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Abstract— Software architectures define the overall structure of 
software systems as composition of interacting components 
connecting through connectors. As the foundation to the 
development of software systems, the correctness of the software 
architecture is critical to the quality of the final product. 
Formally modeling and analyzing software architectures is an 
effective way to ensure the correctness of the software 
architecture. Many formal specification and analysis approaches 
have been proposed during past three decades. However, the 
focus of the majority of the approaches is on the static software 
architecture, which doesn’t change the composition of 
components during a computation. As cloud computing has been 
widely adopted as a new computing paradigm, the dynamic 
software architecture that changes the composition of 
components during a computation becomes an important 
research topic. Although research work on specification and 
analysis of dynamic software architectures was published 20 
years ago, building current distributed systems requires better 
scalability and usability for the modeling and analysis approach.  
In this paper, the software architecture is modelled using a two-
layer higher Petri nets extended with communication channels 
called CPrT. CPrT nets model static and dynamic software 
architectures using a uniform formal notation. Its graph notation 
is easy to use and its executable is necessary for developers to 
build complex models. Its communication channels that are used 
for modeling the dynamic composition of software architectures 
implement the channels in pi-calculus. The semantics of CPrT 
nets can be described through transforming them into regular 
Petri nets. The analysis of CPrT nets is conducted using model 
checking with its tool SPIN. 
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I.  INTRODUCTION 
Software architecture is an overall structure of a software 

system, which consists of a group of interacting components 
and the connections among the components in addition to the 
constraints applying to the connections [1]. It is the foundation 
of software product lines and the development of software 
systems. Therefore, the correctness of software architecture is 
important to the quality of software systems. Formal modeling 
and analysis of software architecture offers a rigorous way to 
ensure the correctness of software architectures. Many articles 
on formal specification and analysis of software architecture 
have been published during past 25 years 
[3][1][7][9][22][4][11][12][19]. However, majority of the 
publication is about the specification and analysis of the static 
software architecture, which doesn’t reconfigure its 

composition of interacting components during the course of a 
single computation [2]. As cloud computing has been widely 
adopted as a new computing paradigm, the dynamic software 
architecture that changes the composition of components 
during the course of a single computation becomes an 
important research topic [2]. For example, a cloud computing 
service may include several alternative backup subsystems to 
be selected at real time, and it may include customized 
information retrieving services to be selected based on real 
time contexts. A mobile agent system that hosts the running of 
incoming mobile agents is a typical system that has a dynamic 
software architecture [7]. Although research work on 
specification and analysis of dynamic software architectures 
was published 20 years ago [2], building modern distributed 
systems like cloud computing systems and mobile computing 
systems requires better scalability and usability for the 
modeling and analysis approach.  Modeling and analysis of 
dynamic software architecture is still an active research topic, 
and current research focus is on the application of research 
results to cloud computing systems and mobile computing 
systems [3][20][19]. However, current approaches for formally 
modeling and analysis of dynamic architectures are difficult to 
use due to their non-executable. Running the architectural 
models and automatically verifying the execution results is 
extremely effective and practical for ensuring the quality of the 
architecture. In addition, a graph notation is relatively easier to 
use and its architectural models are also easier understood. A 
tool to support the automated analysis is also necessary to the 
analysis of software architectures. Model checking is a 
powerful analysis technique that can be adopted for analyzing 
software architecture. In this paper, we model software 
architectures using a two-layered higher Petri nets called CPrT 
nets that are extended with communication channels to a high 
level Petri nets [7]. CPrT nets model static and dynamic 
software architectures using a uniform formal notation. Its 
graph notation is easy to use and its executable is necessary for 
developers to build complex models. Its communication 
channels that are used for modeling the dynamic configuration 
of software architectures implement the channels in pi-calculus 
[17]. The semantics of CPrT nets can be described through 
transferring them into regular Petri nets. The analysis of CPrT 
nets is conducted using model checking with its tool SPIN [13].  

