
 978-1-5090-4093-3/16/$31.00 ©2016 IEEE 2086

2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)

An Approach for Modeling and Analyzing Dynamic
Software Architectures

Junhua Ding
Department of Computer Science

East Carolina University
Greenville, NC, USA

Abstract— Software architectures define the overall structure of
software systems as composition of interacting components
connecting through connectors. As the foundation to the
development of software systems, the correctness of the software
architecture is critical to the quality of the final product.
Formally modeling and analyzing software architectures is an
effective way to ensure the correctness of the software
architecture. Many formal specification and analysis approaches
have been proposed during past three decades. However, the
focus of the majority of the approaches is on the static software
architecture, which doesn’t change the composition of
components during a computation. As cloud computing has been
widely adopted as a new computing paradigm, the dynamic
software architecture that changes the composition of
components during a computation becomes an important
research topic. Although research work on specification and
analysis of dynamic software architectures was published 20
years ago, building current distributed systems requires better
scalability and usability for the modeling and analysis approach.
In this paper, the software architecture is modelled using a two-
layer higher Petri nets extended with communication channels
called CPrT. CPrT nets model static and dynamic software
architectures using a uniform formal notation. Its graph notation
is easy to use and its executable is necessary for developers to
build complex models. Its communication channels that are used
for modeling the dynamic composition of software architectures
implement the channels in pi-calculus. The semantics of CPrT
nets can be described through transforming them into regular
Petri nets. The analysis of CPrT nets is conducted using model
checking with its tool SPIN.

Keywords- software architeture; dynamic configuration; Petri
net; communication channel; model checking

I. INTRODUCTION
Software architecture is an overall structure of a software

system, which consists of a group of interacting components
and the connections among the components in addition to the
constraints applying to the connections [1]. It is the foundation
of software product lines and the development of software
systems. Therefore, the correctness of software architecture is
important to the quality of software systems. Formal modeling
and analysis of software architecture offers a rigorous way to
ensure the correctness of software architectures. Many articles
on formal specification and analysis of software architecture
have been published during past 25 years
[3][1][7][9][22][4][11][12][19]. However, majority of the
publication is about the specification and analysis of the static
software architecture, which doesn’t reconfigure its

composition of interacting components during the course of a
single computation [2]. As cloud computing has been widely
adopted as a new computing paradigm, the dynamic software
architecture that changes the composition of components
during the course of a single computation becomes an
important research topic [2]. For example, a cloud computing
service may include several alternative backup subsystems to
be selected at real time, and it may include customized
information retrieving services to be selected based on real
time contexts. A mobile agent system that hosts the running of
incoming mobile agents is a typical system that has a dynamic
software architecture [7]. Although research work on
specification and analysis of dynamic software architectures
was published 20 years ago [2], building modern distributed
systems like cloud computing systems and mobile computing
systems requires better scalability and usability for the
modeling and analysis approach. Modeling and analysis of
dynamic software architecture is still an active research topic,
and current research focus is on the application of research
results to cloud computing systems and mobile computing
systems [3][20][19]. However, current approaches for formally
modeling and analysis of dynamic architectures are difficult to
use due to their non-executable. Running the architectural
models and automatically verifying the execution results is
extremely effective and practical for ensuring the quality of the
architecture. In addition, a graph notation is relatively easier to
use and its architectural models are also easier understood. A
tool to support the automated analysis is also necessary to the
analysis of software architectures. Model checking is a
powerful analysis technique that can be adopted for analyzing
software architecture. In this paper, we model software
architectures using a two-layered higher Petri nets called CPrT
nets that are extended with communication channels to a high
level Petri nets [7]. CPrT nets model static and dynamic
software architectures using a uniform formal notation. Its
graph notation is easy to use and its executable is necessary for
developers to build complex models. Its communication
channels that are used for modeling the dynamic configuration
of software architectures implement the channels in pi-calculus
[17]. The semantics of CPrT nets can be described through
transferring them into regular Petri nets. The analysis of CPrT
nets is conducted using model checking with its tool SPIN [13].

