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a b s t r a c t

In this work, we address a cross-layer multi-objective optimization problem of maximizing

network lifetime and optimizing aggregate system utility with intra-flow network coding,

solved in a distributed manner. Based on the network utility maximization (NUM) framework,

we resolve this problem to accommodate routing, scheduling, and stream control from differ-

ent layers in the coded networks. Specially, we consider that there are two scheduling prim-

itives, namely hyperlink and transmission mode, to be concurrently activated for the multi-

objective optimization. Given the constraints with respect to these primitives, the optimiza-

tion problem is specifically formulated as a quadratically constrained quadratic programming

(QCQP) problem that is NP-hard in general, and its scheduling subproblem even when re-

duced to account for only one of these primitives is a maximum weighted independent set

(MWIS) problem that is NP-hard already. To alleviate this complex problem in a distributed

manner, we resort to alternate convex search (ACS) and primal decomposition (PD) to ap-

proximate the optimal results by using biconvex programming model and subgradient-based

algorithm that can iteratively approach to the optimal solution. For the wireless multihop net-

works, wherein an optimal solution could be practically approximated as its validity would be

out-of-date soon in the error-prone wireless environment, our simulation results show that

the distributed method can fulfill our requirements, and can make a good trade-off on the

heterogeneous objectives with well computational efficiency.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Recent proliferation of wireless services has created large

scale demands for transmission of traffic requiring strin-

gent throughput guarantees, and the system performance

of such networks is typically a function of the amount of
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data collected by individual stations and delivered to a set

of sinks through multi-hop routing. However, these stations

usually operate with small batteries that are difficult to re-

place in typical scenarios, and thus minimizing their energy

consumptions and maximizing the network lifetime con-

tinuously intensify the interest of researchers in the devel-

opment of energy-efficient wireless transmission schemes.

Further, a trade-off inevitably arises in simultaneously max-

imizing the network lifetime and the application perfor-

mance. For this challenge, a cross-layer optimization scheme

is usually adopted by the related works because it can coordi-

nate resources allocated to different layers to achieve globally
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optimal performance for various objective functions. Nev-

ertheless, due to the nature of wireless multihop transmis-

sion, distributed algorithms for, e.g., routing and scheduling,

are more practical than the cross-layer optimization counter-

parts that would be usually operated in a centralized manner.

Thus, how to preserve theoretical benefits from a central-

ized optimization method while adapting to the distributed

computation environment motivates our research to develop

decentralized approaches based on mathematical program-

ming models.

As another perspective of research, Ahlswede et al. in-

troduce in their seminal work [1] that by allowing inter-

mediate nodes to perform coding operations in addition to

pure packet forwarding, network coding (NC) can achieve the

maximum multicast rate and thus can improve the overall

network throughput. Following that, Li. et al. [2] show the

fact that linear network coding suffices to achieve the maxi-

mum rate, and further Ho et al. [3] show that random linear

codes can be used to achieve the linear network code rate

asymptotically. More explicitly, the wireless broadcast nature

enables a wireless station to broadcast data to all neighbor-

ing nodes. Each station or node can then overhear packets

from the multicast source or any neighboring nodes, and act

as a router or forwarder to forward data to multicast destina-

tions. Nevertheless, caused by lossy wireless channel, differ-

ent nodes could overhear the packets from the same router

but might lose different packets, thus requiring the router to

retransmit the lost packets. To resolve this issue, the authors

in [4,5] exhibit intra-flow network coding for loss recovery

of multicast traffic, and show that the number of retransmis-

sions required for loss recovery is significant reduced.

Now, given the capability of network coding, it still re-

mains significant challenges for a cross-layer optimization

in wireless multihop networks even with centralized ap-

proaches. For example, it had been readily shown in [6–8]

that the general problem of interference-free scheduling for

multihop wireless networks is NP-hard to a centralized algo-

rithm even without network coding. Here, by adopting intra-

flow NC to extend the capability of routing while addressing

the other problems arising from different layers, we face an

even more challenging scheduling subproblem in the coded

networks wherein each hyperlink (or hyperarc in [9]) has

different probability to be activated and each transmission

mode (or network component in [10]) has different proba-

bility to be selected for operation among the various trade-

offs between throughput and lifetime utilities in a joint ob-

jective function, which should be determined simultaneously

for both hyperlink and transmission mode, and all have to be

done in a distributed manner consistently.

Related works. In the following, we review related works

in four categories: joint cross-layer optimization, scheduling

design, resource allocation on NC, and other related works.

1) Joint cross-layer optimization. For wireless sensor net-

works (WSNs) without NC, the authors in [11] study the prob-

lem of joint routing, link scheduling and power control to

support high data rates and propose an algorithm to mini-

mize the total average energy consumption in such networks.

In [12], the authors consider a joint optimal design of phys-

ical, MAC, and routing layers to maximize the lifetime of

WSNs. Specifically, they use TDMA as their MAC to formulate

the optimization problem as a mixed integer convex prob-
lem, which can be solved with standard techniques such as

interior point methods. In addition, the authors in [13] de-

velop a unifying framework to understand the trade-off be-

tween the application layer performance and the lifetime of a

WSN in which nodes can adopt their source rates so that the

network operates at an optimal set of source rates that can

jointly maximize the network utility and lifetime. In addi-

tion, many other cross-layer solutions for WSNs can be found

in the survey paper [14].

2) Scheduling design. As a seminal work on scheduling,

Tassiulas and Ephremides [15] obtained a link scheduling

policy that attains the maximum possible throughput in

presence of arbitrary scheduling constraints, by scheduling

in each time slot an independent set (in the link interfer-

ence or conflict graph) that has the maximum aggregate

queue length. Afterward, the maximum weighted indepen-

dent set (MWIS) problem of finding the independent set with

the maximum weight involved is known to be a bottleneck

of the wireless utility maximization problem [16]. As noted

in [17], the scheduling-relevant formulations often suffer

from two shortcomings: 1) the optimization problem could

be intractable when the network size is large (i.e., it is NP-

hard), and 2) the optimization problem could be amenable

to centralized implementation only.

3) Resource allocation on NC. By randomly mixing a se-

quence of native packets in the same multicast session to-

gether, the empirical study [4] also shows that intra-flow or

inter-session NC can be MAC-independent and have the prac-

tical benefits of mixing packets with low complexity. Given

that, for an unicast traffic problem with intra-flow NC, the

work [18] proposes a rate control scheme to control the for-

warding data rate and improve NC efficiency under a fixed

physical bit rate. A similar optimization problem in [19] has

also been investigated for unicast traffic but further extended

to solve the problem of adapting the transmission bit rate of

each node. Apart from the above, certain aspects about sub-

graph selection for intra-flow multicast NC have been already

revealed and summarized in [9].

4) Other related works. Complementing the approaches

categorized above, there are other related works still worth

mentioned here. For example, the problem of achieving min-

cost multicast in networks has been studied [20], and the

rate control problem for the multicast flows had been ad-

dressed [21], all by means of network coding. As a very use-

ful tool, game theory is also utilized to accommodate the

framework of network coding to achieve the maximum mul-

ticast in WSNs. Specifically, the work in [22] shows that a

generalized butterfly network can be analyzed as a two-

source unicast coded network, and its robustness had been

investigated by game theory with the desired solution to

reach equilibrium. In addition, the authors in [10] jointly con-

sider links, routes, and network components with a nonlin-

ear cubic game, and constitute an unconstrained optimiza-

tion problem to be sequently solved with a fictitious play (FP)

technique. Recently, in [23] we propose a cross-layer opti-

mization formulation to jointly maximize two different per-

formance utilities in wireless multihop networks with net-

work coding. However, the previous work only considers for

transmission modes, in contrast to the distributed approach

presented here that accounts for both hyperlink and trans-

mission mode. In fact, these metrics (transmission mode and
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hyperlink) could be formulated as two players in a matrix

game, but a programming model for the relevant problem

could be usually solved by a centralized approach, and would

be time-consuming due to its NP nature, as shown in our pre-

vious work [24].

Thus, instead of considering centralized approaches, here

we take into account the advances of intra-flow network cod-

ing for multicast sessions, and propose a cross-layer formula-

tion of general network utility maximization (NUM) that can

accommodate routing, scheduling and stream control from

different layers in such coded wireless networks for maxi-

mizing network lifetime and system performance, realized in

a distributed manner. In fact, the problem of maximizing the

twin objectives of network lifetime and system performance

that could conflict with each other results in a multi-criterion

or vector optimization problem shown in Section 4.7 of [25].