In this research, we use mobile computing systems as an 
example to illustration the approach. Mobile computing 
systems are distributed systems with moving code that has the 
ability to move actively from one computer to others in a 
network. A mobile agent may move in or out from its host 
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system during the course of a single computation so that the 
software architecture is reconfigured at real time. The dynamic 
configuration of software structures brings grand challenges for 
building high quality systems. It would be necessary to model 
and analyze software architectures to detect and eliminate 
design errors as early as possible so that to avoid costly fixes at 
later development stages, and reduce overall development cost 
and improve the system quality. Petri nets [18] as a well-
studied formal method with graphical and mathematical 
notations are noted for its many advantages in specifying and 
analyzing concurrent systems, and they are also a promising 
tool for studying systems with dynamic software architectures 
that are characterized as being concurrent, asynchronous, 
distributed, and non-deterministic [22]. Predicate/Transition 
(PrT) nets are high-level Petri nets that are especially suitable 
for modeling computing systems with dynamic software 
architectures due to their similarity to the logic mobile 
computing system, and the efficient reachability analysis 
[8][22]. However, the communication among the 
communication parties in mobile computing systems is built 
dynamically at runtime, and the communication structure could 
be reconfigured by the moving code during the runtime. The 
communication channels in CPrT nets can easily model the 
mobile communication among mobile agents and their host 
systems. Model checking as an automatic analysis technique 
for verifying finite state concurrent systems has been 
successfully used for verifying the design of mission critical 
systems, complex sequential circuits, communication protocols 
and many other systems [5] for over 30 years. In this paper, we 
use model checking specifically model checker tool SPIN to 
analyze CPrT net models.  

 The rest of this paper is organized as follows: Section 2 
presents the formalism for modeling dynamic software 
architectures. Section 3 describes the modeling and analyzing 
dynamic configuration of software architectures. Section 4 
reviews the related work. Finally, we outline our conclusion as 
well as future work in Section 5. 

II. A PREDICATED/TRANSITION NET WITH CHANNELS 

A. An Example of PrT Nets  
Predicate/Transition (PrT) nets are a type of high level Petri 

nets and they are good for specifying concurrent systems. The 
definition of PrT nets can be found in [21]. Fig. 1 shows a 
simplified PrT net model for 5 dining philosophers’ problem 
(i.e., without considering deadlock and starvation issues). The 
model includes transitions Pickup, and Putdown represent the 
action for picking up chopsticks and putting down chopsticks, 
respectively. The distribution of tokens in places Phi, Chop and 
Down represents the three states of each philosopher: thinking, 
full and eating, respectively. Places Phi and Chop define 
philosophers and chopsticks, and the tokens are defined by 
nature numbers. Place Down define the state that a philosopher 
has put down his or her chopsticks, therefore, its token includes 
a philosopher and his/her two chopsticks. Transition Pickup 
includes two input places, which are Phi and Chop, and one 
output place, which is Down. The guard condition of transition 
Pickup is defined on the relation of the tokens in place Phi and 
Chop: which is x=c&&d=(x+1)%5, which says that a 
philosopher must have both of his or her left and right 

chopsticks before he 
or she can eat (i.e.: 
pickup) The guard 
condition in 
transition Putdown is 
defined on the 
relation of the tokens 
in place Phi and 
Chop: which is x=c, 
which says a 
philosopher who has 
to puts down both 
chopsticks together.  

B. PrT Nets Extended with Channels 
In this research, a dynamic channel is introduced into PrT 

nets to model dynamic interactions and communications 
between nets. A channel is a special relation that is defined in 
transitions for sending and receiving messages between nets. 
The channel concept is borrowed from pi-Calculus [17], and 
the definition of the channel and the definition of the PrT net 
extended with Channels called CPrT nets can be found in [7]. 

A CPrT net model may include several nets and they 
communicate through channels at runtime. An output channel 
identifier could be a variable that is instantiated with a concrete 
value and matched to an input channel at runtime. The 
communication topology is dynamically built according to the 
context of the communication transitions. 