In this research, we use mobile computing systems as an
example to illustration the approach. Mobile computing
systems are distributed systems with moving code that has the
ability to move actively from one computer to others in a
network. A mobile agent may move in or out from its host

 2087

system during the course of a single computation so that the
software architecture is reconfigured at real time. The dynamic
configuration of software structures brings grand challenges for
building high quality systems. It would be necessary to model
and analyze software architectures to detect and eliminate
design errors as early as possible so that to avoid costly fixes at
later development stages, and reduce overall development cost
and improve the system quality. Petri nets [18] as a well-
studied formal method with graphical and mathematical
notations are noted for its many advantages in specifying and
analyzing concurrent systems, and they are also a promising
tool for studying systems with dynamic software architectures
that are characterized as being concurrent, asynchronous,
distributed, and non-deterministic [22]. Predicate/Transition
(PrT) nets are high-level Petri nets that are especially suitable
for modeling computing systems with dynamic software
architectures due to their similarity to the logic mobile
computing system, and the efficient reachability analysis
[8][22]. However, the communication among the
communication parties in mobile computing systems is built
dynamically at runtime, and the communication structure could
be reconfigured by the moving code during the runtime. The
communication channels in CPrT nets can easily model the
mobile communication among mobile agents and their host
systems. Model checking as an automatic analysis technique
for verifying finite state concurrent systems has been
successfully used for verifying the design of mission critical
systems, complex sequential circuits, communication protocols
and many other systems [5] for over 30 years. In this paper, we
use model checking specifically model checker tool SPIN to
analyze CPrT net models.

 The rest of this paper is organized as follows: Section 2
presents the formalism for modeling dynamic software
architectures. Section 3 describes the modeling and analyzing
dynamic configuration of software architectures. Section 4
reviews the related work. Finally, we outline our conclusion as
well as future work in Section 5.

II. A PREDICATED/TRANSITION NET WITH CHANNELS

A. An Example of PrT Nets
Predicate/Transition (PrT) nets are a type of high level Petri

nets and they are good for specifying concurrent systems. The
definition of PrT nets can be found in [21]. Fig. 1 shows a
simplified PrT net model for 5 dining philosophers’ problem
(i.e., without considering deadlock and starvation issues). The
model includes transitions Pickup, and Putdown represent the
action for picking up chopsticks and putting down chopsticks,
respectively. The distribution of tokens in places Phi, Chop and
Down represents the three states of each philosopher: thinking,
full and eating, respectively. Places Phi and Chop define
philosophers and chopsticks, and the tokens are defined by
nature numbers. Place Down define the state that a philosopher
has put down his or her chopsticks, therefore, its token includes
a philosopher and his/her two chopsticks. Transition Pickup
includes two input places, which are Phi and Chop, and one
output place, which is Down. The guard condition of transition
Pickup is defined on the relation of the tokens in place Phi and
Chop: which is x=c&&d=(x+1)%5, which says that a
philosopher must have both of his or her left and right

chopsticks before he
or she can eat (i.e.:
pickup) The guard
condition in
transition Putdown is
defined on the
relation of the tokens
in place Phi and
Chop: which is x=c,
which says a
philosopher who has
to puts down both
chopsticks together.

B. PrT Nets Extended with Channels
In this research, a dynamic channel is introduced into PrT

nets to model dynamic interactions and communications
between nets. A channel is a special relation that is defined in
transitions for sending and receiving messages between nets.
The channel concept is borrowed from pi-Calculus [17], and
the definition of the channel and the definition of the PrT net
extended with Channels called CPrT nets can be found in [7].

A CPrT net model may include several nets and they
communicate through channels at runtime. An output channel
identifier could be a variable that is instantiated with a concrete
value and matched to an input channel at runtime. The
communication topology is dynamically built according to the
context of the communication transitions.

