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Hormone signaling plays diverse and critical roles during plant

development. In particular, hormone interactions regulate

meristem function and therefore control formation of all organs

in the plant. Recent advances have dissected commonalities

and differences in the interaction of auxin and cytokinin in the

regulation of shoot and root apical meristem function. In

addition, brassinosteroid hormones have recently been

discovered to regulate root apical meristem size. Further

insights have also been made into our understanding of the

mechanism of crosstalk among auxin, cytokinin, and

strigolactone in axillary meristems.
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Introduction
Plant growth hormones, primarily auxin, cytokinin (CK),

brassinosteroids (BRs), gibberellins (GA), and strigolac-

tones (SLs), play an amazing array of roles during plant

development, from embryogenesis to senescence. In this

review, we focus on the role of hormones in meristems, as

continuous growth of new organs throughout the plant’s

life cycle is achieved through the activity of these stem

cell populations. The primary meristems in a plant are the

shoot apical meristem (SAM), responsible for generating

all aboveground organs, and the root apical meristem

(RAM), responsible for producing all underground organs.

Initiation and outgrowth of axillary meristems (AMs) are

responsible for producing all secondary axes of growth

including flowers. The last 20 years have seen remarkable

advances in our understanding of hormonal regulation of

meristem function and plant development. This review

focuses on advances in the last two years, in particular on

the molecular mechanism of interaction between hor-

mones. Two themes emerge in the mechanisms of hor-

mone crosstalk: first, hormones regulate biosynthesis and
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transport of other hormones, and second, hormone inter-

actions converge on regulation of particular transcription

factors which integrate and coordinate the developmental

response.

Hormone signaling in the shoot apical
meristem
In the SAM, several hormones, including auxin, CK, and

GA, act both independently and in combination to

regulate meristem function [1–3]. In Arabidopsis, low

levels of GA and high levels of CK are known to maintain

the stem cell population in the SAM center. This stem

cell population is defined by the activity of the home-

odomain transcription factor WUSCHEL (WUS) [4]. Pre-

viously, it was shown that high CK levels in the meristem

are maintained by WUS-mediated repression of two nega-

tive regulators of CK signaling, ARABIDOPSIS
RESPONSE REGULATORS, ARR7 and ARR15 [5]. For

further information on the mechanisms of hormone sig-

naling see the review by Shan et al. in this issue [6].

Recently, auxin was also discovered to play a role in

maintenance of high CK levels in the meristem. The

auxin-activated AUXIN RESPONSE FACTOR/MONO-
PTEROUS (ARF5/MP) transcriptional regulator was

found to directly repress ARR7 and ARR15 expression

[7��]. Therefore, high levels of CK in the SAM are

maintained not only by WUS, but also by auxin signaling

(Figure 1a).

Along with maintenance of SAM stem cells, auxin and CK

regulate organogenesis, with auxin being required for

organ initiation in the peripheral zone [8], while CK acts

to modulate auxin distribution [9,10]. The site of organ

initiation and outgrowth occurs in areas of high auxin, and

the localization of auxin is determined by transport of

auxin via the PINFORMED (PIN) family of proteins [8].

Many factors that regulate organ position or phyllotaxy in

the SAM, including auxin and CK, converge on regulation

of the PIN genes [9–11]. Studies on the maize aberrant
phyllotaxy1 (abph1) gene, which encodes an A-type ARR
CK signaling regulator, show that abph1 is required for

proper Zea mays PIN1 (ZmPIN1) expression and auxin

localization in incipient leaf primordia in the SAM [10]. In

addition, CK treatment was found to induce ZmPIN1
expression in the SAM. In Arabidopsis, a recent study

using a hypocotyl explant in vitro system as a model

system for organogenesis found that high CK levels

strongly induced expression of PIN3 and PIN6 but

reduced the expression of PIN2 [9]. CK also has differ-

ential effects on PIN expression in the root [9,12]. These

results suggest that CK regulates auxin transport through
www.sciencedirect.com
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Hormonal regulation of plant development. (a) In the SAM, high cytokinin

(CK) levels are maintained in the center of the meristem through the

combined effects of auxin (IAA) and WUS signaling. Meanwhile, high

levels of IAA are transported to the periphery of the meristem to sites of

organ initiation, facilitated by upregulation of PIN1 by PLT. Upon

primordia initiation, IAA is immediately transported to the next site of

organ initiation. CK also impacts organogenesis through modulation of

auxin transport. (b) In the root, IAA and CK are transported basipetally

through the vasculature into the meristem. High CK levels in the root tip

restricts IAA signaling and allows cell differentiation, while high IAA levels

above the tip leads to establishment of the QC (tan oval) and the root

stem cell population through activation of WOX5 and PLT. PLT in turn

upregulates PIN expression, helping maintain high IAA levels in the QC.