 
Figure 2. The runtime communication between dynamic channels 

A CPrT net can be transformed into an equivalent PrT net. 
Therefore, the semantics of CPrT nets can be defined using PrT 
nets. The basic rules of PrT nets are then applied to CPrT nets 
as well. A CPrT net can be transformed into an equivalent PrT 
net through combining matched input and output channel 
transitions. When a transition with an output channel is merged 
with a transition that has a matched input channel, the input and 
output flows of the matched transition are the union of the 
corresponding flows of the two matched transitions. The guard 
condition of the new merged transition is defined by the 
conjunction of the guard expressions of the matched transitions 
as well as the expression defining the communication between 
the input channel and an output channel. It is important to 
ensure the set of variables in the matched transitions are 
different before the transitions can be combined together so 
that the same variable name at different transitions won’t cause 
any conflict [6]. The transformation idea is illustrated in Fig. 2.  

The firing sequence of the two communication transitions 
with matched input and out channels is described as follows: 

1. Assume a CPrT net model includes two nets: N1 and N2. 
Transition t is enabled under marking M1 in net N1, and 

t 
c!<p1, p2> 

e 
C?< p’1, p’2> 

te 
    c = C 
 

<c, p1, p2> <p’1, p’2> 

<c, s1, s2> <s1, s2> 

Figure 1. A PrT nets model of the 
problem of dining philosopher 
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transition e is enabled under marking M2 in net N2. Transition t 
and e both are enabled under marking M = (M1, M2). Transition 
t has channel c!<p1, p2>, and the transition e has channel 
C?<p’1, p’2>. 

2. Under marking (M1, M2), the value of output channel 
variable c equals to channel C. The numbers of input 
parameters of input channel C?<p’1, p’2> and output channel 
c!<p1, p2> are equal, and type of each corresponding parameter 
in both channels is compatible, i.e. dom(p1) Í dom(p’1), 
dom(p2) Í dom(p’2).  

3. Transition t and e fire together as an atomic transaction. 
Token <p1, p2> is moved from the input places of t to the 
output places of e following regular PrT firing rules.  

4. The enabling and firing sequences as well as the firing 
result of the CPrT net are same as its corresponding 
transformed PrT net. When t and e fire, a new marking M’ is 
produced. Formally, M’(p) =M(p) – {l/q: l Î L(p, t)} – {l/q’: l 
Î L(p, e)} for any etp •• ÈÎ , and M’(p) = M(p) È {l/q: l Î 
L(t, p)}È{l/q’: l Î L(e, p)} for any ••ÈÎ etp . 

5. If two or more output channels match to an input channel 
under certain marking in a CPrT net, then only one output 
channel is selected to match the input channel. Which output 
channel to be selected is non-deterministic [5]. 

In order to specify a mobile computing system, the concept 
of “net within net” proposed in EOS [15] is introduced to PrT 
nets for building two-layer PrT nets. In “net within net”, a 
token could be defined as a net, and a net may include a token 
that is a net. A PrT net that is wrapped as a token is called a 
token net, and a PrT net that include any token net is called a 
system net.  

Definition 1 (Two-layer CPrT Net). A two-layer CPrT net is 
a tuple STN = (SN, TN, r), where: 

• SN is a finite set of system nets, SN = {SN1, SN2, …, 
SNn}, and SNi (1 ≤ i ≤ n) is a CPrT net, SNi = (P, T, F, 
S, L, j, M0 , C, W).  

• TN is a finite set of token nets, TN = {TN1, TN2, …, 
TNm}, and TNi (1 ≤ i ≤ m) is a CPrT net, TNi = (P’, T’, 
F’, S’, L’, j’, M’0 , C’, W’). 

( ) ( )1
1
!
n

i
ii SNTN

=

S×Î  

• r Í W ´ W’ is the occurrence relation between 
channels. 

The net occurrence in different layers interact each other 
through channels. We define the marking of the system net as 
M, and the marking of a token net as M’, so that the marking of 
the CPrT net is (M, M’). The interaction occurrence between a 
system net and a token net is completed through the 
communication of matched input and output channels in a 
system net and its token net under marking (M, M’). The 
marking of the two-layer net is updated when the transitions 
fire: (M, M’)[(t, t’) > (M1, M1’), where t is the fired transition in 
the system net and its marking is updated from M to M1: M[t > 

M1; and t’ is the matched transition in the token net and its 
marking is updated from M’ to M’1: M’[t’ > M’1. 