Figure 2. The runtime communication between dynamic channels

A CPrT net can be transformed into an equivalent PrT net.
Therefore, the semantics of CPrT nets can be defined using PrT
nets. The basic rules of PrT nets are then applied to CPrT nets
as well. A CPrT net can be transformed into an equivalent PrT
net through combining matched input and output channel
transitions. When a transition with an output channel is merged
with a transition that has a matched input channel, the input and
output flows of the matched transition are the union of the
corresponding flows of the two matched transitions. The guard
condition of the new merged transition is defined by the
conjunction of the guard expressions of the matched transitions
as well as the expression defining the communication between
the input channel and an output channel. It is important to
ensure the set of variables in the matched transitions are
different before the transitions can be combined together so
that the same variable name at different transitions won’t cause
any conflict [6]. The transformation idea is illustrated in Fig. 2.

The firing sequence of the two communication transitions
with matched input and out channels is described as follows:

1. Assume a CPrT net model includes two nets: N1 and N2.
Transition t is enabled under marking M1 in net N1, and

t
c!<p1, p2>

e
C?< p’1, p’2>

te
 c = C

<c, p1, p2> <p’1, p’2>

<c, s1, s2> <s1, s2>

Figure 1. A PrT nets model of the
problem of dining philosopher

 2088

transition e is enabled under marking M2 in net N2. Transition t
and e both are enabled under marking M = (M1, M2). Transition
t has channel c!<p1, p2>, and the transition e has channel
C?<p’1, p’2>.

2. Under marking (M1, M2), the value of output channel
variable c equals to channel C. The numbers of input
parameters of input channel C?<p’1, p’2> and output channel
c!<p1, p2> are equal, and type of each corresponding parameter
in both channels is compatible, i.e. dom(p1) Í dom(p’1),
dom(p2) Í dom(p’2).

3. Transition t and e fire together as an atomic transaction.
Token <p1, p2> is moved from the input places of t to the
output places of e following regular PrT firing rules.

4. The enabling and firing sequences as well as the firing
result of the CPrT net are same as its corresponding
transformed PrT net. When t and e fire, a new marking M’ is
produced. Formally, M’(p) =M(p) – {l/q: l Î L(p, t)} – {l/q’: l
Î L(p, e)} for any etp •• ÈÎ , and M’(p) = M(p) È {l/q: l Î
L(t, p)}È{l/q’: l Î L(e, p)} for any ••ÈÎ etp .

5. If two or more output channels match to an input channel
under certain marking in a CPrT net, then only one output
channel is selected to match the input channel. Which output
channel to be selected is non-deterministic [5].

In order to specify a mobile computing system, the concept
of “net within net” proposed in EOS [15] is introduced to PrT
nets for building two-layer PrT nets. In “net within net”, a
token could be defined as a net, and a net may include a token
that is a net. A PrT net that is wrapped as a token is called a
token net, and a PrT net that include any token net is called a
system net.

Definition 1 (Two-layer CPrT Net). A two-layer CPrT net is
a tuple STN = (SN, TN, r), where:

• SN is a finite set of system nets, SN = {SN1, SN2, …,
SNn}, and SNi (1 ≤ i ≤ n) is a CPrT net, SNi = (P, T, F,
S, L, j, M0 , C, W).

• TN is a finite set of token nets, TN = {TN1, TN2, …,
TNm}, and TNi (1 ≤ i ≤ m) is a CPrT net, TNi = (P’, T’,
F’, S’, L’, j’, M’0 , C’, W’).

() ()1
1
!
n

i
ii SNTN

=

S×Î

• r Í W ´ W’ is the occurrence relation between
channels.

The net occurrence in different layers interact each other
through channels. We define the marking of the system net as
M, and the marking of a token net as M’, so that the marking of
the CPrT net is (M, M’). The interaction occurrence between a
system net and a token net is completed through the
communication of matched input and output channels in a
system net and its token net under marking (M, M’). The
marking of the two-layer net is updated when the transitions
fire: (M, M’)[(t, t’) > (M1, M1’), where t is the fired transition in
the system net and its marking is updated from M to M1: M[t >

M1; and t’ is the matched transition in the token net and its
marking is updated from M’ to M’1: M’[t’ > M’1.