A common approach to such a problem is to introduce a sys-

tem parameter (λ ∈ [0, 1]) that can control the desired trade-

off between the conflicting metrics with a weighted sum, as

shown in [13]. Besides, in this work, we concurrently con-

sider hyperlink scheduling and transmission mode schedul-

ing in addition to many other constraints to be involved,

while requiring no centralized optimization scheme to con-

verge to the optimal solutions that may involve exponential

number of subproblems required by a NP problem. Specif-

ically, for the resulted quadratically constrained quadratic

programming (QCQP) problem that is NP-hard in general,1

we conduct a distributed algorithm based on alternate con-

vex search (ACS) [26] and primal decomposition (PD) [27,28]

to decompose the biconvex programming model to its sub-

problems resolved by subgradient-based algorithms, com-

bined to iteratively approach the solution of this complex

routing, stream control, and scheduling problem. In the en-

vironment of wireless multihop network, where nodes may

be mobile and channels are usually error-prone and time-

varying, our method can obtain a reasonable trade-off ap-

proximating the optimal within a reasonable time budget,

which may be more preferred than the optimal solution that

could be only obtained by a global optimization algorithm,

e.g., GOP [29], supported by perfect parameters and calcu-

lated in a centralized manner to evaluate 2|I| nonlinear sub-

problems in the worst case. Alternatively, block-relaxation

based methods, such as ACS just noted, are usually used to

alleviate intractable problems due to nonconvex and combi-

natorial nature by dividing the variable set involved into dis-

joint blocks and iteratively optimizing only the variables of

an active block while leaving those of the other blocks to be

fixed, which have been successfully applied to resolve some

well-known problems, e.g., nonnegative matrix factorization

(NMF) problem [30] and bilinear matrix inequalities (BMIs)

problem [31]. However, these methods are mainly central-

ized, and implementing them for the scheduling constraints

in question distributively is not clearly known. Similarly, al-

though primal decomposition based methods, which may be
1 The NP-hardness of QCQP can be well seen from the fact that any two

constraints x(x − 1) ≤ 0 and x(x − 1) ≥ 0 are equivalent to the constraint

x(x − 1) = 0, which is in turn equivalent to the constraint x ∈ {0, 1}. That is,

any 0–1 integer program can be formulated as a quadratically constrained

quadratic program. Because 0–1 integer programming is NP-hard in general,

QCQP is also NP-hard.
thought of as an extension of the former, have been suc-

cessfully applied to solve more recent optimization problems

for communication and signal processing [27,28,32], these

problems are typically convex and did not involve the non-

convexity of quadratic scheduling constraints to be resolved

here in a distributed manner. Thus, we elaborate in this

work a distributed approach to resolve the non-convexity

by means of an idea like ACS and PD, resulting in a simple

and efficient method which also accounts for the maximum

weighted independent set (MWIS) problem to be involved.

Finally, when compared with the other related works, our

work has its own characteristics as summarized as follows:

• Unlike the conventional optimization approaches,

e.g., [11–13,33,34], that may or may not consider multiple

objectives, but all pay no attention to network coding,

our work contributes on a cross-layer optimization

formulation that can actually account for such a coding

scheme on wireless multihop networks.

• When compared with the related works with network

coding just surveyed, e.g., [4,9,10,18–21,23], which con-

tribute valuable results on the various studies with or

without transmission modes, our work explicitly dedi-

cates to a cross-layer optimization framework with two

scheduling primitives, namely hyperlink and transmis-

sion mode, specific to the coded network while leaving its

routing decision to be realized through our various cross-

layer constraints accommodating also other design cri-

teria to be involved, which leads to an optimal trade-off

among the diverse objectives across multiple layers.

The remainder of this paper is organized as follows. In

Section 2, we first introduce hyperlink and transmission

mode considered in the network coding-based wireless net-

works. Then, we propose our joint lifetime-utility cross-layer

optimization with concurrently scheduling on hyperlink and

transmission mode in Section 3. Following that, we extend

the cross-layer multi-objective programming model to a dis-

tributed algorithm in Section 4. To know its efficiency, the op-

timization framework along with the distributed algorithm

resulted is examined numerically in Section 5. Finally, con-

clusions are drawn in Section 6.

2. Network coding-based network model

Consider a wireless multicast network as a directed hy-

pergraph G = (N ,L), where N is the set of nodes and L is

the set of hyperlinks. In this context, a hyperlink (i, J) ∈ L
for wireless network coding represents a one-hop broadcast

transmission, wherein i ∈ N is the transmitter and J ⊆ N is a

set of receivers with the same multicast address that can re-

ceive the packets from i owing to the broadcast nature of the

wireless channel. When J contains only one node j, the hy-

pergraph resulted would be reduced to a conventional graph

model.

For ease of exposition, we consider a well-known butter-

fly wireless network with network coding shown in Fig. 1(a)

as our example,2 whose objective is to multicast packets
2 Some examples based on the classical wireless butterfly network had

also been given in the literature for different purposes. For instance, a similar

example in [35] was exhibited in bit level rather than packet level demon-

strated here.
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Fig. 1. Butterfly wireless network example: (a) original network, (b) transmission mode 1: {(1,{2}),(3,{4,6})}, (c) transmission mode 2: {(1,{3}),(2,{4,5})}, and (d)

transmission mode 3: {(4,{5,6})}.

Table 1

Scheduling results for the network coding-based wireless network in Fig. 1(a).

Time slot 1 2 3 4 5 6 7 8

Schedule 1
−→
p13 3

−→
p14 2

−→
p24 4

−−−−−→
p1 ⊗ p25 3

−→
p34 2

−→
p44 4

−−−−−→
p3 ⊗ p45 3

−→
p54

3
−→
p16 2

−→
p25 4

−−−−−→
p1 ⊗ p26 3

−→
p36 2

−→
p45 4

−−−−−→
p3 ⊗ p46 3

−→
p56

1
−→
p22 1

−→
p33 1

−→
p42 1

−→
p53 1

−→
p62

Transmission mode 1 2 3 1 2 3 1
originating at source node 1 to both destination nodes 5

and 6. A classical collision model is assumed in this exam-

ple for simplicity. That is, a collision will occur if multiple

transmissions reach a node in the same time slot in spite of

the distances or SINR values resulted from different sources

destined to the node. Thus, for solving this multicast prob-

lem, we need to schedule conflict-free transmissions that

can avoid performance loss. Specifically, given a sequence of

packets, p1, p2,…, to be transmitted, a possible solution or

schedule is exemplified in Table 1, where a
−→
pi b denotes the

transmission of packet i from node a to node b, and pi ⊗ pj

denotes the XOR operation of two packets pi and pj to form

a coded packet. Given the five hyperlinks, (1, {2}), (1, {3}), (2,

{4, 5}), (3, {4, 6}), and (4, {5, 6}) for illustration, in time slot

2, we have the scheduling result that node 3 can multicast

p1 to nodes 4 and 6 while node 1 can transmit p2 to node 2

at the same time without inference. Thus, the set of hyper-

links that can be simultaneously activated, i.e., {(1,{2}),(3, {4,

6})}, is therefore called a transmission mode and Fig. 1(b) ex-

plicitly shows this mode along with the others in (c) and (d).

Clearly, when compared with the traditional routing, which

requires a period of four time slots for transmitting two pack-

ets, the network coding scheme requires only three time

slots, each involving a transmission mode, to complete the

transmission. More explicitly, the destination node 6 (resp.

5) can obtain p1 (resp. p2) at slot 2 (resp. slot 3) and then use

p1 ⊗ (p1 ⊗ p2) (resp. p2 ⊗ (p1 ⊗ p2)) to obtain p2 (resp. p1) at

slot 4. In other words, the gain of network coding is realized

by a simple form of (random) linear network coding consist-

ing of node 4 performing the XOR operation p2i−1 ⊗ p2i at

time slot 3i + 1, i = 1, 2, . . . , and using the wireless multicast

advantage to send the coded packet to node 5 and node 6 in

a single transmission, which can be further decoded with the

aid of obtained packets (or say, remedies in [9]).

Note that the classical collision channel mode just exem-

plified is only used for ease of exposition. In the following
work, it is extended to the more realistic SINR-based channel

model with the relevant definition given as follows:

Definition 1. ξ ⊂ L is a set of links that can be concurrently

activated without violating the minimum SINR for communi-

cation, ζ . That is, all the receivers of the concurrent links in ξ
must have their SINR values higher than the requirement ζ .

If ξ can satisfy this constraint, it is called a transmission mode.

Remark. In the previous works, e.g. [23,36,37], transmission

modes are conventionally considered to have different activ-

ity probabilities while hyperlinks (or links) in such a mode

are commonly assumed to be deterministic from the mode’s

viewpoint; that is, when a transmission mode is scheduled,

all of its hyperlinks (or links) will be simultaneously activated

no matter what. It had been considered in [10,24] that hyper-

links (or links) can have their own activity probabilities sum-

ming to one, independent of transmission modes (or network

component sets), resulting in a general payoff on a min-max

zero-sum game between hyperlinks and transmission modes

in a network-coded wireless network. This definition extends

the conventional scheduling problem to take into account the

fact that these scheduling metrics can have different activity

probabilities so that the network can be optimized by con-

sidering these scheduling metrics at the same time. However,

such a generalization leads to a nonlinear and even noncon-

vex optimization problem which, in previous works, can be

only resolved in a centralized manner.

3. Joint lifetime-utility cross-layer optimization with

hyperlink and transmission mode scheduling

After introducing the hyperlink and transmission mode

based on network coding, in the sequel we aim to solve

a joint lifetime and utility optimization problem with a

specific focus on solving its subproblem of hyperlink

scheduling and transmission mode scheduling tailored for
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the multi-objective optimization. For this aim, we introduce

in the following different relevant components to com-

plete our programming model specific to the optimization

problem.

3.1. Network coding-based transmission model

It is emphasized that, in this work, rather than only

formulating the scheduling problem as exemplified in

Section 2, our aim is actually to complete a cross-layer

optimization scheme, which also accounts for routing and

stream control in the network layer and the transport layer.

Hence, we should introduce the other variables with respect

to these layers, in addition to those corresponding to the

hyperlink scheduling and transmission mode scheduling to

be introduced.

To start with, we consider a set of multicast sessions to

be transmitted for the transport layer in the coded network.

Herein, a multicast session is denoted by its source node

s ∈ S ⊂ N multicasting packets to its destination node set Ts.