III. MODELING AND ANALYZING DYNAMIC 
CONFIGURATION 

In this section, we illustrate the approach for modeling and 
analyzing dynamic software architectures through case 
studying a mobile agent system. A mobile agent system 
includes a host system which can host the running of incoming 
mobile agents. A mobile agent is a program that has its 
computation ability and itinerary for moving among 
networked hosts. When an agent arrives at a host and is 
authorized for running, it can run within the host environment 
[7][22]. The moving in or out of a mobile agent from a host 
requires the re-composition of the interacting components in 
the software architecture of mobile agent systems. The 
software architecture of a mobile agent system includes two 
levels: the system level and the interaction level. In the system 
level, each agent is considered as a token within the system net 
which models the host, and the location of the system net is 
predefined. If we consider the dynamic configuration of the 
host systems such as some host systems may join in or leave 
during run time, we change host nets with an additional 
Boolean variable on the inscriptions of channel transitions to 
indicate whether the system is active or not. The variable is 
part of the guard condition and it disables the channel 
transition when it is false so that the system net won’t receive 
or send messages from/to other systems or agents. From the 
system point of view, the system is disabled. In this paper, we 
only consider one host system since it is not difficult to be 
extended to multiple systems. At the interaction level, the 
software architecture is dynamically configured at run time 
when the system net connects with different agent nets. Agent 
nets communicate with other objects through channels, and 
each agent has one unique input interface to receive messages 
from others so that it guarantees messages to reach the correct 
destinations. We call the channel as the agent channel, and its 
value is a dummy constant when it is defined in the template 
of agent nets. The dummy value is instantiated by a unique 
value same as the instance identifier when an instance is 
instantiated from a template. In order to define the dynamic 
reconfiguration of the software architecture, we introduce a 
concept called configuror to remember current active agents in 
each host net. Based on the system configuror, one can 
reconstruct and analyze the snapshot of the software 
architecture.  

A. System Configuror 
There are only finite numbers of object nets (i.e. the 

instantiated agents) in a system net at any time, so we can 
transform the dynamic view of a software architecture into a 
static view to study interaction properties. The key issue is how 
we can transform a dynamic view into a static view at run time. 
A configuror defines the configuration of object nets with their 
system nets. We do not add any configuror to CPrT nets, but it 
is used for describing the system configuration when we 
analyze the models. The configuror is responsible for defining 
the dynamic reconfiguration of the software architecture. Each 
system net has a configuror, which consists of agent instance 
identifiers, agent types (agent nets) and agent itineraries. When 
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an agent is created, it is assigned with an itinerary that decides 
the visiting path of the agent. Based on the knowledge or 
itineraries of an agent, it may dynamically update its itineraries 
at run time. The configuror of the software architecture is the 
combination of configurors of all host nets.  

Definition 2 (Configuror) The configuror of each system net 
is a list CON = {c1, c2, … cn}, where:  

• ci = (ANi×ID, ANi×TYPE, ANi×KB), 1 ≤ i ≤ n. The n is 
the number of agent instances in the system net. ANi is 
the agent instance in the host net, and ANi×ID is the 
instance identifier of ANi, ANi×TYPE is the instance 
type (the name of the template net of ANi), and 
ANi×KB is the instance itinerary of ANi. 

When a host net receives an agent, the agent location is 
updated to the location of the host system. Then it is put into 
special place pa in the host net, which is the only place the 
agent can update its states as soon as the host system starts it. 
When an agent moves it out from the host, it updates its 
location according to its itinerary and terminates its execution 
until the destination host accepts it. An agent system can 
generate agents or instances of agent nets (we call instances of 
agent nets as object nets) according to existing agent types 
(templates of agent nets), but each object net has its unique 
identifier and itinerary. When a host net receives or generates 
an object net, the configuror adds the object into its list, and it 
removes the object from its list when an object leaves the host 
net. The configuror is easily constructed from agents within pa. 
The static view of interaction between host nets and object nets 
is a net composing the host net and a group of object nets 
within the host net. Fig. 3 shows the basic idea to analyze the 
dynamic configuration of host nets. 