Meanwhile, brassinosteroid (BR) signaling initiated from the epidermal
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transcriptional regulation of the PIN genes in both the

root and the shoot.

Recent work has shown that PIN1 expression is also

controlled by several members of the PLETHORA
(PLT) family of transcription factors (Figure 1a) [13�].
Loss of PLT activity in the SAM periphery was found to

reduce PIN1 expression and alter auxin localization pat-

terns, resulting in predictable changes in phyllotaxy [13�].
Interestingly, PLT gene family members were previously

shown to induce PIN1 expression in the RAM [14] but

functions in meristem maintenance in the RAM rather

than organogenesis [15].

Hormone signaling in the root apical meristem
In contrast to the SAM, where auxin and CK act in con-

junction to establish the stem cell population, auxin and

CK act antagonistically to establish and maintain the RAM

stem cell population (Figure 1b). The RAM consists of a

small group of rarely dividing cells known as the quiescent

center (QC), surrounded by more rapidly dividing stem

cells that give rise to the various root tissue types. Similar to

WUS in the SAM, expression of WUSCHEL-RELATED
HOMEOBOX 5 (WOX5) is required for maintenance of the

root stem cell population [16]. WOX5 facilitates proper

expression of the PLT genes and is restricted to the QC by

auxin signaling at the root tip [15,17�]. Crosstalk between

auxin and CK in the RAM converges on the regulation of

auxin transport and signaling. Under high auxin conditions,

the SHORT HYPOCOTYL2 (SHY2)/IAA3 repressor is

degraded, allowing ARF proteins to activate PIN expres-

sion, leading to high accumulation of auxin in the root tip

[18]. In contrast, high CK levels induce expression of ARR1
and ARR12 genes, activating SHY2, which represses auxin

signaling at the root tip beneath the QC [18,19].

Previously, the majority of auxin–CK interactions were

found to occur at the transcriptional level. A new study

has found that CKs can also directly regulate auxin

transport through control of PIN1 localization [20]. CK

reduces PIN1 levels by targeting PIN1 proteins for lytic

degradation in the vacuole [20]. In another recent study,

multiple arr mutants, which have a reduced RAM phe-

notype, were found to have reduced PIN protein levels,

but not decreased PIN transcript levels [21], providing
layer acts in maintenance of the root stem cell population. (c) IAA travels

basipetally in the stem and indirectly inhibits the outgrowth of axillary

buds, while CK and SL travel acropetally in the stem and directly

regulate (promote and suppress, respectively) axillary bud outgrowth.

Proper endogenous levels of IAA, CK, and SL may be maintained by

interactions between these hormones through feedback loops. The TCP

family of transcription factors, including the maize tb1, rice FC1, and

Arabidopsis BRC1 genes suppress bud outgrowth in response to IAA,

CK, and SL. White arrows indicate direction of hormone transport. Black

arrows indicate regulation. Genes in blue function in downregulation.

Genes in red function in upregulation. IAA: indole-acetic acid or auxin;

CK: cytokinin; BR: brassinosteroids; SL: strigolactone.
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further evidence that CK-mediated regulation of PIN1

occurs at the post-transcriptional level. It would be inter-

esting to determine if post-transcriptional regulatory

mechanisms are utilized in other auxin/CK controlled

developmental processes in the plant.

Although much of the hormonal regulation of the RAM

occurs through auxin and CK, other hormones are known

to have an effect on the RAM, especially BRs. Two recent

studies have shown that mutations in the BR receptor

gene BRASSINOSTEROID INSENSITIVE 1 (BRI1)

result in aberrant cell cycle progression in the RAM

[22�,23��] and that these mutants produce smaller RAMs

in a BR dosage-dependent manner [22�]. Although auxin

is known to stimulate BR biosynthesis [24], BR activity

does not affect the expression of PIN genes [23��] and BR

mutants do not show the same root tip phenotypes as

auxin mutants [22�]. These data suggest that BRs act on

the meristem independently of auxin. Interestingly, the

analysis of BRs on RAM function revealed that BRI1
expression in the root epidermis was sufficient to promote

root meristem expansion and cell proliferation, while

expression in the inner endodermis, QC, or stele could

not rescue the bri1 mutant phenotype [23��]. As the

epidermal layer of the SAM has also been shown to play

a critical role in the regulation of SAM size [8,25,26], this

exciting result suggests that similar modes of regulation

exist in the SAM and the RAM epidermis.

Hormone signaling in axillary meristems
Shoot branching is a two-step process that begins with

initiation of AMs in the axils of leaves to form lateral buds

followed by bud outgrowth to form branches. Auxin is

critical for this process, since genes involved in auxin

biosynthesis, transport, and signaling are required for AM

initiation [27]. The maize barrenstalk1 (ba1) gene and its

rice ortholog LAX PANICLE1 (LAX1), encode a basic

helix–loop–helix transcription factor that functions in

auxin-mediated regulation of AM initiation [28,29].