III. MODELING AND ANALYZING DYNAMIC
CONFIGURATION

In this section, we illustrate the approach for modeling and
analyzing dynamic software architectures through case
studying a mobile agent system. A mobile agent system
includes a host system which can host the running of incoming
mobile agents. A mobile agent is a program that has its
computation ability and itinerary for moving among
networked hosts. When an agent arrives at a host and is
authorized for running, it can run within the host environment
[7][22]. The moving in or out of a mobile agent from a host
requires the re-composition of the interacting components in
the software architecture of mobile agent systems. The
software architecture of a mobile agent system includes two
levels: the system level and the interaction level. In the system
level, each agent is considered as a token within the system net
which models the host, and the location of the system net is
predefined. If we consider the dynamic configuration of the
host systems such as some host systems may join in or leave
during run time, we change host nets with an additional
Boolean variable on the inscriptions of channel transitions to
indicate whether the system is active or not. The variable is
part of the guard condition and it disables the channel
transition when it is false so that the system net won’t receive
or send messages from/to other systems or agents. From the
system point of view, the system is disabled. In this paper, we
only consider one host system since it is not difficult to be
extended to multiple systems. At the interaction level, the
software architecture is dynamically configured at run time
when the system net connects with different agent nets. Agent
nets communicate with other objects through channels, and
each agent has one unique input interface to receive messages
from others so that it guarantees messages to reach the correct
destinations. We call the channel as the agent channel, and its
value is a dummy constant when it is defined in the template
of agent nets. The dummy value is instantiated by a unique
value same as the instance identifier when an instance is
instantiated from a template. In order to define the dynamic
reconfiguration of the software architecture, we introduce a
concept called configuror to remember current active agents in
each host net. Based on the system configuror, one can
reconstruct and analyze the snapshot of the software
architecture.

A. System Configuror
There are only finite numbers of object nets (i.e. the

instantiated agents) in a system net at any time, so we can
transform the dynamic view of a software architecture into a
static view to study interaction properties. The key issue is how
we can transform a dynamic view into a static view at run time.
A configuror defines the configuration of object nets with their
system nets. We do not add any configuror to CPrT nets, but it
is used for describing the system configuration when we
analyze the models. The configuror is responsible for defining
the dynamic reconfiguration of the software architecture. Each
system net has a configuror, which consists of agent instance
identifiers, agent types (agent nets) and agent itineraries. When

 2089

an agent is created, it is assigned with an itinerary that decides
the visiting path of the agent. Based on the knowledge or
itineraries of an agent, it may dynamically update its itineraries
at run time. The configuror of the software architecture is the
combination of configurors of all host nets.

Definition 2 (Configuror) The configuror of each system net
is a list CON = {c1, c2, … cn}, where:

• ci = (ANi×ID, ANi×TYPE, ANi×KB), 1 ≤ i ≤ n. The n is
the number of agent instances in the system net. ANi is
the agent instance in the host net, and ANi×ID is the
instance identifier of ANi, ANi×TYPE is the instance
type (the name of the template net of ANi), and
ANi×KB is the instance itinerary of ANi.

When a host net receives an agent, the agent location is
updated to the location of the host system. Then it is put into
special place pa in the host net, which is the only place the
agent can update its states as soon as the host system starts it.
When an agent moves it out from the host, it updates its
location according to its itinerary and terminates its execution
until the destination host accepts it. An agent system can
generate agents or instances of agent nets (we call instances of
agent nets as object nets) according to existing agent types
(templates of agent nets), but each object net has its unique
identifier and itinerary. When a host net receives or generates
an object net, the configuror adds the object into its list, and it
removes the object from its list when an object leaves the host
net. The configuror is easily constructed from agents within pa.
The static view of interaction between host nets and object nets
is a net composing the host net and a group of object nets
within the host net. Fig. 3 shows the basic idea to analyze the
dynamic configuration of host nets.