 
 

Figure 3. A dynamic configuration of software architecture 

In Fig. 3, the system net or host net has two agents within 
its place pa, so that its configuror includes the information of 
these two agents, which can be used to construct the static view 

of the host model which includes one host net and two agent 
nets. When one agent moves it out, the configuror removes the 
agent (agent net 1) from its list, so that the static view of the 
current host model includes the host net and an agent net. 
When the host net receives an agent (agent net 3), the 
configuror adds that agent information into its list, and then the 
static view of the current host model is the composition of the 
host net and three agent nets. Based on static views and 
configurors, we can analyze the dynamic reconfiguration of the 
software architecture of mobile agent systems. 

B. Analyzing Dynamic Configuration 
Analyzing the interaction between a system net and its agent 
nets is implemented through transforming the dynamic model 
into the static model according to the configuror. All object 
tokens (the instances of agent nets) in the system net are 
unfolded as agent nets with states, and these nets consist of a 
logical whole net even if they may not be connected with arcs, 
they are logically connected with channels. The analysis is 
conducted based on the nets and configuors. The occurrence 
rules of the interaction view are the same as the semantics and 
analysis of the regular two-layer CPrT nets. The marking of 
the whole net is the combination of the marking of each net. 
When an agent moves it out from the host net, the configuror 
removes that object from its list and the corresponding object 
net is removed from the interaction view or the whole net. 
When an agent moves it into the system, the configuror adds 
that object to its list and the corresponding object net is added 
into the interaction view or the whole net.  

Definition 3 (Interaction view): An interaction view of a 
software architecture of a mobile agent system is a tuple IV = 
(SN, AN, CON), where: 

• SN is a system net, SN = (P, T, F, S, L, j, M0 , C, W). 
• AN is a finite set of object nets, AN = {AN1, AN2, …, 

ANn}, ANi = (Pi, Ti, Fi, Si, Li, ji, Mi0 , Ci, Wi), 1 ≤ i ≤ 
n, AN Í S. 

• CON is the configuror of SN. 

Only one system net is considered in the interaction view of 
the software architecture of mobile agent systems, where the 
moving in and out of mobile agents causes the re-composition 
of the host systems and different agents. The re-composition 
of components is defined by the dynamic configuration.  

Definition 4 (Dynamic configuration): The dynamic 
configuration of the software architecture of a mobile agent 
system is defined on the dynamic changes of configuror of the 
host net. A dynamic configuration is IV = (SN, AN, CON), 
where: 

• When an agent ANk moves in to SN, ANk = (Pk, Tk, Fk, 
Sk, Lk, jk, Mk0 , Ck, Wk), then ANk Î P, CON = CON 
È{ck}, and ck = (ANk×ID, ANk×TYPE, ANk×KB). 

• When an agent ANk moves out from SN, ANk = (Pk, Tk, 
Fk, Sk, Lk, jk, Mk0 , Ck, Wk), then ANk Ï P, CON = 
CON \{ck}, and ck = (ANk×ID, ANk×TYPE, ANk×KB). 

The occurrence rules and communication between object nets 
and the system net follow the definitions in CPrT nets. 

system net 

agent net 1 
agent net 2 

agent net 1 

agent net 3 

system net 

agent net 1 

agent net 2 

agent 2 moves out  agent 3 moves in 

system net 
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C. Checking Dynamic Configuration using SPIN 
In this section, we discuss the approach for model checking 

CPrT net models of mobile agent systems using model 
checking tool SPIN [13]. Since it is infeasible to check a model 
that has infinite states using model checker SPIN, it is 
necessary to convert the model that has infinite states into a 
model that has only finite states but the change doesn’t affect 
the properties to be checked. A CPrT net model has to be 
converted into an equivalent Promela program for SPIN 
checking, and properties to be checked are defined as the 
correctness and other claims in the Promela program. Some 
important system properties are defined as never claims 
translated from LTL formulas. Individual system nets and 
token nets are first checked independently, and system 
properties are checked on the system net. A general procedure 
for model checking the dynamic software architecture using 
SPIN is defined as follows.  

