minimum irreversibilities and maximum heat
transfer. Therefore, the novelty of our study was not in the studied
configuration but in the obtained results with optimum operation
conditions which were not shown in the previous works, and in the
analysis of all effects included simultaneously in the model.

It was possible to find optimum values of radiation parameter,
nanoparticle volume fraction, Hartmann and Biot numbers which
lead to a minimum global entropy generation rate, as well as opti-
mum values of nanoparticle volume fraction and magnetic field
strength that maximize the heat transfer. The effects of nanoparti-
cle volume fraction and thermal radiation on the optimum values

Fig. 15. Global entropy generation as a function of Ec for different values of Rd and
/. Re ¼ 1;a ¼ 0:01;M ¼ 0:5; P ¼ 1; Pr ¼ 1;Bi ¼ 2. Fig. 16. Nusselt number as a function of the volume fraction of nanoparticles, /, for

different Hartmann numbers, M. Re ¼ 1;a ¼ 0:1; P ¼ 1; Ec ¼ 1; Pr ¼ 1;Rd ¼ 0:1;
Bi1 ¼ 5;Bi2 ¼ 0:1.

Fig. 17. Nusselt number as a function of Hartmann number,M, for different volume
fraction of nanoparticles, /. Re ¼ 0:1;a ¼ 0:1; P ¼ 1; Ec ¼ 1; Pr ¼ 1;Rd ¼ 1;Bi1 ¼ 2;
Bi2 ¼ 0:1.
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of some other parameters were also analyzed. The obtained results
showed that optimum values of Biot number, suction/injection
Reynolds number, Eckert number and slip flow, where entropy
generation was minimum, moved to higher values with both
nanoparticle volume fraction and radiation parameter, while opti-
mum values of Hartmann number decreased with both radiation
parameter and nanoparticle volume fraction. Also, the minimum
values of global entropy, reached in these optimum values of
Hartmann, Biot, Eckert and suction/injection Reynolds number,
decreased when nanoparticle volume fraction increased. Finally,
the Nusselt number, that is, the dimensionless heat transfer
coefficient at the walls of the microchannel, was also calculated
and analyzed in some specific cases. Optimum values of both Hart-
mann number and nanoparticle volume fraction that maximize
heat transfer were derived.

Although, the linear radiation model was used in the present
problem, the obtained results are valid for applications where the
values of temperature are not very high and the obtained exact
solution might be useful to check the results of other numerical
studies on this subject in where more complex radiation models
might be studied. The observed trends should also be present in
these more complex problems.

The above results are useful in the design of thermal systems
such as heat exchangers. Moreover, minimization of global entropy
generation that leads to optimal working conditions can be used as
a design tool in nanofluid applications, particularly, when electro-
magnetic interactions are present, as occurs in MHD micropumps.
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