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A B S T R A C T

This survey presents the concept of Big Data. Firstly, a definition and the features of Big Data

are given. Secondly, the different steps for Big Data data processing and the main problems

encountered in big data management are described. Next, a general overview of an archi-

tecture for handling it is depicted. Then, the problem of merging Big Data architecture in an

already existing information system is discussed. Finally this survey tackles semantics (rea-

soning, coreference resolution, entity linking, information extraction, consolidation, para-

phrase resolution, ontology alignment) in the Big Data context.
c⃝ 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Today, people and systems overload the web with an expo-
nential generation of huge amount of data. The amount of
data on the web is measured in exabytes (1018) and zettabytes
(1021). By 2025, the forecast is that the Internet will exceed
the brain capacity of everyone living in the whole world [1].
This fast growth of data is due to advances in digital sen-
sors, communications, computation, and storage that have
created huge collections of data.1 The term Big Data had been
coined, by Roger Magoulas (according to [2]), to describe this
phenomenon.

Seven recent papers (including [3] and [4]) have aimed to
extract Big Data trends, challenges and opportunities. [5] pro-
vide a survey on scalable database management: updating
of heavy application, analytics and decision support. Like-
wise, [6] study analytics in Big Datawith a focus on data ware-
house. These two papers have different goals comparatively
to [7]. In a more rigorous way, M. Pospiech and C. Felden [7]
have selected relevant and recent papers which tackle dif-
ferent aspects of Big Data and have clustered them in four
domains: Technical data provisioning (acquisition, storage, pro-
cessing), Technical data utilization (computation and time com-
plexity), Functional data provisioning (information life cycle
management, lean information management, value oriented
information management, etc.) and Functional data utilization
(realms where big data is used). At the end of their cluster-
ing, [7] note that a lot of papers (87%) are technical and that
there is not any paper on functional data provisioning. More
closed (compared to the three previous works) to our target,
semantics in the age of Big Data, [8] focus on knowledge dis-
covery and management in Big Data era (flooding of data on
the web). As our paper they zoom on gathering relational
facts, information extraction, emergence of structure, etc. But
a deep circonscription of the concept of Big Data is not in the
scope of their article like some other key themes of this paper
like reasoning on large and uncertain OWL triples, corefer-
ence resolution, ontology alignment. The last paper has been
authored by [9]. They present Big Data integration in a easy-
understandable-way. Schema alignment, record linkage and data
fusion are presented w.r.t to Big Data characteristics (volume,
velocity and variety). Knowing the high value carried by data
in general and thus by Big Data, it is not surprising therefore
that Chief Information Officers (CIOs) are interested in it an-
alytics as technological. If initially web pages and traditional
databases were the raw materials respectively for search en-
gine companies and other businesses, now it has been mixed

1 http://www.cra.org/ccc/docs/init/Big_Data.pdf.

with large sets of miscellaneous, heterogeneous and unstruc-
tured data. It implies that tools and techniques have to be de-
signed to disambiguate it before putting it together to master
and manage data of organizations. Our work is similar to [9]
in the approach. We discuss challenges and opportunities of
semantics in the age of Big Data and present the supply chain
to handle it. Therefore, this article defines Big Data (Section 2),
briefly discusses its management (Section 3) and finally tack-
les Big Data and semantics challenges and opportunities (Sec-
tion 4).

2. What is big data?

Manyika et al. [10, page 1] define Big Data as “datasets whose
size is beyond the ability of typical database software tools
to capture, store, manage, and analyze”. Likewise, Davis and
Patterson [1, page 4] say “Big data is data too big to be handled
and analyzed by traditional database protocols such as SQL”;
and the same opinion is shared by [11,3,4], etc. Both groups of
authors previouslymentioned go beyond the only size aspects
of data when defining Big Data! Edd Dumbill in [12, page 3]
explicitly conveys the multi-dimensionality of Big Data when
adding that “the data is too big, moves too fast, or doesn’t fit
the strictures of your database architectures”. This quotation
allows us to see that extra characteristics should be added to
large datasets to be considered as Big Data, or big size data as
often found throughout the literature [2].

Now it is assumed that size is not the only feature of Big
Data. Many authors [1,12,11,9,13,4] explicitly use the Three
V’s (Volume, Variety and Velocity) to characterize Big Data. If
the three V’s are largely found in the literature, many authors
[10,13] and institutes like IEEE focus on Big Data Value, Veracity
and Visualization. This last “V” to notice how important it is to
provide good tools to figure out data and analysis’ results.2

Volume (Data in rest). The benefit gained from the
ability to process large amounts of information is the main
attraction of big data analytics. Having more data beats
having better models [12]. The consequence is that it is a
trend for many companies to store vast amount of various
sorts of data: social networks data, health care data, financial
data, biochemistry and genetic data, astronomical data, etc.