Further, for the network layer, we let f st
iJ j

denote the informa-

tion flow rate from source s to destination node t ∈ Ts over

hyperlink (i, J) and intended to node j ∈ J. Then, for a multi-

cast session where source s wants to transmit on a rate of xs

to its set of destination nodes Ts, we have the flow conserva-

tion law as∑
{J|(i,J)∈L}

∑
j∈J

f st
iJ j −

∑
j∈N

∑
{i|( j,I)∈L,i∈I}

f st
jIi

= xi,s,∀i ∈ N ,∀s ∈ S,∀t ∈ Ts (1)

where xi,s =

⎧⎨⎩
xs, if node i is the source of session s

−xs, if node i is the sink of session s

0, otherwise

(2)

Obviously, the session rate and then the flow rate in the

upper layers should be realized by the hyperlink capacity for

the MAC layer and the data rate for the physical layer. Thus,

we proceed to establish the relationship between the upper

layers and the lower layers. Specifically, with network coding,

an intermediate node can generate output data by perform-

ing, e.g., (random) linear coding on the received data pack-

ets as exemplified above. Therefore, network coding is often

thought of as a generalized routing by allowing the informa-

tion to be modified instead of direct packet relaying. By do-

ing so, flows with different destinations in a multicast session

are allowed to share the network capacity. Here, denoting by

gs
iJ

the physical flow rate from source s to the set of destina-

tion nodes Ts over (i, J), we can specify the constraint that,

with network coding, the sum of flow rate on hyperlink (i, J)

should not exceed the physical rate, as follows:∑
j∈J

f st
iJ j ≤ gs

iJ,∀(i, J) ∈ L,∀s ∈ S,∀t ∈ Ts (3)

3.2. Concurrently hyperlink and mode scheduling

In the following, we introduce the hyperlink and trans-

mission mode scheduling subproblem. In particular, unlike
the previous works [12,23,38], which usually focus on pro-

cessing a set of transmission modes [23], a set of wire-

less network realizations [38], or a set of time slots [12] for

achieving their specific performance metrics, we consider in

this work a decision making problem with multiple specific

objectives, and extend the previous to model both hyperlink

and transmission mode as the metrics to be concurrently sat-

isfied in the utility maximization. Moreover, beyond certain

centralized approaches based on programming techniques or

fictitious play, e.g., in [10], our programming model can ac-

commodate multiple utilities and can be further extended to

be distributed algorithms, which are more practical in wire-

less networks. To show this, we afterward refer to the hy-

perlinks by {l1, l2,…, lm}, and the transmission modes by {ξ 1,

ξ 2,… ξ n} in a fixed order, respectively. Here, in terms of ma-

trix game, in which two players are row player (or Player I)

and column player (or Player II), and a game between them

is determined by a m × n matrix A, we could consider hy-

perlink as row player, equipped with m pure strategies corre-

sponding to M̄ = {1, . . . , m} rows, and transmission mode as

column player, equipped with n pure strategies correspond-

ing to N̄ = {1, . . . , n} columns. Given that, the set of mixed

strategies for Player I or hyperlink can be defined as

P =
{

p = (p1, . . . , pm)|pu ≥ 0,∀u = 1, . . . , m,

m∑
u=1

pu = 1

}
(4)

Similarly, the set of mixed strategies for Player II or transmis-

sion mode can be defined as

Q =
{

q = (q1, . . . , qn)|qv ≥ 0,∀v = 1, . . . , n,

n∑
v=1

qv = 1

}
(5)

That is, the player I’s move is to choose a row vector p =
(p1, ..., pm) with pu, 1 ≤ u ≤ m, nonnegative and summing

to one. The player II’s move is to choose a column vec-

tor q = (q1, ..., qn) with qv, 1 ≤ v ≤ n, likewise nonnegative

and summing to one. The players make their moves inde-

pendently and the game is concluded by the column player

paying the expected number pAqT to the row player. In-

spired by the game, we resolve our scheduling subproblem in

the cross-layer optimization by weighting each performance

metric differently in the objective function, and specifying

our scheduling constraints with the payoff matrices to be

introduced. Thus, the objective value can be indirectly af-

fected by the payoffs for a smoother tradeoff between the

performance metrics, and the resulted mixed strategies or

probabilities can be used for the scheduling. To this end, we

would derive the constraints with respect to the scheduling

subproblem involved first. Specifically, we denote by ru,v in-

stead of rk
iJ

to be the transmission rate of a hyperlink lu = (i, J)

scheduled by pu and qv, and denote by gs
u instead of gs

i,J
the

physical flow rate of session s over lu = (i, J), wherever the

hyperlink (i, J) is not required to specify its i and J and can

be simply denoted by lu with an index u in M̄ that corre-

sponds to {l1, l2, …, lm}, and k can be replaced by v in N̄ that

corresponds to {ξ 1, ξ 2,… ξ n}. With these concise notations,

we can formulate the constraint that the physical flow rate
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U

i ∈ N ,

i ∈ N

(i, J) ∈

u ∈ M̄

u ∈ M̄

v ∈ N̄
accounting for all sessions s ∈ S on a hyperlink lu should be

upper bounded by the physical capacity ru,v scheduled over

this hyperlink by all transmission modes qv, when pu is given,

as follows:∑
s∈S

gs
u ≤

n∑
v=1

puru,vqv, u ∈ M̄ (6)

In addition, the lifetime of node i can be represented by

considering its initial energy consumed by all its hyperlinks

activated by both hyperlink and transmission mode schedul-

ing. That is,

Ti = Ei∑
{u:tr(u)=i}

∑n
v=1 pueu,vqv

(7)

where tr(u) is the transmitter of hyperlink lu, Ei denotes the

initial energy of node i, and eu,v represents the average en-

ergy spent by lu when scheduled to be active by pu and qv.

Now, the lifetime in (7) might be utilized as an objective

to be optimized directly. However, it could be more conve-

nient to represent it by the relevant constraints in our pro-

gramming model. Specifically, by exchanging the left-hand

side of (7) and the denominator in its right-hand side as∑
{u:tr(u)=i}

∑n
v=1 pueu,vqv = Ei

Ti
, defining the inverse lifetime

as �i = 1
Ti

, and estimating such a lifetime by using inequality

instead of equality, we have the following lifetime constraint:

∑
{u:tr(u)=i}

n∑
v=1

pueu,vqv ≤ �iEi,∀i ∈ N (8)

3.3. Cross-layer variables and weighted multi-objective

function

Now, from a cross-layer viewpoint, we can think of ses-

sion rates xs as stream control variables, flow rates f st
iJ j

as

maximize μ(λ) = λ1

∑
s∈S log (xs)

W1

− λ2

∑
i∈N �2

i

W2

subject to
∑

{J|(i,J)∈L}

∑
j∈J

f st
iJ j −

∑
j∈N

∑
{i|( j,I)∈L,i∈I}

f st
jIi ≥ xi,s, ∀

∑
{u:tr(u)=i}

n∑
v=1

pueu,vqv ≤ �iEi, ∀
∑
j∈J

f st
iJ j ≤ gs

iJ ∀

∑
s∈S

gs
u ≤

m∑
v=1

puru,vqv, ∀
m∑

u=1

pu = 1

n∑
v=1

qv = 1

0 ≤ pu ≤ 1, ∀
0 ≤ qv ≤ 1, ∀
routing variables, and hyperlink strategies pu and transmis-

sion mode strategies qv as scheduling variables. In terms

of these variables, we choose to use the weighted sum ap-

proach well-known in the literature [39] to accommodate

the multiple objectives to be involved. Specifically, by us-

ing λ = (λ1, λ2) as the trade-off weight, we can formulate

the weighted sum as our objective with a proper choice of

λ1 + λ2 = 1 when only two metrics involved, and if more

than two metrics involve, the corresponding objective can be

similarly obtained.

As noted before, our aim is to concurrently optimize life-

time and throughput. The two metrics, however, are con-

flict in nature, and we should particularly define different

utilities to reach a suitable compromise between the het-

erogenous metrics. Specifically, for the metric of lifetime, we

define utility Ui of a node i as a function of its lifetime Ti

and the network lifetime TN as mini∈N Ti. In addition, we let

i(Ti) = �γ
i

(where �i = 1
Ti

, as defined previously) to repre-

sent node i’s normalized power dissipation with respect to

its initial energy Ei. When properly designed, Ui is a strictly

convex and increasing function with, e.g., γ ≥ 2, and maxi-

mizing the lifetime is equivalent to minimizing the penalty

of Ui. More specifically, we assume γ = 2 that is also consid-

ered in the previous work [13], and proceed to solve the sum

of aggregated utility maximization problem, max
∑

i∈N −Ui

or min
∑

i∈N Ui. Similarly, for the metric of session data rate,

we adopt the well-known log function for fair resource al-

location as our throughput utility, and consider to solve its

utility maximization problem, max
∑

s∈S Us.

3.4. Cross-layer programming model

Consequently, by taking into account the objectives to be

combined along with the constraints just introduced, we can

formulate the joint lifetime and utility maximization with

network coding and multiple payoffs (JLUP) as follows:

(a)

∀s ∈ S,∀t ∈ Ts (b)

(c)

L,∀s ∈ S,∀t ∈ Ts (d)

(e)

( f )

(g)

(h)

(i)

(9)
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maxi

∀i ∈ N

∀i ∈ N

∀(i, J)

∀u ∈

∀v ∈
where W1 and W2 are used to balance the possibly very

different quantities resulted from the heterogeneous utility

functions so that λ1 and λ2 can have their values in the same

scale for the tradeoff. Apart from the above, the constraints

contribute themselves as follows. (9(b)) represents the flow

conservation law, showing that the total output rate should

be equal to or greater than the corresponding input rate ex-

cept that for sinks. (9(c)) is the lifetime constraint, saying that

the energy spent by node i in its lifetime should be equal to

or less than its total (or initial) energy. (9(d)–(e)) show the

flow-sharing properties of network coding. (9(f)–(g)) denote

the scheduling constraints, and (9(h)–(i)) simply represent

the validity constraints upon the scheduling variables.

4. Distributed algorithm

In this section, we extend the programming model just in-

troduced to a distributed algorithm. Specifically, by means of

decomposition theory that provides the mathematical rich-

ness to construct an analytical framework for the design of

distributed control of network [27], we introduce a system-

atic approach on the design of distributed algorithm utilizing

the capability of network utility maximization formulation

revealed by the mathematical programming to approximate

the optimal results for the multihop intra-flow NC multicast

optimization problem.