Figure 3. A dynamic configuration of software architecture

In Fig. 3, the system net or host net has two agents within
its place pa, so that its configuror includes the information of
these two agents, which can be used to construct the static view

of the host model which includes one host net and two agent
nets. When one agent moves it out, the configuror removes the
agent (agent net 1) from its list, so that the static view of the
current host model includes the host net and an agent net.
When the host net receives an agent (agent net 3), the
configuror adds that agent information into its list, and then the
static view of the current host model is the composition of the
host net and three agent nets. Based on static views and
configurors, we can analyze the dynamic reconfiguration of the
software architecture of mobile agent systems.

B. Analyzing Dynamic Configuration
Analyzing the interaction between a system net and its agent
nets is implemented through transforming the dynamic model
into the static model according to the configuror. All object
tokens (the instances of agent nets) in the system net are
unfolded as agent nets with states, and these nets consist of a
logical whole net even if they may not be connected with arcs,
they are logically connected with channels. The analysis is
conducted based on the nets and configuors. The occurrence
rules of the interaction view are the same as the semantics and
analysis of the regular two-layer CPrT nets. The marking of
the whole net is the combination of the marking of each net.
When an agent moves it out from the host net, the configuror
removes that object from its list and the corresponding object
net is removed from the interaction view or the whole net.
When an agent moves it into the system, the configuror adds
that object to its list and the corresponding object net is added
into the interaction view or the whole net.

Definition 3 (Interaction view): An interaction view of a
software architecture of a mobile agent system is a tuple IV =
(SN, AN, CON), where:

• SN is a system net, SN = (P, T, F, S, L, j, M0 , C, W).
• AN is a finite set of object nets, AN = {AN1, AN2, …,

ANn}, ANi = (Pi, Ti, Fi, Si, Li, ji, Mi0 , Ci, Wi), 1 ≤ i ≤
n, AN Í S.

• CON is the configuror of SN.

Only one system net is considered in the interaction view of
the software architecture of mobile agent systems, where the
moving in and out of mobile agents causes the re-composition
of the host systems and different agents. The re-composition
of components is defined by the dynamic configuration.

Definition 4 (Dynamic configuration): The dynamic
configuration of the software architecture of a mobile agent
system is defined on the dynamic changes of configuror of the
host net. A dynamic configuration is IV = (SN, AN, CON),
where:

• When an agent ANk moves in to SN, ANk = (Pk, Tk, Fk,
Sk, Lk, jk, Mk0 , Ck, Wk), then ANk Î P, CON = CON
È{ck}, and ck = (ANk×ID, ANk×TYPE, ANk×KB).

• When an agent ANk moves out from SN, ANk = (Pk, Tk,
Fk, Sk, Lk, jk, Mk0 , Ck, Wk), then ANk Ï P, CON =
CON \{ck}, and ck = (ANk×ID, ANk×TYPE, ANk×KB).

The occurrence rules and communication between object nets
and the system net follow the definitions in CPrT nets.

system net

agent net 1
agent net 2

agent net 1

agent net 3

system net

agent net 1

agent net 2

agent 2 moves out agent 3 moves in

system net

 2090

C. Checking Dynamic Configuration using SPIN
In this section, we discuss the approach for model checking

CPrT net models of mobile agent systems using model
checking tool SPIN [13]. Since it is infeasible to check a model
that has infinite states using model checker SPIN, it is
necessary to convert the model that has infinite states into a
model that has only finite states but the change doesn’t affect
the properties to be checked. A CPrT net model has to be
converted into an equivalent Promela program for SPIN
checking, and properties to be checked are defined as the
correctness and other claims in the Promela program. Some
important system properties are defined as never claims
translated from LTL formulas. Individual system nets and
token nets are first checked independently, and system
properties are checked on the system net. A general procedure
for model checking the dynamic software architecture using
SPIN is defined as follows.

1. Transform models. Any CPrT net to be checked is
transformed into a PrT net.

2. Reduce states (convert a model with infinite states into a
model with only finite states). First, each place p in a model is
converted into k-bounded, and then the type of each place
variable is defined as an enumerable data type with finite
number of elements. k is predefined based on system
requirements.