Variety (Data in many forms). These data do not have
a fixed structure and rarely present themselves in a per-
fectly ordered form and ready for processing [12]. Indeed,

2 http://www.esg-global.com/blogs/the-6-vs-the-bianalytics-
game-changes-so-microsoft-changes-excel/.

http://www.cra.org/ccc/docs/init/Big_Data.pdf
http://www.ischool.drexel.edu/bigdata/bigdata2013/
http://www.esg-global.com/blogs/the-6-vs-the-bianalytics-game-changes-so-microsoft-changes-excel/
http://www.esg-global.com/blogs/the-6-vs-the-bianalytics-game-changes-so-microsoft-changes-excel/
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such data can be highly structured (data from relational
databases), semi-structured (web logs, social media feeds, raw
feed directly from a sensor source, email, etc.) or unstructured
(video, still images, audio, clicks) [12]. Another “V”, for Vari-
ability, can be added to variety to emphasize on semantics,
or the variability of meaning in language and communication
protocols.

Velocity (Data in motion). Velocity involves streams of
data, structured records creation, and availability for access
and delivery.3 Indeed it is not just the velocity of the incoming
data that is the issue: it is possible to stream fast-moving data
into bulk storage for later batch processing, for example. The
importance lies in the speed of the feedback loop, taking data
from input through to decision [12].

Value (Data in highlight). This feature is the purpose
of Big Data technology. This view is well expressed by
the International Data Corporation4 when saying that Big
Data architectures are: “designed to economically extract value
from very large volumes of a wide variety of data, by enabling
high-velocity capture, discovery, and/or analysis”. This value
falls into two categories: analytical use (replacing/supporting
human decision, discovering needs, segmenting populations
to customize actions) and enabling new business models,
products and services [12,10].

Veracity (Data in doubt). Veracity is what is conform
with truth or fact, or in short, Accuracy, Certainty, Precision.
Uncertainty can be caused by inconsistencies, model
approximations, ambiguities, deception, fraud, duplication,
incompleteness, spam and latency. Due to veracity, results
derived from Big data cannot be proven; but they can be
assigned a probability.

To conclude, dealing effectively with Big Data requires one
to create value against the volume, variety and veracity of data
while it is still in motion (velocity), not just after it is at
rest [11]. And at the end, as recommended by [13], scientists
must jointly tackle Big Data with all its features.

3. Big data management

Basically, data processing is seen as the gathering, process-
ing, management of data for producing “new” information for
end users [3]. Over time, key challenges are related to stor-
age, transportation and processing of high throughput data. It is
different from Big Data challenges to which we have to add
ambiguity, uncertainty and variety [3]. Consequently, these re-
quirements imply an additional step where data are cleaned,
tagged, classified and formatted [3,14]. Karmasphere5 cur-
rently splits Big Data analysis into four steps: Acquisition or
Access, Assembly or Organization, Analyze and Action or Decision.
Thus, these steps are mentioned as the “4 A’s”. The Computing

Community Consortium [14] similarly to [3], divides the organi-
zation step into an Extraction/Cleaning step and an Integration
step.

3 http://www.gartner.com/newsroom/id/1731916.
4 http://www.emc.com/collateral/analyst-reports/idc-

extracting-value-from-chaos-ar.pdf.
5 http://www.reuters.com/article/2011/09/21/idUS132142+21-

Sep-2011+BW20110921.

Acquisition. Big Data architecture has to acquire high
speed data from a variety of sources (web, DBMS(OLTP),
NoSQL, HDFS) and has to deal with diverse access protocols. It
is where a filter could be established to store only data which
could be helpful or “raw” data with a lower degree of uncer-
tainty [14]. In some applications, the conditions of generation
of data are important, thus it could be interesting for further
analysis to capture these metadata and store them with the
corresponding data [14].

Organization. At this point the architecture has to deal
with various data formats (texts formats, compressed files,
variously delimited, etc.) and must be able to parse them and
extract the actual information like named entities, relation
between them, etc. [14]. Also this is the point where data
have to be clean, put in a computable mode, structured or
semi-structured, integrated and stored in the right location
(existing data warehouse, data marts, Operational Data Store,
Complex Event Processing engine, NoSQL database) [14].
Thus, a kind of ETL (extract, transform, load) had to be
done. Successful cleaning in Big Data architecture is not
entirely guaranteed; in fact “the volume, velocity, variety, and
variability of Big Data may preclude us from taking the time
to cleanse it all thoroughly”.6

Analyze. Here we have running queries, modeling, and
building algorithms to find new insights. Mining requires in-
tegrated, cleaned, trustworthy data; at the same time, data
mining itself can also be used to help improve the quality and
trustworthiness of the data, understand its semantics, and
provide intelligent querying functions [14]. Decision. Being
able to take valuable decisions means to be able to efficiently
interpret results from analysis. Consequently it is very im-
portant for the user to “understand and verify” outputs [14].
Furthermore, provenance of the data (supplementary informa-
tion that explains how each result was derived) should be pro-
vided to help the user to understand what he obtains.

If we can easily see how volume, velocity, veracity and va-
riety influence the pipeline of Big Data architecture, there is
another important aspect in data to handle in Big Data Ar-
chitecture: privacy. R. Hillard7 considers it to be very impor-
tant that privacy appears in a good place in his definition of
Big Data. Privacy can cause problems at the creation of data
(someone who wants to hide some piece of information), at
the analysis on data [1] because if we want to aggregate data or
to correlate it we could have to access private data; and pri-
vacy can also cause inconsistencies at the purging of database.
Indeed if we delete all individuals data we can get incoher-
ences with aggregate data.