4.1. Two level decomposition based on alternate convex search

and primal decomposition

As shown in (9(c), (e)), even without quadratic terms in

the objective function, which could be still thought of as in its

reduced quadric form, JLUP actually involves quadratic con-

straints and could be classified as a quadratically constrained

quadratic programming (QCQP) problem that is NP-hard in

general. To solve such a hard problem, one may resort to

an optimization tool such as global optimization algorithm

(GOP) [29], which would needs 2|I| nonlinear subproblems to

be solved to obtain a new lower bound to the problem in each

iteration, where |I| denotes the set of the connected variables

involved. Clearly, the time complexity that a global optimiza-

tion may involve could hardly be offered by a distributed al-

gorithm. Thus, on the one hand, instead of directly using an

LLP :

subject to
∑

{J|(i,J)∈L}

∑
j∈J

f st
iJ j−∑

j∈N

∑
{i|( j,I)∈L,i∈I}

f st
jIi ≥ xi,s,

∑
{u:tr(u)=i}

n∑
v=1

ẽu,vqv ≤ �iEi,

∑
j∈J

f st
iJ j ≤ gs

iJ

∑
s∈S

gs
u ≤

n∑
v=1

r̃u,vqv,

n∑
v=1

qv = 1

0 ≤ qv ≤ 1,
exact global optimization approach, we adopt the concept of

alternate convex search (ACS) [26], which is a minimization

method to find partial optimum and is a special case of block-

relaxation methods where the variable set is divided into dis-

joint blocks [40]. On the other hand, by surveying the litera-

ture for convex optimization, we find that the decomposition

theory is well studied to provide a variety of decomposition

approaches suitable for different types of problems, among

which primal decomposition (PD) is considered more suit-

able for the problems with coupling variables [27].

For our JLUP, we develop a new distributed algorithm in-

spired by both ACS and PD. Specifically, we can see that,

although defining �i = 1/Ti resolves the nonlinear problem

caused by the raw form of lifetime Ti, the nonlinear (or even

further, nonconvex) terms puru,vqv and pueu,vqv still remains

to be cumbersome. In fact, if [ru,v] and [eu,v] are all posi-

tive semidefinite, the QCQP becomes a convex optimization

problem. This subclass of problems is solvable in polyno-

mial time by using, e.g., the second order cone programming

method [41]. However, in this work, the matrices are not

necessary positive semidefinite and finding the global opti-

mal solution to a general QCQP is NP-hard. Nevertheless, the

quadratic constraints involved are biconvex, and we could

solve it approximately to approach the optimal solution in

a distributed manner. That is, if qv (or pu) are fixed, the vari-

ables will be decoupled with the others, which transforms

the QCQP to a convex program. Thus, we can apply ACS to our

problem by considering only two blocks of variables defined

by the convex subproblems that are activated in cycles, and

then decompose JLUP into two levels of optimization prob-

lem based on the primal decomposition theory to approxi-

mate the optimum, which follows the decomposition ideas

introduced by Benders [42], Geoffrion [43], and Floudas and

Visweswaran [29] that are not restricted to be applied to con-

vex optimization only. More explicitly, if we choose pu to be

coupling variables, the two level decomposition of JLUP can

be represented as follows:

• Master primal problem:

MPP : maxμ∗(p)

subject to 0 ≤ pu ≤ 1,∀u ∈ M̄, and

m∑
u=1

pu = 1
(10)

• Low level problem:

mize μ(λ) (a)

− {t},∀s ∈ S,∀t ∈ Ts (b)

− {t} (c)

∈ L,∀s ∈ S,∀t ∈ Ts (d)

M̄ (e)

( f )

N̄ (g)

(11)
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where ẽu,v = pueu,v, r̃u,v = puru,v, and λ = λ1 + λ2 = 1

with λ1, λ2 ∈ (0, 1).

As shown above, the master primal problem MPP is de-

signed to respond in the duty of updating the coupling vari-

ables pu while the low level optimization problem LLP is in

charge of achieving optimum of the other variables. Now,

given the initial values of pu the distributed algorithm can

be implemented in the order of first using LLP to obtain the

optimal variables of the lower level problem, and then us-

ing MPP to update the coupling variables based on the op-

timal variables just resulted. In terms of the methodologies

involved, LLP and MPP can be said to resemble the two steps

in ACS whose variables are now decoupled by pu according to

PD, for iteratively approaching the partial optimum and thus

approximating the optimal results of this NP problem.

Remark. As shown above, our formulation complies with

the nonconvex NLP (nonlinear programming) problem in

[29] wherein the objective function and equality constraints

are biconvex while inequality constraints are biaffine, as

noted in [26]. The GOP algorithm [29] for such a problem

can terminate in a finite number of steps for any given ε >

0 at the global (ε-)optimum (see Theorem 4.11 and Corol-

lary 4.12 in [26]). That is, our QCQP problem satisfying the

above can have a global maximum. In addition, as noted in

[26] (with its notations, f, z, x, and y shown below), ACS re-

solves a biconvex optimization problem by iteratively solving

the optimization problem min {f(x, yi)} for fixed yi and setting

xi+1 = x∗ if an optimal x∗ is found, and then solving the op-

timization problem min{ f (xi+1, y)} for fixed xi+1 and setting

yi+1 = y∗ if an optimal y∗ is found. Suppose that the sequence

generated, {zi}i∈N, is contained in a compact set, and for each

z∗ = (x∗, y∗) of the sequence {zi}i∈N, the optimal solution of

y = y∗ and x = x∗ obtained by the ACS iterates shown above

is unique. Then, all accumulation points z∗ which lies in the

interior by using ACS are stationary points of the objective

function f (see Corollary 4.10 in [26]). However, as also noted

in the literature, although an accumulation point z∗ might be

a partial optimum, it does not have to be a global optimum

for the given biconvex optimization problem even if z∗ is sta-

tionary. Thus, it is noted in the above that according to ACS,

the partial optimum of LLP and MPP can be iteratively gener-

ated to approximate the global optimum for this NP problem.

It is also evident in the numerical experiments of Section 5

that the approximating results based on ACS as well as pri-

mal decomposition (PD) are actually close to the optimum.

4.2. Partial Lagrangian reformulation for LLP

After the two level decomposition, LLP resulted is still

complex and would not be easily solved even with a central-

ized approach. That is, a centralized approach directly apply-

ing ACS is not enough that only divides the variable set into

disjoint blocks and in every step allows the variables of an

active block to be optimized while keeping those of the other

blocks to be fixed. This is because the scheduling subproblem

imbedded in LLP, or LLP scheduling for short, corresponds to

a maximum weight independent set problem, which is NP-

hard in general, even though pu are fixed and given. When

considering its distributed implementation, we face the chal-

lenge not only caused by the maximization problem on the
lifetime and utility but also the convergence problem on the

scheduling. To see this, we relax the first two sets of con-

straints in (11) to form the partial Lagrangian as follows:

L(�, x, f, g, q, κ,ψ) = λ1

W1

∑
s∈S

log (xs) − λ2

W2

∑
i∈N

�2
i

+
∑

i∈N ,s∈S,t∈Ts

κ st
i

( ∑
{J|(i,J)∈L}

∑
j∈J

f st
iJ j −

∑
j∈N

∑
{i|( j,I)∈L,i∈I}

f st
jIi − xi,s

)

+
∑
i∈N

ψi

(
�iEi −

∑
{u,tr(u)=i}

n∑
v=1

ẽu,vqv

)
(12)

where {κ st
i
},∀i ∈ N − {t},∀s ∈ S,∀t ∈ Ts and {ψi},∀i ∈ N −

{t}, δv,∀v ∈ N̄, are the Lagrange multipliers corresponding to

(11(b)) and (11(c)), respectively.

To explain the reason why the Lagrangian approach would

be derived here, we turn back to note the fact that given

pu as constants, LLP has linear objective function and con-

straints. According to the optimization theory [25], the Slater

constraint qualification conditions are always satisfied for a

problem with a concave objective function and linear con-

straints, and thus LLP preserves the strong duality. Given

that, for solving the lower level optimization problem, we

can develop a primal-dual algorithm that updates the primal

and the dual variables simultaneously and moves together

toward the optimal points asymptotically. Moreover, to re-

solve the LLP scheduling subproblem embedded, we should

also develop a distributed algorithm that can find the optimal

transmission probability for each transmission mode and can

seamlessly cooperate with the primal-dual algorithm to be

derived, rather than only finding the subgradients with re-

spect to the primal and dual variables involved. For this aim,

we will develop a log-sum-exp approximation in the sequel,

as a part of the overall primal-dual distributed algorithm for

LLP. To start with, we continue the derivation of partial La-

grangian just obtained in (12), which can be further solved

by finding the saddle points of L(ϱ, x, f, g, q, κ , ψ) via the fol-

lowing dual problem (DP)

DP : min
κ,ψ�0

(
max
�,x�0

[
λ1

W1

∑
s∈S

log (xs)

+
∑
i∈N

(
− λ2

W2

�2
i + ψi�iEi

)
−

∑
i∈N ,s∈S,t∈Ts

κ st
i xi,s

]

+ max
f,g,q�0

[ ∑
(i,J)∈L,s∈S,t∈Ts, j∈J

f st
iJ j(κ

st
i − κ st

j )

−
∑
i∈N

ψi

( ∑
{u,tr(u)=i}

n∑
v=1

ẽu,vqv

)])
subject to (11(d)) − (11(g)) (13)

Given the formulation, we can then solve it successively, and

when proceeding, we can identify the scheduling subprob-

lem (SP) involved, as follows:
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SP : max
f,g,q�0

∑
(i,J)∈L,s∈S,t∈Ts, j∈J

f st
iJ j(κ

st
i − κ st

j )

−
∑
i∈N

ψi

( ∑
{u,tr(u)=i}

n∑
v=1

ẽu,vqv

)
subject to (11–d) − (11–g) (14)

SP is a linear programming problem on f, g, and q, wherein an

optimal solution is the extreme point solution. We can solve

this problem on f and g by taking into account the constraints

(11(d),(e)) to simplify the constrained optimization, leading

to the maximization problem (MP) on q as follows:

MP : max
q�0

n∑
v=1

qv

m∑
u=1

(
r̃u,vωu − ẽu,vψtr(u)

)
subject to

n∑
v=1

qv = 1 (15)

where ωu denotes the maximum differential backlog with re-

spect to hyperlink lu and will be discussed later. Given that,∑n
v=1

(
r̃u,vωv − ẽu,vψtr(u)

)
can be sought of as the weight of

the set of transmission modes � = {ξ1, . . . , ξn} with respect

to q = (q1, . . . , qn) for scheduling, which corresponds to a

maximum weight independent set problem. As a result, MP

is NP-hard and difficult to be approximated even in a cen-

tralized way [44]. Nevertheless, we can still resolve it with

a distributed approach based on the log-sum-exp approxi-

mation method in [17]. Specifically, the maximization can be

approximated by the log-sum-exp function with a positive

constant β ,

max
q�0

m∑
u=1

(r̃u,vωv − ẽu,vψtr(u))

≈ 1

β
log

(
n∑

v=1

exp

(
β

m∑
u=1

r̃u,vωv − ẽu,vψtr(u)

))
(16)

Given that, we are now led to solve an approximated version

of MP, off by an entropy term − 1
β

∑n
v=1 qv log qv, as shown as

follows.