1. Transform models. Any CPrT net to be checked is 
transformed into a PrT net.  

2. Reduce states (convert a model with infinite states into a 
model with only finite states). First, each place p in a model is 
converted into k-bounded, and then the type of each place 
variable is defined as an enumerable data type with finite 
number of elements. k is predefined based on system 
requirements.  

3. Specify properties to be checked. After the system 
behavior model B is specified in CPrT nets, each interested 
system property S is defined in LTL. The model checking 
procedure is to check property specification S over behavior 
models B. 

4. Translate a CPrT net model into a Promela program.  

The procedure for transforming a CPrT net into an 
equivalent Promela program for model checking using SPIN is 
described as follows. 

1. Structure of the Promela program. A whole CPrT net 
model of a system is transformed into a Promela program, and 
each individual CPrT net in the CPrT net system model is 
converted into a Promela process. Each Promela program 
includes sections for data type definitions, global variable 
declarations, definitions of processes, process init for defining 
the program initialization, and a never claim for specifying a 
property to be checked. Place types are defined in the section of 
data type definition, and global variables are defined in the 
global variable declaration. The firing rules of each net is 
defined by the transition relations in the Promela process.  

2. Specification of the state variables. Each place in a net is 
defined as a variable in the data type definition section in the 
program. The value range of each variable is defined by the 
value range of the marking of the place. The value range of a 
variable is the number of possible markings of the 
corresponding place. If place p is k-bounded and |φ(p)| defines 
the number of possible values of a token in p, then the number 

of possible markings of place p is å =

)(

0

p

i
ikj

. The place variable 
of place p in the Promela program has the form: 

                        
1..0: )(

0
-å =

p

i
ikp j

                                                      
In this way, a predicate symbol is defined as a set of 
proposition symbols, which can be applied for each place p that 
is bounded and |φ(p)| is finite [7].  

3. Definition of the initial states. Initialize each variable in 
the program with a value that is the initial marking of the 
corresponding place in the net, and the initialization is assigned 
in init process. init process invokes each net process with initial 
values of the input parameters that are all places in the net, and 
these processes are running in parallel. The fairness of the 
running of the processes is ensured by model checker SPIN.  

4. Specifications of the transition relations. There are two 
types of transitions in CPrT nets, one is transitions that have 
channels, and the other is regular PrT net transitions. The two 
types of transitions are processed differently. 

4.1. Transferring a transition that doesn’t have a channel. 
Each transition in a net is converted into an atomic statement 
within a process in the Promela program, and the atomic 
statement specifies the firing rules (i.e. the inputs, outputs and 
constraints of a firing) of the transition. The atomic statement 
includes a group of case statements. The condition of each case 
statement specifies one possible input of the transition, and the 
body of the statement defines the relation between input and 
output. The number of the case statements of each transition is 
the permutation of input variable values in the inscription 
expressions of the input arcs of the transition. Each case 
statement is fairly simple based on the net model so that the 
transformation can be partially automated. The communication 
between processes are implemented through global variables, 
and the synchronization between communication transitions are 
guaranteed with additional global Boolean variables. 

4.2. Transferring a transition that has a channel, We first 
only consider the channel expressions in the transition 
inscription expressions of the transition that has a channel. 
Then each channel is then declared as a global variable, whose 
data type is defined by all possible values of the variable (finite 
number of values). In CPrT nets, channel variables share names 
with their input inscription. However, each channel is declared 
with a unique variable. The variable number is the number of 
possible values of the channel variable in the net. All of these 
variables have the same type, which is same to the type of input 
or output parameters of the channels. Next, we define the 
transition relations. For output channels, when the transition 
fires, some channel variable is assigned with values according 
to the outputs of the transition. Such as one channel has three 
possible values, P1, P2 and P3, if the output value, which is 
assigned to the channel in the net, is P2, then value of P2 is 
updated with the value of the output parameter, but P1 and P3 
do not change. For input channels, according to input tokens 
and inscriptions on input arcs, we chose one channel variable 
as part of input conditions of the transition. For example, the 
channel has three possible values, P1, P2 and P3, and if input 
tokens instantiating the current input channel is P2, then P2 is 
chosen as part of the input condition of the transition. When the 
input transition fires, value of P2 is updated.  
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5. Specification of properties to be checked. never claim in 
Promela program is used for specifying system properties to be 
checked. Some properties such as reachability can be defined 
with accept-state labels in the Promela program. Other Promela 
constructs such as basic assertion, end-sate labels, progress-
state labels, and trace assertions can be also used to specify 
interested properties to be checked. 