To sumup handle Big Data implies having an infrastructure
linear scalable, able to handle high throughput multi-formatted
data, fault tolerant, auto recoverable, with a high degree of
parallelism and a distributed data processing [3]. It is important
to note that, in this management, integrating data (i.e
“access, parse, normalize, standardize, integrate, cleanse,
extract, match, classify, mask, and deliver data.” [4, chap. 21])
represents 80% of a Big Data project. This aspect is deeply
discussed in Section 3.3.

6 http://makingdatameaningful.com/2012/12/10/big-data-the-
4-vs-the-simple-truth/.

7 http://mike2.openmethodology.org/blogs/information-
development/2012/03/18/its-time-for-a-new-definition-of-big-
data/.

http://www.gartner.com/newsroom/id/1731916
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.reuters.com/article/2011/09/21/idUS132142%2B21-Sep-2011%2BBW20110921
http://www.reuters.com/article/2011/09/21/idUS132142%2B21-Sep-2011%2BBW20110921
http://makingdatameaningful.com/2012/12/10/big-data-the-4-vs-the-simple-truth/
http://makingdatameaningful.com/2012/12/10/big-data-the-4-vs-the-simple-truth/
http://mike2.openmethodology.org/blogs/information-development/2012/03/18/its-time-for-a-new-definition-of-big-data/
http://mike2.openmethodology.org/blogs/information-development/2012/03/18/its-time-for-a-new-definition-of-big-data/
http://mike2.openmethodology.org/blogs/information-development/2012/03/18/its-time-for-a-new-definition-of-big-data/
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3.1. Big Data technologies

There are various tools which can be used in Big Data
management from data acquisition to data analysis. Most of
these tools are parts of Apache projects and are constructed
around the famous Hadoop. Written in Java and created by
Doug Cutting, Hadoop brings the ability to cheaply process
large amounts of data, regardless of its structure [12]. Hadoop is
made up of two core projects: Hadoop Distributed File System
(HDFS) and MapReduce.

HDFS. HDFS is a distributed file system designed to run
on large clusters of commodity hardware based on Google

File System (GFS) [15,16,3]. Shvachko et al. [17, page 1] add
HDFS strengths in their definition when saying it “is designed
to store very large datasets reliably, and to stream those
datasets at high bandwidth to user applications”. By large, we
mean from 10 to 100 GB and above [12,16]. While the interface
to HDFS is patterned after the UNIX file system, it trades off
some POSIX requirements for performance [17,15,16]. HDFS is
dedicated to batch processing rather than interactive use by
users [16,12]. In HDFS applications, files are written once and
accessed many times [16,18]; consequently data coherency is
ensured and data are accessed in high throughput [16]. With
HDFS file system metadata are stored in a dedicated server,
the NameNode, and the application data in other servers called
DataNodes. Except for processing large datasets, HDFS has
many other goals whosemajor is to detect and handle failures
at the application layer. This objective is realized through
a well-organized mechanism of replication where files are
divided into blocks. Each block is replicated on a number of
datanodes; all the datanodes containing a replica of a block
are not located in the same rack.

MapReduce. Originally put in place by Google to solve the
web search index creation problem [12], MapReduce is nowa-
days the main programming model and associated imple-
mentation for processing and generating large datasets [19].
The input data format in MapReduce framework is application-
specific, is specified by the user [20] and is suitable for semi-
structured or unstructured data. The MapReduce’s output is a
set of <key, value> pairs. The name “MapReduce” expresses
the fact that users specify an algorithm using two kernel
functions: “Map” and “Reduce”. The Map function is applied on
the input data and produces a list of intermediate <key, value>
pairs; and the Reduce function merges all intermediate val-
ues associated with the same intermediate key [19] [20]. In
a Hadoop cluster, a job (i.e a MapReduce program [11]) is ex-
ecuted by subsequently breaking it down into pieces called
tasks. When a node in Hadoopcluster receives a job, it is able
to divide it, and run it in parallel over other nodes [12].
Here the data location problem is solved by the JobTracker
which communicates with the NameNode to help datanodes
to send tasks to near-data datanodes. Let us note that this
processing in form of <key, value> pairs is not a limitation to
processing which does not seem, at first glance, feasible in
map-reduce manner. Indeed, MapReduce has been successfully
used in RDF/RDFS and OWL reasoning [21,22] and in struc-
tured data querying [23].

Around HDFS and MapReduce there are tens of projects
which cannot be presented in detail here. Those projects can
be classified according to their capabilities:

• Storage and Management Capability
– Cloudera Manager8: an end-to-endmanagement applica-

tion for Cloudera’s Distribution of Apache Hadoop.
– RCFile (Record Columnar File) [24], a data placement struc-
ture for structured data. Here, tables are vertically and
horizontally partitioned, lazily compressed. It is an effi-
cient storage structure which allows fast data loading
and query processing.