AMP : max
q�0

n∑
v=1

qv

m∑
u=1

(r̃u,vωv − ẽu,vψtr(u))

− 1

β

n∑
v=1

qv log qv

subject to

n∑
v=1

qv = 1 (17)

Finally, the optimal solution to AMP can be obtained by

q∗
v =

exp
(
β

∑m
u=1

(
r̃u,vωu − ẽu,vψtr(u)

))
∑n

v′=1 exp
(
β

∑m
u=1

(
r̃u,v′ωu − ẽu,v′ψtr(u)

)) , ∀v (18)

4.3. Back-pressure scheduling algorithm

We now turn back to explain the maximum differential

backlog mentioned in Section 4.2. In this work, we develop a

back-pressure approach inspired by the seminal work given

in [15] based on the concept of using queue-length difference
to equalize differential backlog. Our algorithm, however, is

specified to drive the scheduling for each session, and give

its results to support the intra-flow network coding and hy-

perlink scheduling to be followed. Specifically, with the back-

pressure algorithm, each node maintains a separate queue

for each destination, and for each of its hyperlinks lu = (i, J),
node i = tr(u) decides its target session by

su = arg max
s∈S

∑
t∈Ts

[
κ st

i − κ st
j

]
+ (19)

and the maximum differential backlog over lu = (i, J) by

ωu = max
s∈S

∑
t∈Ts

max
j∈J

[
κ sut

i
− κ sut

j

]
+ (20)

In other words, for each hyperlink lu = (i, J), a session

s with the maximum sum of queue-length differences be-

tween node i = tr(u) and all its neighbors j ∈ J over all the

session sinks t ∈ Ts will be scheduled to transmit by node

i = tr(u) on its hyperlink lu = (i, J), and the amount to be

transmitted is the maximum sum resulted from the session

s. In this sense, the distributed scheduling algorithm uses

back-pressure in an effort to equalize aggregate differential

backlog so that each of the per-destination queues can be

stable [15].

4.4. Intra-flow network coding and hyperlink scheduling

As the back-pressure scheduling implies, our distributed

optimization is not required to have a predefined set of

routes. That is, according to [9], our information flow rates (or

routing variables) f st
iJ j

with respect to lu = (i, J) are dynami-

cally decided by the hyperlink scheduling:

f st
iJ j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑

v=1

qvr̃u,v, if s = su, j = arg max
j∈J

(
κ st

i − κ st
j

)
, t ∈ Ts,

and κ st
i

− κ st
j

> 0

0, otherwise

(21)

That is to say, for each of its hyperlinks lu = (i, J), node i =
tr(u) will find a specific neighbor j = arg max j∈J (usut

i
− usut

j
)

with the maximum differential backlog among all the sink

nodes j ∈ J in session su, and gives this neighbor all the trans-

mission rate
∑n

v=1 qv r̃u,v.

With the intra-flow network coding, it can be realized

that when a hyperlink lu = (i, J) gets an opportunity to trans-

mit (resulted from the hyperlink scheduling), if ωu > 0, node

i = tr(u) will perform a random linear network coding on

the packets of session su with destination t ∈ TsiJ
satisfying

usut
i

− usut
j

> 0. As indicated in [3], the random linear network

coding under consideration can be obtained by random lin-

ear combination with coefficients chosen from a finite field

F with sufficient large field sizes. Given that, with a rate of∑n
v=1 qv r̃u,v, node i = tr(u) can transmit the coded packets

over hyperlink lu = (i, J) to j = arg max j∈J (usut
i

− usut
j

). Oth-

erwise, it will transmit NULL bits.

4.5. Low level update

Given all the above, we can now proceed to solve LLP ef-

fectively. In particular, given the optimal q∗
v in (18) for the
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i∈I}
f st

jIi(τ

∀t ∈ Ts
transmission mode scheduling subproblem, solving convex

LLP can thus resort to a primal-dual algorithm, which would

update the primal and the dual variables simultaneously,

moving together toward the optimal points asymptotically.

For our problem, a primal-dual algorithm can be given by the

following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇i = α1

[
∂L(�,x, f,g,q,κ,ψ)

∂�i

]+

�i

, ∀i ∈ N

ẋs = α2

[
∂L(�,x, f,g,q,κ,ψ)

∂xs

]+

xs

, ∀s ∈ S

κ̇ st
i

= α3

[
− ∂L(�,x, f,g,q,κ,ψ)

∂κ st
i

]+

κ st
i

, ∀i ∈ N − {t},∀s ∈ S,

∀t ∈ Ts

κ̇ st
t = κ st

t = 0, ∀s ∈ S,∀t ∈ Ts

ψ̇i = α4

[
− ∂L(�,x, f,g,q,κ,ψ)

∂ψi

]+

ψi

, ∀i ∈ N − {t}
ψ̇t = ψt = 0, ∀t ∈ Ts

(22)

where αi, i = 1, 2, 3, 4, are positive constants, and [b]+a is

max (0, b) if a ≤ 0, and b if a > 0.

As shown in above, this algorithm requires a time-scale

separation assumption that the stationary distribution in-

volved can be converged instantaneously, which may not

be easily implemented. Thus, we are demand by ourself to

develop a stochastic counterpart to get rid of the cumber-

some. To this end, we first show that according to the par-

tial Lagrangian reformulation given in Section 4.2, each node

in the primal-dual algorithm is conducted to iteratively de-

cide by itself the optimal primal and dual variables to be

adopted for the joint optimization. Specifically, given all vari-

ables in the current iteration, the subgradients of L(ϱ, x,

f, g, q, κ , ψ) with respect to the primal variables ϱi and

xs will be ψiEi − 2
λ2
W2

�i and
λ1

xsW1
− ∑

t∈Ts
κ st

s , respectively.

Similarly, the subgradient of −L(�, x, f, g, q, κ,ψ) with re-

spect to the dual variables, κ st
i

and ψ i, can be obtained

by xi,s − (
∑

{J|(i,J)∈L}
∑

j∈J f st
iJ j

− ∑
j∈N

∑
{i|( j,I)∈L,i∈I} f st

jIi
) and∑

{u,tr(u)=i}
∑n

v=1 ẽu,vqv − �iEi, respectively, if i is not a des-

tination node t ∈ Ts. Given that, we consider ϱ, x, f, g, q, κ , ψ
to be updated at time tτ , τ = 1, 2, . . . , with t0 = 0 to get rid of

the assumption. That is, by taking τ as the argument for each

of these parameters, we can formulate the stochastic primal-

dual subgradient distributed algorithm by solving the partial

differential of L(ϱ, x, f, g, q, κ , ψ) with respect to the primal

and dual variables, and obtain their subgradients to update

these variables in the τ + 1th iteration by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�i(τ + 1) =
[
�i(τ ) + ε1(τ )

(
ψiEi − 2

λ2

W2

�i(τ )

)]+
,

xs(τ + 1) =
[

xs(τ ) + ε2(τ )

(
λ1

xsW1

−
∑
t∈Ts

κ st
s (τ )

)]+

,

κ st
i (τ + 1) =

[
κ st

i (τ ) + ε3(τ )

(
xi,s(τ ) −

( ∑
{J|(i,J)∈L}

∑
j∈J

f st
iJ j(τ ) −

∑
j∈N

∑
{i|( j,I)∈L,

κ st
t (τ + 1) = κ st

t (τ ) = 0,

ψi(τ + 1) =
[
ψi(τ ) + ε4(τ )

( ∑
{u,tr(u)=i}

n∑
v=1

ẽu,vqv(τ ) − �i(τ )Ei

)]+

,

ψt(τ + 1) = ψt(τ ) = 0,
∀i ∈ N

∀s ∈ S

)

))]+

,

∀i ∈ N − {t},∀s ∈ S,∀t ∈ Ts

∀s ∈ S,∀t ∈ Ts

∀i ∈ N − {t}

(23)

where εi(τ ), i = 1, 2, 3, 4, are the step sizes, and [·]+ is the

projection operator defined as max (·, 0).

4.6. High level update

As shown in above, f is obtained by the back-pressure

algorithm introduced in Section 4.3 and explicitly updated

through (21) in the following subsection, and the other vari-

ables, ϱ, x, q, g, κ , ψ , are resulted from the primal-dual al-

gorithm just given in (23) under the assumption that p is

fixed. Naturally, the question of how to adjust p arises. For

this, we note that the objective function μ∗(p) is the op-

timal objective value of LLP for a given coupling vector of

variables p, where the corresponding primal and dual vari-

ables are (�∗, x∗, f∗, q∗, g∗) and (κ∗, ψ∗), respectively. In other

words, μ∗(p) = L(�∗, x∗, f ∗, q∗, g∗, κ∗,ψ∗). To take into ac-

count the possibility of μ∗(p) may not be differentiable, we

adopt a subgradient approach to generate a sequential of fea-

sible points of p for the solution.