3. Specify properties to be checked. After the system
behavior model B is specified in CPrT nets, each interested
system property S is defined in LTL. The model checking
procedure is to check property specification S over behavior
models B.

4. Translate a CPrT net model into a Promela program.

The procedure for transforming a CPrT net into an
equivalent Promela program for model checking using SPIN is
described as follows.

1. Structure of the Promela program. A whole CPrT net
model of a system is transformed into a Promela program, and
each individual CPrT net in the CPrT net system model is
converted into a Promela process. Each Promela program
includes sections for data type definitions, global variable
declarations, definitions of processes, process init for defining
the program initialization, and a never claim for specifying a
property to be checked. Place types are defined in the section of
data type definition, and global variables are defined in the
global variable declaration. The firing rules of each net is
defined by the transition relations in the Promela process.

2. Specification of the state variables. Each place in a net is
defined as a variable in the data type definition section in the
program. The value range of each variable is defined by the
value range of the marking of the place. The value range of a
variable is the number of possible markings of the
corresponding place. If place p is k-bounded and |φ(p)| defines
the number of possible values of a token in p, then the number

of possible markings of place p is å =

)(

0

p

i
ikj

. The place variable
of place p in the Promela program has the form:

1..0:)(

0
-å =

p

i
ikp j

In this way, a predicate symbol is defined as a set of
proposition symbols, which can be applied for each place p that
is bounded and |φ(p)| is finite [7].

3. Definition of the initial states. Initialize each variable in
the program with a value that is the initial marking of the
corresponding place in the net, and the initialization is assigned
in init process. init process invokes each net process with initial
values of the input parameters that are all places in the net, and
these processes are running in parallel. The fairness of the
running of the processes is ensured by model checker SPIN.

4. Specifications of the transition relations. There are two
types of transitions in CPrT nets, one is transitions that have
channels, and the other is regular PrT net transitions. The two
types of transitions are processed differently.

4.1. Transferring a transition that doesn’t have a channel.
Each transition in a net is converted into an atomic statement
within a process in the Promela program, and the atomic
statement specifies the firing rules (i.e. the inputs, outputs and
constraints of a firing) of the transition. The atomic statement
includes a group of case statements. The condition of each case
statement specifies one possible input of the transition, and the
body of the statement defines the relation between input and
output. The number of the case statements of each transition is
the permutation of input variable values in the inscription
expressions of the input arcs of the transition. Each case
statement is fairly simple based on the net model so that the
transformation can be partially automated. The communication
between processes are implemented through global variables,
and the synchronization between communication transitions are
guaranteed with additional global Boolean variables.

4.2. Transferring a transition that has a channel, We first
only consider the channel expressions in the transition
inscription expressions of the transition that has a channel.
Then each channel is then declared as a global variable, whose
data type is defined by all possible values of the variable (finite
number of values). In CPrT nets, channel variables share names
with their input inscription. However, each channel is declared
with a unique variable. The variable number is the number of
possible values of the channel variable in the net. All of these
variables have the same type, which is same to the type of input
or output parameters of the channels. Next, we define the
transition relations. For output channels, when the transition
fires, some channel variable is assigned with values according
to the outputs of the transition. Such as one channel has three
possible values, P1, P2 and P3, if the output value, which is
assigned to the channel in the net, is P2, then value of P2 is
updated with the value of the output parameter, but P1 and P3
do not change. For input channels, according to input tokens
and inscriptions on input arcs, we chose one channel variable
as part of input conditions of the transition. For example, the
channel has three possible values, P1, P2 and P3, and if input
tokens instantiating the current input channel is P2, then P2 is
chosen as part of the input condition of the transition. When the
input transition fires, value of P2 is updated.

 2091

5. Specification of properties to be checked. never claim in
Promela program is used for specifying system properties to be
checked. Some properties such as reachability can be defined
with accept-state labels in the Promela program. Other Promela
constructs such as basic assertion, end-sate labels, progress-
state labels, and trace assertions can be also used to specify
interested properties to be checked.