• Database Capability:
– Oracle NoSQL a high performance <key,value> pair

database convenient for non-predictive and dynamic
data thus for Big Data;

– Apache HBase a distributed, column-oriented database
management system, modeled on Google’s Big Table

[10], that runs on top of HDFS [11,12,15];
– Apache Cassandra a database which combines the

convenience of column-indexes and the performance of
log-structured updates;

– Apache Hive can be seen as a distributed data ware-
house [15]. It enables easy data ETL from HDFS or
other data storage like HBase [11,15] or other traditional
DBMS [25]. It has the advantage of using a SQL-like syn-
tax, the Hive QL;

– Apache ZooKeeper is “an open-source, in-memory, dis-
tributed NoSQL database” [3, page 69] that is used for
coordination and naming services for managing dis-
tributed applications [3,12,11,15].

• Processing Capability
– Pig which is intended to allow people using Hadoop to
focus more on analyzing large datasets and thus
spend less time having to write mapper and reducer
programs [11,12];

– Chukwa which is a data collection system for monitoring
large distributed systems [26,15];

– Oozie which is a open-source tool for handling complex
pipelines of data processing [12,3,11]. Using Oozie, users
can define actions and dependencies between them and
it will schedule them without any intervention [11].

• Data Integration Capability
– Apache Sqoop: a tool designed for transferring data from

a relational database directly into HDFS or into Hive
[12,18]. It automatically generates classes needed to
import data into HDFS after analyzing the schema’s
tables; then the reading of tables’ contents is a parallel
MapReduce job;

– Flume is a distributed, reliable, and available service
for efficiently collecting, aggregating, and moving large
amounts of log data. It is designed to import streaming
data flows [12,27].

Visualization techniques

Making valuable decisions is the ultimate goal of Big Data
analysis and the achievement of this goal requires good
visualization of Big Data content. For this reason, there is a
real interest in the field of visualization [4,3] i.e “techniques
and technologies used for creating images, diagrams, or
animations to communicate, understand, and improve the

8 http://www.cloudera.com/content/cloudera/en/products-
and-services/cloudera-manager.html.

http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-manager.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-manager.html
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results of big data analyses” [10]. Let us note that visualization
in Big Data context is static. Indeed, data are not stored in
a relational way and real-time updates require processing
large amount of data; but this problem has started to be
addressed [3]. Here we present some techniques for Big Data
visualization.9

• Tag Cloud. It is a method for visualizing and linking
concepts of a precise domain or web site. These concepts
are written using text properties such as font size, weight,
or color.

• Clustergram. M. Schonlau [28] defines clustergram as
a visualization technique used for cluster analysis
displaying how individual members of a dataset are
assigned to clusters as the number of clusters increases.
As for every clustering process the number of clusters is
important and it has the advantage to easily perceive how
the number influences partitioning results.

• History Flow. F.B. Viégas, M. Wattenberg and K. Dave [29]
present history flow as a visualization technique designed
to show the evolution of a document efficiently with
respect to the contributions of its different authors. The
horizontal axis of a history flow carries time and the
vertical axis the names of the authors. A color code is
assigned to each author and the vertical length of a bar
indicates the amount of text written by each author.

• Spatial information flow. It is another visualization
technique that represents spatial information flows. It
is mostly represented as a lighting graph where edges
connect sites located on a map.

Visualization can also be used to solve Big Data problems.
For a brief review on this topic, see [30].

3.2. Data analytics

Big Data Analytics can be defined as the use of advanced
analytic techniques on big data [31]. Nowadays, we can put big
data and analytics together. The prior conditions are present
for the development of big data Analytics. First of all, Tools
and storage capabilities can handle big data. Next, by its
size, big data provides large statistical samples and enhanced
results of experiments. Finally, companies and governments
have clearly identified the benefits to develop the economics
of big data. Due to the characteristics of big data, mainly
variety, there are many techniques used for analytics on big
data [32].

• Association rule learning to find relationships among entities
(mainly used in recommendation systems).

• Machine learning to bring computer to learn complex
patterns and make intelligent decisions based on it [10].

• Data mining which can be seen as a combination of statis-
tics and machine learning and statistics with database
management [10].

• Cluster analysis used as unsupervised machine learning. It
aims to divide data into smaller clusters having the same
set of characteristics not known in advance.

9 For technologies see [3].

• Crowdsourcing used to collect data and/or features and
metadata to enhance the current semantics of data.

• Text analytics which aims to analyze large text collections
(email, web pages, etc.) to extract information. It is used
for topics modeling, question answering, etc.

Some proposals emphasize that those techniques rely on a
generalized picture of the underlying knowledge. Due to their
design they fail to capture the subtleties of the processes
which produce these data [33,34]. Moreover, these techniques
sometimes behave badly with very large datasets. It is the
case for example of learning-based techniques. There, size of
training data can exceed memory or the fast growing number
of features can lead to a high execution time. Sengamedu [35]
presents some scalable methods which can be applied for
machine learning (Random Projections, Stochastic Gradient
Descent and MinClosed sequences). Trends about big data
analytics are summarized within [31]. They mainly concern
visualization of multi-form, multi-source and real-time data.
Moreover, the size of data limits in-memory processing.