To find the solution, we note that while the coupling vec-

tor of variables p is so complexly coupled with the others

among several constraints, MPP can be represented by us-

ing a similar formulation for LLP. That is, by regarding all the

other variables as constants based on ACS, we can resolve the

high level optimization MPP through the following subgra-

dient method:

pu(η + 1) =
[

pu(η) + ε5(η)
dL(�, x, f, g, q, κ,ψ)

dpu

]C

(24)

In above, η is the time index for MMP while τ is that for LLP,

ε5(η) is the step size, and [·]C denotes the projection onto a

set C [28], and here

C =
{

p|p � 0 and

m∑
u=1

pu = 1

}
(25)

represents the feasible solution set of this problem.

Then, by solving
dL(�,x, f,g,q,κ,ψ)

dpu
, we have

∑n
v=1 (qvru,vωu

− qveu,vψtr(u)). Finally, we can update pu in the η + 1th it-

eration more explicitly by

pu(η + 1) =
[[

pu(η) + ε5(η)

(
n∑

v=1

(q∗
v(η)ru,vωu(η)

− q∗
v(η)eu,vψtr(u)(η))

)]+]C

(26)



470 J.-S. Liu, J. Tsai / Ad Hoc Networks 37 (2016) 460–474

Algorithm 1 Two-level distributed algorithm.

1: (Initialization:)

2: given a positive kτ , set τ = 0, η = 0, and

�i(0), xs(0), κ st
i
(0),ψi(0), f st

iJ j
(0), pu(0), respectively,

to some non-negative value for ∀i ∈ N ,∀s ∈ S,∀t ∈
Ts,∀u ∈ M̄.

3: for each η = 1, 2, . . . do

4: (Low-level update:)

5: each node receives pu(η) from each hyperlink u ∈ M̄,

and it

6: for each τ = 1, 2, . . . , kτ do

7: • estimates q∗
v(τ ) in (18) with the Markov approxi-

mation metho [17];

8: • updates the primal and dual variables �i(τ +
1), xs(τ + 1), κ st

i
(τ + 1),ψi(τ + 1) with (23), ac-

cording to if it is a session source, a session destina-

tion, or a pure relay node;

9: • calculates f st
iJ j

(τ + 1) with (21) for the next itera-

tion;

10: end for

11: at the end of kτ of η, each node updates and broadcasts

ωu(η) in (20) to all hyperlinks;

12: (High-level update:)

13: for each hyperlink lu (represented by its sending node

tr(u)) do

14: • calculates pu(η + 1) with (24) and broadcasts the

result to all nodes;

15: • goes back to low-level update;

16: end for

17: end for
where ru,v and eu,v are given as its inputs, and ωu(η) and

ψ tr(u)(η) for lu are the solutions resulted from LLP and col-

lected at the beginning of the ηth iteration of MMP.

4.7. Summary of the two-level distributed algorithm

To realize the proposed distributed algorithm, any node i

is treated as an entity that can process, store, and communi-

cate information. In particular, each hyperlink lu = (i, J) can

be delegated to its sending node i or tr(u) so that all compu-

tations with respect to the link can be charged on this node.

One the one hand, every node is required to keep track of pri-

mal and dual variables, ϱi(τ ), xs(τ ), κ st
i
(τ ), and ψ i(τ ) for the

low level. On the other hand, since the projection for pu(η) in

(26) requires q∗
v,∀v, to proceed, a head node may be needed

to collect such parameters for the high level. Nevertheless, by

resorting to the Markov approximation method in [17] along

with the assumption that each node can overhear the oth-

ers, q∗
v could be independently estimated for each hyperlink

lu through its sending node tr(u) by using, e.g., the mini-slot

implementation in [45] to reduce its processing time, while

ωu(η) and ψ tr(u)(η) are kept track by every node involved. For

the communication overhead, it is worth noting that all the

updates required at both low level and high level can be done

by exchanging the parameters locally computed and stored

in addition to the broadcasts required on each node. Further,

if a float data structure is implemented, each primal or dual

variable may take up only several bytes, and the communica-

tion overhead on these information exchanges is quite small

when compared with the session data transmission. In fact,

the exchanges need not be implemented as individual pack-

ets, and the overhead can be minimized as long as these vari-

ables or parameters can be conveyed through a filed in data

or acknowledgement packets of the session flow. For refer-

ence, a possible implementation of the distributed algorithm

is summarized in Algorithm 1.

5. Numerical results

In this section, we report on numerical results for our

cross-layer distributed optimization. As shown in Fig. 1(a), a

well-known wireless butterfly network with network coding

in the literature [9,10,38] is adopted here as our simulation

environment. However, unlike the example given in Section 2

which only aims to demonstrate a possible contention-free

hyperlink scheduling given a set of transmission modes,

in the numerical experiment, we instead consider six hy-

perlinks, (1,{2}), (1, {3}), (1, {2,3}), (2, {4,5}), (3, {4,6}), and

(4,{5,6}) and five transmission modes {(1,{2}),(3, {4,6})},

{(1,{2}),(4,{5,6})}, {(1, {3}),(2, {4,5})}, {(1, {3}),(4, {5,6})}, and

{(1, {2,3}),(4,{5,6})}, that comply with those given in [10].

Specifically, to focus on the optimization framework itself,

in the numerical experiment we do not consider a particular

physical layer and its energy consumption. Instead, to ac-

commodate very different possible scenarios, we assume a

normalized situation wherein each hyperlink lu has one

unit capacity and each node i has initial energy Ei = 1 while

each hyperlink has random energy consumption eu,v ∈ (0, 1)
when it is scheduled by pu and qv to preserve the random-

ization suggested in the framework. In addition, we use the

variable step sizes that satisfy ε i(t) > 0,
∑∞

t=1 εi(t) = ∞,
and
∑∞

t=1 ε2
i
(t) < ∞, t ∈ {τ, η}, i ∈ {1, 2, 3, 4, 5},∀τ, η ∈ N,

which are usually considered for a subgradient distributed

algorithm to ensure convergence. Specifically, we adopt in

this experiment εi(t) = 1
t+c , c > 0. Given that, a multicast

session s = 1 is conducted with source node 1 transmitting

packets to its sink nodes 5 and 6, as the traffic demand from

transport layer.

5.1. Number of low level iteration

We start in this subsection to examine how the number

of low level iteration can impact the distributed optimiza-

tion on behalf of the theoretical validity and numerical feasi-

bility of our programming models. As shown in Sections 4.5

and 4.6, we have the flexibility to fix the coupling variable

p for the primal-dual stochastic algorithm in LLP to be con-

verged in a reasonable period of time, which then feedbacks

the other variables to determine p in the next iteration. Thus,

the number of iteration for the primal-dual stochastic algo-

rithm should be determined to alleviate the NP problem in-

volved within a reasonable time budget. To this end, we fix

λ = (λ1 = 0.8, λ2 = 0.2), let the step size ε i(t) be 1
t+c , c =

150, and vary the number of low level iteration among 5, 20,

100, 500, and 1000, to see its impacts upon the distributed

optimization. In particular, to confirm that the two major

metrics, i.e., session throughput and network lifetime ob-

tained through (23) of the primal-dual stochastic algorithm,

can properly converge, we also measure the actual values of

these two metrics in the simulation study, and conduct a
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a b

Fig. 2. System performances under different numbers of low level iteration: (a) session throughput xs(or x1), and (b) network lifetime TN .

a b

c d

Fig. 3. Convergence behavior of optimization variables within 1000 iterations: (a) session data rate or throughput xs , (b) network lifetime TN (c) dual variables

or Lagrange multipliers κ st
i

, and (d) dual variables or Lagrange multipliers ψ i .
centralized programming tool of MATLAB to obtain the

optimal results as the comparison basis for theoretical

verification.

5.2. Convergence behavior of primal and dual variables

The results are now summarized in Fig. 2, in which sim-

ulation denotes the results of our distributed optimization,

verify denotes the measurements on the two metrics in the

simulation study, and global optimum denotes the central-

ized optimization results obtained by the MATLAB central-

ized programming tool. More specifically, the performance

metrics, xs and TN, labeled by simulation represent the results

obtained at the end of iterations (23) in the algorithm un-

der simulation, while those labeled by verify are obtained by

directly computing these metrics with the data rates and en-

ergy consumptions measured at the end of these iterations in

the simulation. As readily shown in this figure, five low level

iterations are not enough for the computed values converg-

ing to the corresponding measurements while 20 iterations

may converge better but still cannot approach the optimal

results. On the other hand, using more than or equal to 100

iterations can lead to the converged values closely approach-

ing the global optimum, and thus, we adopt 100 low level
iterations as our baseline for the following and a number

more than 100 when converging to the corresponding global

optima is not easily achieved in certain cases of the experi-

ment. Next, we adopt the parameter examined in above that

kτ = 100, i.e., each high level iteration comprises 100 low

level iterations, and fix λ1 = 0.8, λ2 = 0.2, and εi(t) = 1
t+c

with c = 150 as before to exhibit a typical dynamic of up-

dating primal and dual variables in the scenario. As shown in

Fig. 3(a) and (b), the primal variables xs and TN = max{Ti =
1/�i,∀i ∈ N } obtained through the distributed optimization

well converge to the global optima around 500 iterations

even though we terminate the experiment at 1000 iterations.

In addition, the results from our method (denoted by simula-

tion) are shown to fast converge to the measured counter-

parts (denoted by verify), within the first several ten itera-

tions, in this case. Similarly, in Fig. 3(c) and (d), it can be seen

that the dual variables κ st
i

and ψ i are also gradually stable,

and the stability can be more easily observed after 500 itera-

tions as mentioned for the above.