IV. RELATED WORK 
Software architectures are an essential part in every phase 

of software development [9]. Many researchers have proposed 
approaches and built tools for modeling and analyzing software 
architectures in order to improve the rigorousness of the 
analysis and confidence of the quality of the architectural 
model. Garlan [9] has summarized the representative results of 
formal modeling and analysis of software architecture. Allen 
and Garlan [1] described a formal basis for an architectural 
connection, which has become the one of the most important 
work on formal modeling of software architecture. Allen et al. 
[2] introduced an approach for formally modeling and 
analyzing dynamic software architectures, where the 
architecture is modeled using Architecture Description 
Language (ADL) Wright, and the analysis is completed 
through formal verification based on CSP semantics.  
Comparing to Wright approach, our approach is easier to use 
due to the graph notation and executable of CPrT nets and 
model checking of CPrT nets is fully automated. Recently, 
Sanchez et al. [19] proposed an approach for modeling and 
analyzing dynamic software architectures based on ADL 
ARCHEY, where the reconfiguration of architectures is 
defined with constraints. The formal analysis is conducted 
directly on the constraints. Model checking has been reported 
for formally analyzing software architecture. He et al. [12] 
reported techniques for formally analyzing Petri nets using 
model checking and formal proof. Ding and He proposed an 
approach for modeling checking a type of high level Petri nets 
[7]. Several other researchers defined an executable semantics 
for software architectural modeling and analysis through 
simulation and/or formal verification [16]. Garlan et al. [10] 
introduced a reusable generic framework for modeling and 
checking the model using model checker SMV. Kim and 
Garlan [14] also investigated how to analyze software 
architecture using Alloy.  

Mobile computing systems are representative systems that 
have dynamic software architectures. Petri nets have been used 
for modeling and analysis of mobile computing systems, such 
as the Logic Agent Mobility (LAM) [22] was modeled using a 
type of two-layer PrT nets. In LAM, connectors were 
introduced in the two-layer PrT nets to support the 
communication between nets. However, the composition of 
several PrT nets in different layers using connectors is difficult 
and the whole model that consists of several nets and the 
connector could be very large. “nets within nets” style was first 
introduced in EOS [15], and it was introduced to CPrT nets for 
modeling the communication between nets in different layers.  
Channels for Petri nets were first introduced to colored Petri 
nets in reference [6], but the channels in CPrT nets are more 
dynamic with high flexibility for specifying dynamic properties 
in software architectures. The pi-calculus is the first language 
that offers features for specifying process movement across 

channels, and the semantics of channels in CPrT nets is same to 
the channels in pi-calculus [17]. 

V. SUMMARY AND FUTURE WORK 
In this paper, we first introduced an approach for modeling 

dynamic software architectures using a two-layer high level 
Petri nets called CPrT nets, which are extended with 
communication channels. A dynamic software architecture is 
modeled as a system net that represents the system running 
environment and a group of agent nets that model the 
components that are dynamically connected to the system net 
during the course of a single computation. The dynamic 
configuration of interacting components is defined in 
configurors. The analysis of dynamic software architectures is 
conducted by model checking with tool SPIN through 
transforming a CPrT nets model into a Promela program. Both 
the static and dynamic software architectures can be modeled 
using CPrT nets. The graph notation of CPrT nets is easy to use 
and its executable is necessary for developers to build complex 
models. The communication channels of CPrT nets that are 
used for modeling the dynamic configuration of software 
architectures implement the channels in pi-calculus. In the 
future, we would like to investigate the application of the 
approach for modeling and analyzing enterprise cloud 
computing systems. 
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