Recent papers have identified several other genes that

act with ba1/LAX1 to regulate AM function. The maize

barren stalk fastigiate1 (baf1) gene, which encodes an AT-

hook transcription regulator, was found to be required for

a threshold level of ba1 expression [30]. The rice LAX2
gene, which encodes a novel nuclear protein that physi-

cally interacts with LAX1, was also shown to promote AM

formation [31]. As ba1/LAX1 related genes are expressed

in AMs of many plant species, these genes are likely to be

also relevant to branching in dicots [32].

Hormonal regulation of lateral bud outgrowth involves

antagonistic action of auxin, CK, and SL (Figure 1c)

[27,33–35]. Auxin synthesized in the shoot apex moves

basipetally in the polar auxin transport stream and

indirectly inhibits outgrowth of axillary buds, a phenom-

enon known as apical dominance. On the other hand, CK

travels acropetally through the xylem into the axillary
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bud, directly promoting its outgrowth. SLs, a new class of

hormones, are synthesized mostly in roots and transported

acropetally to directly suppress axillary bud outgrowth.

Recently it was shown that SL biosynthesis in Medicago
truncatula and rice is positively regulated by the GRAS-

type transcription factors NODULATION SIGNALING
PATHWAY, NSP1 and NSP2 [36]. However, further

research is required to fully elucidate the SL biosynthesis

pathway and the perception of SL in axillary buds.

Auxin and CK interact antagonistically to control branch-

ing in the shoot [35,37]. Auxin inhibits the expression of

IPTs (ISOPENETENYL TRANSFERASES) to downre-

gulate CK biosynthesis [38]. Additionally, auxin upregu-

lates expression of CKX2 (CYTOKININ OXIDASE2),

involved in the degradation of CK [37]. On the other

hand, it was recently shown that increased CK levels

induce auxin biosynthesis in young, developing root and

shoot tissues in Arabidopsis, while decreased CK levels

have the opposite effect [39]. These data suggest that

proper endogenous auxin and CK levels are maintained

by a homeostatic feedback loop.

A feedback loop may also exist between auxin and SL

[33,34]. Auxin upregulates expression of the SL biosyn-

thetic genes [40,41]. Moreover, decreased SL increases

auxin levels to promote SL biosynthesis. A recent study

in Arabidopsis showed that SLs also dampen basipetal auxin

transport in the stem and reduce PIN1 accumulation in a

SL-dependent manner [42��]. Recently in pea (Pisum
sativum), decapitation was shown to cause polar localization

of PIN1 in the buds followed by induction of PIN1 expres-

sion in the stem to establish directional auxin export from

bud to stem [43�]. These results support the hypothesis that

export of auxin from the bud is important for bud out-

growth.

Environmental and hormonal regulation of shoot branch-

ing is integrated by members of the TCP family of

transcription factors including the maize teosinte branched1
(tb1), rice FINECULM1 (FC1), and the Arabidopsis
BRANCHED (BRC1) genes, which suppress bud out-

growth [27]. FC1 and BRC1 have been shown to interact

with auxin and SL in rice and Arabidopsis. Recently,

negative regulation of FC1 expression by CK was

reported in rice [44]. A new gene in this pathway was

recently identified in maize, the homeodomain leucine

zipper gene grassy tillers1 (gt1), which suppresses bud

outgrowth [45]. Expression of gt1 is upregulated by shad-

ing and is tb1-dependent [45]. Further study of the

interactions between hormones, tb1, gt1 and the environ-

ment will lead to an understanding of the characteristic

plant architectures of different species.

Conclusions
Although crosstalk between hormones is incredibly com-

plex, recent years have seen a dissection of the molecular
www.sciencedirect.com
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mechanisms of hormone interaction. This will certainly

continue in the future, aided by modeling studies to

dissect the complex feedback and feed forward regulatory

mechanisms. It is striking that hormone interaction

modules are redeployed over and over again during de-

velopment. The interaction between auxin, CK and GA

plays a fundamental role in SAM function. Interestingly,

the auxin–CK–GA module is redeployed in the regulation

of compound leaf development in tomato [46–48]. Auxin

and CK have long been known to have opposite functions

in the root and shoot, and the auxin–CK interaction

module is deployed to different effect in the SAM and

RAM. Auxin and CK also have opposing roles in the

axillary bud. Is this a coincidence or accident of evol-

ution? More likely this interaction reflects a common

regulatory mechanism in meristems intersecting with

different downstream transcription factors to achieve

the appropriate developmental responses.
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