IV. RELATED WORK
Software architectures are an essential part in every phase

of software development [9]. Many researchers have proposed
approaches and built tools for modeling and analyzing software
architectures in order to improve the rigorousness of the
analysis and confidence of the quality of the architectural
model. Garlan [9] has summarized the representative results of
formal modeling and analysis of software architecture. Allen
and Garlan [1] described a formal basis for an architectural
connection, which has become the one of the most important
work on formal modeling of software architecture. Allen et al.
[2] introduced an approach for formally modeling and
analyzing dynamic software architectures, where the
architecture is modeled using Architecture Description
Language (ADL) Wright, and the analysis is completed
through formal verification based on CSP semantics.
Comparing to Wright approach, our approach is easier to use
due to the graph notation and executable of CPrT nets and
model checking of CPrT nets is fully automated. Recently,
Sanchez et al. [19] proposed an approach for modeling and
analyzing dynamic software architectures based on ADL
ARCHEY, where the reconfiguration of architectures is
defined with constraints. The formal analysis is conducted
directly on the constraints. Model checking has been reported
for formally analyzing software architecture. He et al. [12]
reported techniques for formally analyzing Petri nets using
model checking and formal proof. Ding and He proposed an
approach for modeling checking a type of high level Petri nets
[7]. Several other researchers defined an executable semantics
for software architectural modeling and analysis through
simulation and/or formal verification [16]. Garlan et al. [10]
introduced a reusable generic framework for modeling and
checking the model using model checker SMV. Kim and
Garlan [14] also investigated how to analyze software
architecture using Alloy.

Mobile computing systems are representative systems that
have dynamic software architectures. Petri nets have been used
for modeling and analysis of mobile computing systems, such
as the Logic Agent Mobility (LAM) [22] was modeled using a
type of two-layer PrT nets. In LAM, connectors were
introduced in the two-layer PrT nets to support the
communication between nets. However, the composition of
several PrT nets in different layers using connectors is difficult
and the whole model that consists of several nets and the
connector could be very large. “nets within nets” style was first
introduced in EOS [15], and it was introduced to CPrT nets for
modeling the communication between nets in different layers.
Channels for Petri nets were first introduced to colored Petri
nets in reference [6], but the channels in CPrT nets are more
dynamic with high flexibility for specifying dynamic properties
in software architectures. The pi-calculus is the first language
that offers features for specifying process movement across

channels, and the semantics of channels in CPrT nets is same to
the channels in pi-calculus [17].

V. SUMMARY AND FUTURE WORK
In this paper, we first introduced an approach for modeling

dynamic software architectures using a two-layer high level
Petri nets called CPrT nets, which are extended with
communication channels. A dynamic software architecture is
modeled as a system net that represents the system running
environment and a group of agent nets that model the
components that are dynamically connected to the system net
during the course of a single computation. The dynamic
configuration of interacting components is defined in
configurors. The analysis of dynamic software architectures is
conducted by model checking with tool SPIN through
transforming a CPrT nets model into a Promela program. Both
the static and dynamic software architectures can be modeled
using CPrT nets. The graph notation of CPrT nets is easy to use
and its executable is necessary for developers to build complex
models. The communication channels of CPrT nets that are
used for modeling the dynamic configuration of software
architectures implement the channels in pi-calculus. In the
future, we would like to investigate the application of the
approach for modeling and analyzing enterprise cloud
computing systems.

ACKNOWLEDGMENTS
This research is supported in part by grant CNS-1262933 and
CNS-1560037 from the National Science Foundation.

REFERENCES
[1] R. Allen, D. Garlan. “A formal basis for architectural connection.” ACM

TOSEM 6 (3), pp. 213–249, 1997.
[2] R. J. Allen, R. Douence, and D. Garlan, “Specifying and Analyzing

Dynamic Software Architectures”, Proceedings of the 1998 Conference
on Fundamental Approaches to Software Engineering (FASE'98),
Lisbon, Portugal, March 1998.