3.3. Adding Big Data capability to an existing information
system

A whole book can be written on this topic. It is what had
been done by [3] by the study of data warehousing in the
age of Big Data. A number of strategies of this integration
are presented in Table 1. The first step of that integration is
about data acquisition. Since traditional databases have to
deal with structured data, existing ecosystem needs to be
extended across all of the data types and domains. Then,
data integration capability needs to deal with velocity and
frequency. The challenge here is also about ever growing
volume and, because many technologies leverage Hadoop, use
technologies that allow you to interact with Hadoop in a bi-
directional manner: load and store data (HDFS) and process
and reuse the output (MapReduce) for further processing.
[14, page 12] reminds us that the main challenge is not to
build “that is ideally suited for all processing tasks” but to
have an underlying architecture flexible enough to permit to
processes built on top to work at their full potential. For sure
there is not a commonly agreed solution, an infrastructure is
intimately tied to the purpose of the organization in which
it is used and consequently to the kind of integration (real-
time or batch). More and other important questions have to
be answered: are Big Data stored timeliness or not [4]?

4. Big data quality, the next semantic chal-
lenge

A question that experts of the knowledge management ask
themselves is to know if Big Data can leverage on semantics.
The answer to this question is obviously “yes”. Companies
and governments are interested in two types of data in
a big data context. First, they consider data generated by
human, mainly those disseminated through web tools (social
networks, cookies, emails...). Secondly they want to merge
data generated from connected objects. The Internet of
human beings and the internet of things become a mix of big
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Table 1 – Four types of data integration strategies described by K. Krishnan in [3] with their
main characteristics, pros and cons.

Data-driven integration External integration

-Categorization of data by type -Big Data and classic warehouse
(transactional, analytical, in two platforms
semi-structured, unstructured) -A data bus for connection
-Pros: infrastructure can be adapted -Pros: the platforms can scale each,
to each category. Idem for workload types overload is reduced, modularity, etc.
(w.r.t. Volume of data and latency) -Cons: complexity of data bus architecture
-Cons: possible various integration can drop performance over
Efforts on the same architecture time, poor metadata handling

Integration-driven approach Big Data appliances

-Combining Big Data and existing -A black box from vendors with three
warehouse platforms layers (Big Data, RDBMS and integration)
- A Hadoop/NoSQL connector links them -Pros: scalable and modular custom
Pros: the platforms can scale each, configuration for users (organizations)
overload is distributed, modularity, -Cons: custom configuration by vendors can
good metadata handling change frequently and can be source
-Cons: the connector is of heavy maintenance
Achilles’ heel, complexity of data integration

data that must be targeted to understand, plan and act in a
predictive way. This perspective raises new questions about
the quality of the data. In this context, people do not agree
with the definition of quality. The quality of the data may
be its high processing level or its relevance according to the
reality they represent. In fact, since Big Data is big and messy,
challenges can be classified into engineering tasks (managing
data at an unimaginable scale) and semantics (finding and
meaningfully combining information that is relevant to your
needs) [36] have identified each a relevant challenge for Big
Data:

1. the meaningful data integration challenge which can be
seen as a five-step challenge: (1) define the problem to
solve, (2) identify relevant pieces of data in Big Data, (3) ETL
it into appropriate formats and store it for processing, (4)
disambiguate it and (5) solve the problem.

2. the Billion Triple Challenge which aims to process large-
scale RDF to provide a full description of each entity of the
triple in a single target vocabulary and to link that entity
to the corresponding sources.

3. the Linked Open Data (LOD) Ripper for providing good use
cases for LOD and to able to link them with non LOD
efficiently.

4. the value of the use of semantics in data integration and
in the design of future DBMS.

Similar challenges have been identified by S. Auer and J.
Lehmann [37]. Unlike [36], [37] proposes solutions for some of
these challenges (data integration, scalable reasoning, etc.).
Semantics could be considered as a magical world to bridge
the gap of the hétérogénéity of data. Moreover, semantics can
be used in a decidable system which makes possible to de-
tect inconsistency of data, generates new knowledge using in-
ference engine or simply links more accurately specific data
not relevant for machine learning based techniques. In the
literature, we can find work whose purpose is about the chal-
lenges mentioned before. Before presenting them, we must
note that the relation between Big Data and semantics is bidi-
rectional. As it is true for Big Data leverages on semantics,

some semantics tasks are optimized by using tools designed
for large dataset processing, especially MapReduce framework.
More, in the articles cited in the following lines, the term Big
Data is rarely explicitly mentioned; it could be hidden behind
terms like “web scale/web-scale” or “large scale/large-scale”
[21,38–41] to express the volume feature, “real-time” or “dy-
namic” [42,43] to express velocity and “informal/informality”,
“natural language”, “unstructured” or “data streams” [44–47]
to state the variety/variability feature. In another way, Big Data
can be experienced through Linked Data: it has volume, vari-
ety, and veracity features and we can thus assume that other
characteristics are under control [13].

4.1. Identifying relevant pieces of information in messy
data

As mentioned in the challenges list, this task can be done be-
fore the disambiguation pile. In this case, we must prune ir-
relevant data. This pruning is mostly done by a “bag of words”
approach. It helps through cosine similarity to rapidly compare
things (documents in [48] and sentences in [49, chap. 5]) and
to select relevant one, according to a threshold. If done after
the pile, this task can be seen as the build of a Big Data index.
Obviously, this problem is mainly broached by people who in-
tend to design a search engine. Therefore, we have in [38] a
built of an inverted index, for fast keyword-search answer-
ing, where a Lucene document is output for each entity and a
structured index to easily retrieve pieces of information about
a given entity. Likewise, but on RDF databases, [50] use B + −

Trees to index object identifiers of RDF nodes and also use an
inverted index to improve keyword queries. Unlike previous
cited authors, [51] for Querying Distributed RDF Repositories
purposes, built indices on “schema paths” (concepts whose
instances have to be joined to answer a given query) to iden-
tify the sources which may contain the information needed.