5.3. Impact of weighting factor

Finally, it may be reminded that the objective function

in question is obviously a weighted sum of multiple types
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a b

Fig. 4. Performance comparison for different trade-off weights λ: (a) session data rate xs , and (b) network lifetime TN .
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Fig. 5. Utility on different trade-off weights λ.
of utilities, and in this case throughput and lifetime are the

two heterogeneous utilities motivating our study, and serve

as an example to exhibit the possibility of multi-objective op-

timization to be implemented in a distributed manner. In the

current model, the trade-off of these two metrics in is partic-

ularly reflected on the trade-off weight λ = (λ1, λ2). For sim-

plicity, we use the component λ1 decreased from 1 to 0.05

with a decrement step size of 0.05 and finally reaching 0.01

to represent the overall weight λ since λ1 + λ2 = 1. In addi-

tion, for examining the effects of this weight on the trade-

off, we let η = 1000, kτ = 100, and εi(t) = 1
t+c with c = 150

as before for 1 ≥ λ1 ≥ 0.1 while η = 5000, kτ = 1000, and

εi(t) = 1
t+c with c = 2000 for λ1 ∈ {0.05, 0.01}. The latter is

so done because small value of λ1 will cause the difficulty

of converging to the theoretical optimal of lifetime, and in-

creasing the iteration number and decreasing the step size

can help alleviating the numerical difficulty.

The results are now summarized in Fig. 4. As shown

there, by properly adjusting the weight λ along with the

other parameters properly tuned for the shown range, the

distributed optimization exhibits to have a smooth trade-

off effect on the two performance metrics. Specifically, as

shown in this figure, the data rate decreases and the life-

time increases with respect to λ1 decreased gradually, with

a final jump in TN at λ1 = 0.01 where almost the whole

weight is dedicated to the lifetime, as expected. However,

the trend on the results of centralized optimization may

be non-monotonic and would be further noted. To see this

easily with positive utility, we represent JLUP by negat-

ing the signs in the objective of maximization to be an

equivalent minimization problem as min{μr(λ) = μs(λ) +
μl(λ)} with μs(λ)

�= −λ1

∑
s∈S log (xs)

W1
and μl(λ)

�= λ2

∑
i∈N �2

i
W2

.

As shown in Fig. 5, the utility μr at λ1 = 1 obtained by the

centralized optimization gives μs(= 0.018718) + μl(= 0) =
0.018718, which is actually higher than any other, e.g.,

that at λ1 = 0.6 giving μs(= 0.010576) + μl(= 0.003197) =
0.013773, and monotonically decreases as λ1 decreases. In

general, this decrement leads to decreasing xs and increas-
ing TN, as expected. However, the monotonicity is mainly re-

flected on the utility rather than the metrics. This trend is

due to the utility μr rather than a raw weighted sum, e.g.,

λ1xs + λ2TN, to be optimized on the metrics directly. Such

a raw weighted sum cannot be considered here as the net-

work lifetime TN
�= mini∈N Ti involved is already a minimiza-

tion problem to be resolved at the same time. Thus, we con-

sider a well-known method, min
∑

i∈N �2
i
, to approximate

this lifetime. Given that and general [ru,v] and [eu,v], our ex-

periment reveals the possibility that a higher xs, TN, or both

could be obtained by the optimization tool with a lower λ1

and still yields a decreasing utility. That is, the results are op-

timal with respect to the trade-off utility and monotonically

decrease as the weight decreases, but without the assump-

tion that each node has the same condition on data, energy,

or both, a monotonic variation on the performance metrics is

not expected in the utility optimization.

Given that, the results from our optimization, denoted

by simulation, perfectly match the actual measurements, de-

noted by verify, and closely approach the theoretical opti-

mal obtained by the centralized optimization tool, denoted

by global optimum. That is, the updates of optimization vari-

ables can reflect the actual values in time and the distributed

optimization can approximate the optimal results properly.

Nevertheless, at λ1 approaching 0 where the whole weight

is almost dedicated to the lifetime, the centralized optimiza-

tion tool will report a nearly empty throughput and a nearly

infinity lifetime while our distributed optimization may re-

flect the situation by increasing the iteration number and de-

creasing the step size. However, it could be noted that giving

much more weight on lifetime and thus seriously sacrificing

throughput is not a reasonable strategy in any network en-

vironment. Thus, given the reasonable range from 1 to 0.1, it

can be shown that the degree of our results approaching the

global optima, represented by 1 − |simulation−global optimum|
global optimum

, in

Fig. 4 would be 99.78% and 99.76% at most, 76.18% and 82.32%

at least, and 89.21% and 92.74% on average, for the data rate

(xs) and the network lifetime (T ), respectively. In addition,
N
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by referring back to Fig. 3, we can see that xs and TN approach

or converge fast to their optima (around 300 iterations) even

though we show 1000 iterations for plotting. Moreover, as

one of the merits resulted from an iterative algorithm like

ours, the network is not necessary to wait for the algorithm

to converge; instead, the results in each iteration could be

applied at the moment it is obtained to couple with the net-

work dynamic. These features are notable because a noncon-

vex QPQC problem is known to be NP-hard as mentioned be-

fore, and our problem is not only a QPQC problem in a general

sense but also involves a MWIS subproblem which is already

NP and difficult to be approximated even in a centralized way

[44]. The results for such a hard problem actually reveal that

our distributed optimization can perform well enough within

the limited time constraint, especially in the environment of

wireless multihop networks. In such an environment, nodes

may be mobile and channel are usually error-prone and time-

varying, and our method prevents obtaining an optimal solu-

tion with a global optimization tool that may be impractical

for it is usually time-consumed and out-of-date soon.

6. Conclusion

In this work, we have introduced a mathematical pro-

gramming model for the cross-layer multi-objective opti-

mization problem of maximizing network lifetime and opti-

mizing aggregate system utility with intra-flow network cod-

ing, solved in a distributed manner. In particular, by resorting

to alternate convex search (ACS) and primal decomposition

(PD), we have resolved the joint optimization modeled as

a quadratically constrained quadratic programming (QCQP)

problem that is NP-hard in general, wherein its scheduling

subproblem on both hyperlink and transmission mode is a

maximum weighted independent set (MWIS) problem and

is NP-hard already. The resulted distributed optimization has

been shown to be able to approximate the optimal results

with a biconvex programming model, and the subgradient-

based algorithms developed can iteratively approach the op-

timal solution of this complex problem in the spirit of de-

centralization. Our numerical results have readily exhibited

the correctness of this programming model, and the fact that

the proposed method can fulfill the desired requirement with

a good trade-off between the heterogeneous objectives and

have well computational efficiency.

References

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, R.W. Yeung, Network information flow,
IEEE Trans. Inf. Theory 46 (2000) 1204–1216.

[2] S.-Y. R. Li, R.W. Yeung, N. Cai, Linear network coding, IEEE Trans. Inf.
Theory 49 (2003) 371–381.

[3] T. Ho, M. Medard, J. Shi, M. Effros, D.R. Karger. On randomized network

coding, in: Proceedings of 41st Allerton Annual Conference Communi-
cation, October 2003.

[4] S. Chachulski, M. Cagalj, S. Bidokhti, J. Jubaux, Trading structure for ran-
domness in wireless opportunistic routing, Proceedings of ACM SIG-

COMM (2007) 169–180.
[5] J. Park, M. Gerla, D. Lun, Y. Yi, M. Medard, CodeCast: a network-coding-

based ad hoc multicast protocol, IEEE Wireless Commun. 13 (5) (2006)

76–81.
[6] K. Jain, J. Padhye, V.N. Padmanabhan, L. Qiu, Impact of interference

on multi-hop wireless network performance, Proceedings of MobiCom
(2003) 66–80.

[7] A. Ephremides, T.V. Truong, Scheduling broadcasts in multihop radio
networks, IEEE Trans. Commun. 38 (4) (1990) 456–460.
[8] E. Arikan, Some complexity results about packet networks, IEEE Trans.
Inf. Theory 30 (4) (1984) 681–685.

[9] T. Ho, D.S. Lun, Network Coding: An Introduction, Cambridge University
Press, 2008.

[10] E. Karami, S. Glisic, Joint optimization of scheduling and routing in mul-
ticast wireless ad hoc networks using soft graph coloring and nonlinear

cubic games, IEEE Trans. Vehic. Technol. 60 (7) (2011) 3350–3359.

[11] R.L. Cruz, A.V. Santhanam, Optimal routing, link scheduling and power
control in multihop wireless networks, Proceedings of IEEE INFOCOM

2003 1 (2003) 702–711.
[12] R. Madan, S. Cui, S. Lal, A. Goldsmith, Cross-layer design for lifetime

maximization in interference-limited wireless sensor networks, IEEE
Trans. Wireless Commun. 5 (11) (2006) 3142–3152.

[13] H. Nama, M. Chiang, N. Mandayam, Utility-lifetime trade-off in self-
regulating wireless sensor networks: a cross-layer design approach,

Proceedings of IEEE International Conference on Communications 8

(2006) 3511–3561.
[14] L.D.P. Mendes, J.J.P.C. Rodrigues, Review: a survey on cross-layer solu-

tions for wireless sensor networks, J. Netw. Comput. Appl. 34 (2) (2011)
523–534.

[15] L. Tassiulas, A. Ephremides, Stability properties of constrained queue-
ing systems and scheduling policies for maximum throughput in mul-

tihop radio networks, IEEE Trans. Autom. Control 37 (12) (1992) 1936–

1949.
[16] X. Lin, N.B. Shroff, R. Srikant, A tutorial on cross-layer optimization in

wireless networks, IEEE J. Selected Areas Commun. 24 (8) (2006) 1452–
1463.

[17] M. Chen, S. Liew, Z. Shao, C. Kai, Markov approximation for combinato-
rial network optimization, Proceedings of IEEE INFOCOM 2010 (2010)

1–9.