[3] B. Abolhasanzadeh , S. Jalili, “Towards modeling and runtime
verification of self-organizing systems”, Expert Systems with
Applications: An International Journal, v.44 n.C, p.230-244, 2016.

[4] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger. “A survey
of self-management in dynamic software architecture specifications”.
In Proceedings of the 1st ACM SIGSOFT workshop on Self-managed
systems (WOSS '04), pp. 28-33, 2004.

[5] E. Clarke, O. Grumberg, and D. A. Peled, Model Checking, The MIT
Press, Cambridge, 1999.

[6] S. Chrisensen, N.D. Hansen, “Coloured Petri Nets Extended with
Channels for Synchronous Communication”. In Proceeding of
Application and Theory of Petri Nets (1994), pp. 159-178.

[7] J. Ding, X. He. “Formal Specification and Analysis of an Agent-Based
Medical Image Processing System.” Intl. Journal of SEKE, Vol. 20, No.
3, pp. 1 – 35, 2010.

[8] H. J. Genrich, “ Predicate/Transition Nets”. Petri Nets: Central Models
and Their Properties, W. Brauer, W. Resig, and G. Rozenberg, eds.,
(1987) pp. 207-247.

[9] D. Garlan, “Formal Modeling and Analysis of Software Architecture:
Components, Connectors, and Events”, in Formal Methods for Software
Architectures, LNCS, Vol. 2804, pp. 1 -24, 2003.

[10] D. Garlan, S. Khersonsky, and J.S. Kim, “Model Checking Publish-
Subscribe Systems”, Proc. of SPIN 03, Portland, Oregon, 2003.

[11] David Garlan and Mary Shaw, “An Introduction to Software
Architecture”, CMU-CS-94-166, School of Computer Science, Carnegie
Mello University, 1994.

 2092

[12] X. He, H. Yu, T. Shi, J. Ding, and Y. Deng, “Formally Specifying and
Analyzing Software Architectural Specifications Using SAM”, Journal
of Systems and Software, vol.71, no.1-2, pp.11-29, 2004, 1994.

[13] G.J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual, Addison-Wesley Professional, Sept. 2003.

[14] J. S. Kim, and D. Garlan, “Analyzing architectual styles”, Journal of
Systems and Software, 83(2010), pp. 1216-1235, 2010.

[15] M. Köhler-Bußmeier, “A Survey of Elementary Object Systems”, 3rd
International Workshop on Logics, Agents, and Mobility (LAM'10), vol.
7, pp. 19-36, 2012.

[16] N. Medvidovic, R. Taylor, 2000. “A classification and comparison
framework for software architecture description languages”. IEEE TSE
26 (1), 70–93, 2000.

[17] R. Milner, Communicating and Mobile Systems: The Pi Calculus,
Cambridge University Press, June 1999.

[18] T. Murata, “Petri Nets: Properties, Analysis and Applications”. In
Proceedings of the IEEE, vol.77, no.4, (1989) pp. 541-580.

[19] A. Sanchez , A. Madeira , L. S. Barbosa, “On the verification of
architectural reconfigurations”, Computer Languages, Systems and
Structures, v.44 n.PC, p.218-237, 2015.

[20] A. Saadi , M. Oussalah , A. Henni , D. Bennouar, “Handling the
Dynamic Reconfiguration of Software Architectures using Intelligent
Agents”, Proceedings of the International Conference on Intelligent
Information Processing, Security and Advanced Communication, pp.1-5,
2015.

[21] D. Xu, D., K. E. Nygard, “Threat-Driven Modeling and Verification of
Secure Software Using Aspect-Oriented Petri Nets”. IEEE TSE. 32(4),
265–278, 2006.

[22] Xu, D., Yin, J., Deng, Y. and Ding, J., A Formal Architecture Model for
Logical Agent Mobility. IEEE Trans. on Software Engineering. vol. 29,
no. 1 (2003), pp. 31-45.