4.2. The disambiguation pile

The last steps of the first challenge mentioned above can be
reformulated by our disambiguation pile shown by Fig. 1.
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Fig. 1 – The disambiguation pile of natural language.

4.2.1. Named entity resolution (NER)
Usually, NER is a task well resolved by existing tools. But with
advent of social media like Facebook and particularly Twit-
ter, the writing style has deeply changed and new techniques
have to be developed. It is the case of [45,52,53] which tackle
NER in tweets. These basic tools are actually used to solve
more complex problems like event extraction in tweets [46].
Since tweets are short, very informal and noisy (username
mentions, URLs, various markers (@, #)) some changes have
to be done to improve classic NLP tools like Stanford NER or
Open NLP. [52,45,53] share the opinion that supervised learn-
ing gives good results and that learning corpus must be made
up with tweets. To improve NER, gazetteers [52] or entities
repositories like Freebase [45] have to be extended (many new
entities are missing there e.g: “Nintendo DS lite” (a prod-
uct), “Blue Stone 42” (a tv-show), etc.). Moreover, variations of
words have to be clustered and normalized (e.g: “tomorrow”
can be written ‘2mr’, ‘2mro’, ‘2mrrw’, ‘2mrw’, . . . ) [45,53,54] and
we must know if we can learn something about capitaliza-
tion of words (which is randomly done in tweets universe) in
a given tweet [45].

4.2.2. Coreference resolution
Coreference resolution is the task of finding all expressions
that refer to the same entity in a discourse [55]. In this do-
main, improvements are not related to Big Data features and
are mainly focused on enrichment and precision of new lex-
ical and syntactic features and global inference [56,55,57].
Haghighi and Klein [56] introduce new syntactic, seman-
tic features and discourse phenomena to improve existing
systems. Their work has been completed by additional fea-
tures (e.g: Denonym, Word inclusion in [57], Speaker identifi-
cation in [55], Web features like General co-occurrence, Hearst
co-occurrence, Entity-based context, Pronoun context in [58], etc.).
Most models for this task determine if two mentions refer to
each other using a single function over a set of constraints
or features, but some recent approaches tend to use multi-
tiers methods where mentions are disambiguated gradually
in well-ordered tiers which apply each, a specific function
[55,57]. It is obvious that in a Big Data supply chain, such ap-
proaches can be difficultly used without modification. Indeed,
analyzing billions of documents more than seven times is not
realistic. We note that (the direct) approach of [58] (direct) is
more scalable, but it is a pairwise disambiguation method.

Once more, we note that very few work have in mind Big
Data characteristics while addressing coreference resolution.

In challenges about indexing billions of RDF triples or rea-
soning on them (see further), we see that scientists deal
with data formats which are quite easy to handle by a
computer (RDF/RDFS, OWL/OWL2). But the transformation
of pieces of natural language-written texts into computer-
understandable formats have to be done first.

4.2.3. Information extraction

One of the intuitive ways to perform this task is to provide
hand-written regular expressions (REs) like [59,60]. The re-
sults are promising but the number of manually-written REs
(165 REs for a 9-concept ontology [59]) makes it hard to han-
dle. More, their approach does not focus on scalability unlike
[61,40] who propose a REs pattern-based tool named OnTeA.
OnTeA takes advantage of Hadoop MapReduce to scale. More and
more, automatic approaches had been proposed. It is the case
of KNOWITALL [62] and TextRunner. The former uses predefined
patterns and rule templates to populate classes in a given on-
tology. Though automatic, KNOWITALL does not scale: a web-
document is processed several times for patterns matching
and many web-queries are done to assign a probability to a
concept, etc. Thus, TextRunner which implements the new
extraction paradigm of Open Information Extraction (OIE) had
been introduced. In OIE, we are not limited in a set of triples
but try to extract all of them [8,47]. More recently, following
REVERB, [63] present OLLIE. Unlike REVERB, OLLIE can extract re-
lation not mediated by verb and in certain case can provide
the context of a relation (e.g: “If he wins five key states, Rom-
ney will be elected President.” −→ (the wining of key states deter-
mines the election fact)).