[18] X. Zhang, B. Li, Optimized multipath network coding in lossy wireless
networks, IEEE J. Selected Areas Commun. 27 (5) (2009) 622–634.

[19] B. Radunovic, C. Gkantsidis, P. Key, P. Rodriguez. An optimization frame-
work for opportunistic multipath routing in wireless mesh networks,

in: Proceedings of IEEE INFOCOM 2008, April 2008.
[20] S. Bhadra, S. Shakkottai, P. Gupta, Min-cost selfish multicast with net-

work coding, IEEE Trans. Inf. Theory 52 (2006) 5077–5087.

[21] L. Chen, T. Ho, S.T. Low, M. Chiang, J.C. Doyle, Optimization based rate
control for multicast with network coding, Proceedings of IEEE INFO-

COM 2007 (2007) 1163–1171.
[22] J. Price, T. Javidi, Network coding games with unicast flows, IEEE J. Se-

lected Areas Commun. 26 (7) (2008) 1302–1316.
[23] J. Liu, C.-H. R. Lin, Cross-layer optimization for performance trade-off in

network code-based wireless multi-hop networks, Comput. Commun.

52 (1) (2014) 89–101.
[24] J. Liu, Joint lifetime-utility cross-layer optimization for network coding-

based wireless multi-hop networks with matrix game and multiple
payoffs, IEICE Trans. Commun. E97-B (8) (2014) 1638–1646.

[25] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University
Press, 2004.

[26] J. Gorski, F. Pfeuffer, K. Klamroth, Biconvex sets and optimization with

biconvex functions: a survey and extensions, Math. Methods Oper. Res.
66 (3) (2007) 373–407.

[27] D.P. Palomar, M. Chiang, A tutorial on decomposition methods for
network utility maximization, IEEE J. Selected Areas Commun. 24 (8)

(2006) 1439–1451.
[28] D.P. Palomar, Convex primal decomposition for multicarrier linear

mimo transceivers, IEEE Trans. Signal Process. 53 (12) (2005) 4661–
4674.

[29] C. Floudas, V. Visweswaran, A global optimization algorithm (GOP) for

certain classes of nonconvex NLPS: I. Theory, Compute. Chem. Eng. 14
(12) (1990) 1397–1417.

[30] P. Paatero, U. Tapper, Positive matrix factorization: a non-negative fac-
tor model with optimal utilization of error estimates of data values,

Environmetics 5 (1994) 111–126.
[31] L.E. Ghaoui, V. Balakrishnan, Synthesis of fixed-structure controllers via

numerical optimization, Proceedings of the 33rd IEEE Conference on

Decision and Control 3 (1994) 2678–2683.
[32] J. Zou, H. Xiong, L. Song, Z. He, T. Chen, Prioritized flow optimization

with generalized routing for scalable multirate multicasting, IEEE In-
ternational Conference on Communications (2009) 1–6.

[33] H. Nama, M. Chiang, N. Mandayam, Utility-lifetime trade-off in self-
regulating wireless sensor networks, Proceedings of IEEE ICC (2006)

3511–3516.

[34] W. Liu, K. Xu, P. Zhou, Y. Ding, W. Cheng, A joint utility-lifetime opti-
mization algorithm for cooperative mimo sensor networks, Proceed-

ings of IEEE WCNC (2008) 1067–1072.
[35] Y.E. Sagduyu, Medium Access Control and Network Coding for Wireless

Information Flows, Ph.D. thesis, University of Maryland, College Park,
2007.

http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0001
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0001
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0001
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0001
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0001
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0002
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0002
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0002
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0002
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0003
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0003
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0003
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0003
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0003
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0004
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0004
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0004
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0004
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0004
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0004
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0005
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0005
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0005
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0005
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0005
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0006
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0006
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0006
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0007
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0007
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0008
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0008
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0008
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0009
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0010
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0010
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0010
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0011
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0011
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0011
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0011
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0011
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0012
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0012
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0012
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0012
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0013
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0013
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0013
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0014
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0014
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0014
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0015
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0015
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0015
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0015
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0016
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0016
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0016
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0016
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0016
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0017
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0017
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0017
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0018
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0018
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0018
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0018
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0019
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0019
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0019
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0019
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0019
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0019
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0020
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0020
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0020
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0021
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0021
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0021
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0022
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0022
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0023
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0023
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0023
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0024
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0024
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0024
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0024
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0025
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0025
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0025
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0026
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0026
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0027
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0027
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0027
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0028
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0028
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0028
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0029
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0029
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0029
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0030
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0030
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0030
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0030
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0030
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0030
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0031
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0031
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0031
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0031
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0032
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0032
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0032
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0032
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0032
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0032
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0033
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0033


474 J.-S. Liu, J. Tsai / Ad Hoc Networks 37 (2016) 460–474
[36] J. Tang, G. Xue, W. Zhang, Cross-layer design for end-to-end throughput
and fairness enhancement in multi-channel wireless mesh networks,

IEEE Trans. Wireless Commun. 6 (10) (2007) 3482–3486.
[37] J. Tang, R. Hincapie, G. Xue, W. Zhang, R. Bustamante, Fair bandwidth

allocation in wireless mesh networks with cognitive radios, IEEE Trans.
Vehic. Technol. 59 (3) (2010) 1487–1496.

[38] Y.E. Sagduyu, A. Ephremides, On joint MAC and network coding in wire-

less ad hoc networks, IEEE Trans. Inf. Theory 53 (10) (2007) 3697–3713.
[39] G.P. Liu, J.B. Yang, J.F. Whidborne, Multiobjective Optimisation and Con-

trol, Research Studies Press, 2013.
[40] J. de Leeuw, Block relaxation algorithms in statistics, Information Sys-

tems and Data Analysis (1994) 308–325.
[41] M. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of second-

order cone programming, Linear Algebra Its Appl. 284 (1998) 193–228.
[42] J. Benders, Partitioning procedures for solving mixed-variables pro-

gramming problems, Numer. Math. 4 (1962) 238–252.

[43] A. Geoffrion, Generalized benders decomposition, J. Optim. Theory
Appl. 10 (4) (1972) 237–260.

[44] V. Vazirani, Approximation Algorithms, Springer, 2001.
[45] J. Ni, B. Tan, R. Srikant, Q-CSMA: queue-length-based CSMA/CA algo-

rithms for achieving maximum throughput and low delay in wireless
networks, IEEE/ACM Trans. Netw. 20 (3) (2012) 825–836.

Jain-Shing Liu was born in Taipei, Taiwan, in

1970. He received the Ph.D. degree in the De-
partment of Computer and Information Science,

National Chiao-Tung University, Hsinchu, Taiwan.
He currently is a professor of the Department

of Computer Science and Information Engineer-
ing, Providence University, Taichung Taiwan, ROC.

His research interests include designs and per-

formance analyses of wireless communication
protocols, wireless local area networks, wireless

sensor networks, and personal communication
networks. He is a member of IEEE and IEICE over a

decade, and in the duration, he received the best
paper award in the 10th Mobile Computing Workshop 2004, and was in-

cluded in Marquis Who’s Who in Science and Engineering, 10th Anniver-
sary Edition. So far, he was the first author of around 50 journal and con-
ference papers. In addition, he had served as a reviewer for many interna-

tional journals, and also served as a (Technical) Program Committee mem-
ber for many international conferences such as IEEE International Workshop

on Wireless Network Algorithms (WiNA 2008), Fifth Annual International
ICST Wireless Internet Conference (WiCON 2010) Networking Track, Interna-

tional Congress on Computer Applications and Computational Science (CACS

2010), and National Computer Symposium (NCS 2011), International Confer-
ence on Computer and Communication Devices (ICCCD 2014), as most re-

cently served as the conference program chair of International Conference
on Computer and Communication Devices (ICCCD 2015).

Jichiang Tsai received his B.S. degree in electri-
cal engineering from National Taiwan University,

Taipei, Taiwan in 1991. Then he started his gradu-
ate study at the same university, and received the

Ph.D. degree in electrical engineering in 1999. He

served as a postdoctoral research fellow in the In-
stitute of Information Science, Academia Sinica,

Taipei, Taiwan from 1999 to 2001. In 2002, he
joined the Department of Electrical Engineering,

National Chung Hsing University, Taichung, Tai-
wan, as an assistant professor, and then was pro-

moted to associate professor in 2005. His current

research interests include parallel and distributed
systems, dependable computing, embedded systems, mobile computing and

computer networks.

http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0034
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0034
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0034
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0034
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0035
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0035
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0035
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0035
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0035
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0035
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0036
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0036
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0036
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0037
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0037
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0037
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0037
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0038
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0038
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0039
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0039
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0039
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0039
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0039
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0040
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0040
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0041
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0041
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0042
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0042
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0043
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0043
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0043
http://refhub.elsevier.com/S1570-8705(15)00214-0/sbref0043

	Distributed multi-objective cross-layer optimization with joint hyperlink and transmission mode scheduling in network coding-based wireless networks
	1 Introduction
	2 Network coding-based network model
	3 Joint lifetime-utility cross-layer optimization with hyperlink and transmission mode scheduling
	3.1 Network coding-based transmission model
	3.2 Concurrently hyperlink and mode scheduling
	3.3 Cross-layer variables and weighted multi-objective function
	3.4 Cross-layer programming model

	4 Distributed algorithm
	4.1 Two level decomposition based on alternate convex search and primal decomposition
	4.2 Partial Lagrangian reformulation for LLP
	4.3 Back-pressure scheduling algorithm
	4.4 Intra-flow network coding and hyperlink scheduling
	4.5 Low level update
	4.6 High level update
	4.7 Summary of the two-level distributed algorithm

	5 Numerical results
	5.1 Number of low level iteration
	5.2 Convergence behavior of primal and dual variables
	5.3 Impact of weighting factor

	6 Conclusion
	 References