In this facts harvesting task, some recent approaches fo-
cus on scalability in addition to recall and precision. It is the
case of [41] which take advantage of Hadoop MapReduce to dis-
tribute the patterns matching part of their algorithm. Now
focusing on the velocity, almost the same group of authors
has proposed a novel approach for population of knowledge
bases in [43]. Here, they propose to extract a certain set of
relations from documents in a given “time-slice”. This extrac-
tion can be improved based on the topics covered by the doc-
ument (e.g do not try to extract music-domain relations from
a sport document) or by matching patterns of relations on an
index build from documents. More, since web is redundant
(a given fact is published by tens of sites), a small percent-
age of documents can cover a significant part of facts. Like-
wise, [42] RDF-format unstructured data during a time-slice
duration. It is important to note that the whole processing of
data gather during a period of time must be done during that
period of time, unless the processing cycle will be blocked.
Recall that relations could be n-ary. For instance, in [64]’s web
representative-corpus, n-ary relations represented 40% of all
relations. About n-ary relations extraction, [65,66] are very rel-
evant work. They both use Stanford CoreNLP typed dependen-
cies paths to extract arguments of different facts. To end with
information extraction, let us precise that is not all about
free text. Some work has thus focus on web tables or lists
[67–69].
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4.2.4. Semantic paraphrase resolution
Paraphrase resolution is also known as Synonym Resolution,
Deduplication, Entity Resolution [70]. It is related to OIE and can
concern relations [71–73], entities or both [70]. In adequacy
with our interest for work near Big Data features, [70,71] pro-
pose unsupervised and scalable approaches for paraphrase
resolution. In [70], to scale, the number of comparisons be-
tween pairs of strings (whichmust share a <property,object>
or <subject,property> pair) is limited and strings are clus-
tered over time. This idea of gradual merging of clusters is
also the reason of the scalability in [71]. Unlike these two pre-
vious, [72] tackle polysemy and use extra-characteristics of
the input relation instances like distributional similarity, lin-
guistic patterns, hypernym graph, etc. Let us note that if [70]
tackle the problem of finding which mentions of entities in a
text are equivalent, some authors address a similar problem
called Entity Linking and which can be helpful in our disam-
biguation task. It aims to identify an entry in a given Knowl-
edge Base (KB) to which an entity mention in a document
refers to [74,75].

4.2.5. Ontology population
Since information has been extracted and synonyms iden-
tified, our unstructured data must be put in computer-
processable form. The current task thus consists in organiz-
ing extracted tuples in a querying form such as instances
of ontologies, tuples of a database schema or set of quads
(< subject, predicate, object, context >). This idea is found in
[59–61,40] but uses several hand-written regular expressions.
It is also found in [76]’s On-demand IE approach and in [77]
where they propose a method to map triples output from
an OIE process to a domain-ontology. The former approach
chooses to escape from an expensive computation problem
by using only triples where the relation is verb-based unlike
the latter, which takes into account “tuple from each pair of
adjacent Noun Phrases”. Moreover, the approach in [77] is very
domain-specific and in their objective of mapping OIE tuples
with a domain-ontology, the authors implicitly assume that
all the facts of an event are inside the same sentence. This as-
sumption, which is obviously too restrictive, is also found in
ontology population tasks [78,79] and in OIE [63,80,47]. Hence,
it is clear to us that the first task is to be able to chunk a whole
text into a set of events (which are in forms of sentences
that are not necessarily contiguous in a given document [49])
and then to map concepts and relations of a given ontology
or columns of a given database schema into the extracted
pieces of information (from binary or n-ary relations) of each
chunk. We see that unlike [77], many approaches work with
general concepts (named entities categories like person, orga-
nization, location, date, etc.) [76,81]. Some work like YAGO [82] try
to have some specific concepts (e.g “American person”), but it
seems to us too general in comparison to [77] where concepts
such as “NFLTeam”, “GameWinner” or “TeamScoringAll” can be
extracted.

Very few work focus on ontology population in Big Data
context. The main aspect broached is the identification of
the possible class of an entity. More, this identification is
too general, and when it is very domain specific it implies a
significant part of human intervention.

4.2.6. Entity consolidation
Entity consolidation can be seen as the building of owl:sameAs

closure in OWL-data. In practice this is not always straight. In
fact, owl:sameAs property is not always explicit. It can be hid-
den behind inference on an inverse functional property [83], a
functional property [21], an equivalent property [84], cardinal-
ity restrictions [38,39]. Moreover, an equivalent property can
be derived through heuristics (string similarity between prop-
erties’ short names or labels). Concerning algorithms, [83,21]
have similar approaches: to group all equivalent entities in
a given set and to assign a unique identifier to them, which
will replace entities of its set within real data. To achieve this
goal, [83] propose amethod which can be runmany times due
to new derivations implied by an inverse functional property!
To obviate these limitations, [21] leverage on their ordering of
rules and MapReduce parallel capabilities.

4.3. The billion triple challenge

At the end of the first challenge we have billions of RDF-triples
and we must be able to reason on it. One of the most relevant
works which tackle this problem is [21]. Their work has led
to a tool termed WebPIE (Web-scale Inference Engine). In [21], in-
ference rules are rewritten and map and reduce functions are
specified for each of them. This work has inspired the work
of [22] who propose a MapReduce-based algorithm for classify-
ing EL+ ontologies. Another relevant work in this challenge
focuses on efficient RDF repositories partitioning and scala-
bility of SPARQL queries [85]. We can also add [86] which pro-
poses a way to store and retrieve large RDF graphs efficiently.
Concerning the (complete) description of entities in the mid-
dle of billion RDF/RDFS triple mentioned in the third chal-
lenge, [38] designed a Semantic Web Search Engine (SWSE)
which has many features including entities description. Here,
this description is obtained by aggregating efficiently descrip-
tions from many sources.

If we know how to infer over billion RDF-triples, it is not
easy to deal with noise, inconsistency and various errors
found in RDF datasets. [87] identify four sources of errors:
(i) accessibility and dereferenceability of URIs, (ii) syntax errors,
(iii) noise and inconsistency (e.g: use of undefined classes of
properties, misuse of a class as a property and vice versa, etc.)
and (iv) ontology hijacking. [88] propose to repair or to be able to
infer in such a noisy context. For repairing, they identify the
“minimal inconsistent subset” (MIS) of the ontology and the
subsets the MIS will affect. For reasoning, [88] leverage the pi-
oneering work of [89] and propose to answer queries based on
consistent subsets (which grows inclusively) of the given on-
tology. The choice of the subsets are based on syntactic and
semantic heuristics. In the same paper, uncertainty in rea-
soning is handled by adding confidence value to the elements
of the ontology.

4.4. Schema alignment

Basically, data integration is done in three main steps: Schema
alignment, Record linkage and Data fusion [9]. The previous
paragraphs tackle problems relative to disambiguation and
good understanding of data: we were working only on
instances of knowledge bases. At the end of steps described
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in these paragraphs, we have a clean knowledge base or
ontology. But what if our ontology has to be queried, merged
or linked with another one? Answer to this question is
ontology alignment (a.k.a. ontology matching) and it has to
be done in agreement to Big Data requirements (a recent and
relevant review of schema alignment with structured data in
Big Data era is presented in [9]). A deep and recent review of
ontology matching is presented in [90]. Aspects of ontology
matching which present an interest for us are mentioned
there in terms of challenge. Some of those aspects like the
use of external resources have a direct impact on ontology
matching in the context of Big Data. It is the case of (i) matcher
selection, combination and tuning and (ii) user involvement.
Challenge (i) is relevant to us because matcher uses different
techniques and to combine/tune them can improve results.
Moreover, the improvements of these techniques can focus on
specific aspects (volume, uncertainty) of ontologies. But these
combinations can have a negative impact on processing time.
The same remark can be done in the second “challenge” since
the user can resolve matching errors but it is difficult to rely
on users in large ontologies alignment.

In addition, Shvaiko and Euzenat [90] mention the lack of
evaluation of scalability as a challenge. Likewise, all these
remarks could be made ours, after we have presented main
aspects of Big Data semantic management. Surely, all the
techniques and tools aforementioned can be improved by
various parameters or heuristics, but in Big Data era, a
significant place must be made to optimization. Tools must
handle exabytes of data, streaming data, fast changing ones,
very informal data, etc.

5. Ethics and privacy

Ethics and privacy have always been a main concern in data
management. They are now of big interest with big data. This
is due to the multi-dimensionality of big data:

• Due to the huge volume of data more pieces of valuable
information can be identified or inferred than it was
possible before.

• The high velocity of data makes feasible analysis in real
time and thus a continuous refining of users’ profiles.

• The variety of data sources make users traceable. In
addition the diversity of data types allows data owners to
build more complex and rich profiles of users. Moreover,
this variety leads to a diversification of business plans
making big data more attractive at a bigger level.

This ability to infer new insights from big data with an impact
on privacy brings Mayer-Schönberger and Cukier [91] to define
big data as “things one can do at a large scale that cannot be
done at a smaller one, to extract new insights or create new
forms of value, in ways that change markets, organizations,
the relationship between citizens and governments, and
more.”

Thus presented, one can think big data era is exclusively
valuable for business people. In accordance to what Davis
and Kord said [1], we think that big data era is also worth
for the man in the street. It can be seen through services

like Google Flu Trends10 or user recommendation services
as those proposed by Netflix or Amazon. The pivotal point
is hence about the balance between benefits and drawbacks
of snooping around people’s big data. Mayer-Schönberger and
Cukier [91] propose four principles which could help to find a
trade-off in this era of big personal data flow:

• Privacy should be seen as a set of rules encompassing
flows of information in ethical ways but not the ability to
keep data secret.

• Shared information can still be confidential.
• Big data mining requires transparency.
• Big data can threaten privacy.

6. Conclusion

We are living in the era of data deluge. The term Big Data
had been coined to describe this age. This paper defines and
characterizes the concept of Big Data. It gives a definition
of this new concept and its characteristics. In addition, a
supply chain and technologies for Big Data management are
presented. During that management, many problems can be
encountered, especially during semantic gathering. Thus it
tackles semantics (reasoning, coreference resolution, entity
linking, information extraction, consolidation, paraphrase
resolution, ontology alignment) with a zoom on “V’s”. It
concludes that volume is the most tackled aspect and
many works leverage Hadoop MapReduce to deal with volume
[21,40,41,22]. More and more, unlike velocity, web and social
media informality and uncertainty are addressed by scien-
tists. We see that uncertainty can be handled manually (Rip-
ple Down Rules [44]) or automatically (identification and/or
isolation of inconsistencies [88]). About velocity, gazetteers
and knowledge basesmust be continually updated [88,45] and
data processed periodically [43,42]. Similarly if we want to
tackle variety, wemust deal with various data formats (tweets
in [45,46,88] and natural language texts [47,80,62,76]) and dis-
tributed data [38,39]. As [13] said, Big Data must be addressed
jointly and on each axis to make significant improvement in
its management.
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