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Abstract Changes in the quality of raw water can signif-

icantly affect the treatments necessary for drinking water.

Generally, raw water quality assessments are carried out to

classify the pollution level of raw waters and cannot be

used directly as a control for drinking water treatments. In

order to improve the adaptability of drinking water treat-

ments and to stabilize the overall quality of treated water, a

raw water quality assessment technique that is specifically

related to drinking water treatments is developed in this

study. First, a drinking water treatment-oriented raw water

quality assessment standard is proposed, based on histori-

cal environmental information and an analysis of opera-

tional data from drinking water treatments. A raw water

quality assessment model is then set up to assess the raw

water quality in real time. Finally, the results from this

assessment are used to compute feedforward compensation

for real-time control of the chemical dosing process,

including both alum and ozone in the drinking water

treatment. In this way, drinking water treatment can be

adjusted according to the temporal changes in raw water

quality, thereby stabilizing the quality of treated waters.

Experimental implementation of this technique has been

carried out in the chemical dosing process control systems

of a drinking water treatment plant in China, and the results

obtained demonstrate the effectiveness of the raw water

quality assessment method proposed herein. This devel-

opment will be helpful in satisfying the basic requirement

of safe drinking water under a worsening global water

environment.

Keywords Raw water quality assessment � Chemical

dosing process � Drinking water treatment

Introduction

Drinking water is made suitable for human consumption by

a series of treatment processes. The specific treatment

processes that are necessary to produce safe drinking water

are largely governed by the raw water quality of a region,

which is determined by temporally variable natural influ-

ences, including precipitation rate, soil erosion, and season,

as well as anthropogenic influences such as urban, indus-

trial, and agricultural activities (Symons and Robeck 1975;

Slavik and Uhl 2009; Santana et al. 2014; Gao et al. 2014).

Thus, it is very important to acquire reliable information on

raw water quality for the effective production of safe

drinking water, especially under the prevailing widespread

pollution of water sources. In a drinking water treatment

plant, important water quality parameters such as temper-

ature, pH, turbidity, chemical oxygen demand (CODMn),

ammoniacal nitrogen (NHþ
4 -N) are generally monitored on-

line and are also measured off-line in the laboratory to

provide relatively real-time and accurate information

(Zamyadi et al. 2012).

Raw water quality assessments have been widely used to

classify the pollution levels of raw waters (Vega et al.

1998; Singh et al. 2005; Zhou et al. 2007; Chu et al. 2013).

However, to our knowledge, there have not yet been any

reports of such assessments being used to guide drinking
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water treatment. This is mainly due to the fact that drinking

water treatment processes are not only related to the levels

of raw water quality, but are also linked to factors such as

weather, climate, and the discharge of raw sewage (Delpla

et al. 2011; Stepien et al. 2014). As a result, conventional

raw water quality assessment techniques can only be used

for off-line operator support and cannot be directly

employed for the real-time control of drinking water

treatment processes. Additionally, the raw water quality of

developed countries is generally superior, and changes of

raw water quality are considered to be relatively mild. In

contrast, the safety of drinking water in many developing

countries is not assured, due to the potentially serious

pollution of water sources, which may not be considered

during drinking water production (Schulz et al. 1992;

Gadgil 1998; Sobsey et al. 2008). The changes in raw

water quality are becoming more frequent, especially in

adverse weather conditions such as strong winds and heavy

rains, as well as discharge of wastewater. Suspended

material often becomes higher after strong winds, heavy

rains, and discharge of wastewater. Therefore, a drinking

water treatment-oriented raw water quality assessment is

urgently needed, in order to stabilize the quality of treated

water.

Artificial neural networks (ANNs) are effective nonlin-

ear modeling tools, due to their great ability in mapping

input-output data. In particular, radial basis function (RBF)

neural networks have been shown outstanding approxi-

mations and have been widely used in terms of environ-

mental pollutants (Lu et al. 2003; Lu 2004; Tarek 2012;

Iliyas et al. 2013). In RBF neural networks, a number of

parameters, including the centers and widths of radial basis

functions and the weights between the hidden and output

layers, can have significant effects on the performance of

the model (Chen et al. 1992; Knopf and Sangole 2004).

Traditional training algorithm based on gradient descent

(GD) method has the disadvantages of slow convergence

precision and easy trapping into local minimum. Particle

swarm optimization (PSO) is a swarm intelligence meta-

heuristic behavior of decentralized systems obtained from

the simulation of flocking birds or schooling fish (Liu et al.

2004). It conducts an intelligent search for the solution

space through ’cooperative’ strategy of individuals (called

particles), in contrast to the ’competitive’ strategy of

genetic algorithm (GA). Suboptimal solutions in the PSO

algorithm can therefore survive and contribute to the search

process at later stages of iteration. It has been proved that

RBF neural networks with parameters optimized by PSO

algorithm have excellent performance in the applications of

water quality prediction and water quality evaluation (Xu

et al. 2011; Shen and He 2012).

Practical drinking water treatment processes are

severely affected by changes in raw water quality and

exhibit clear nonlinearity with a considerable time delay

(Helm 2007; Wang et al. 2013). Under the conventional

feedback control scheme based on processing error, it is

difficult to achieve satisfactory real-time control perfor-

mances, especially when raw water quality underdoes

frequent changes (Cromphout et al. 2005; Courtois 2005;

Elovitz et al. 2000). In contrast to such error-based con-

trols, feedforward control system is based on estimations

or measurements of disturbances to the process. The

controlling action of feedforward system occurs at the

same time as the disturbance, and the process response is

faster than under feedback control. In practical applica-

tions, it is usually employed to overcome major distur-

bance to the process and is combined with feedback

control to optimize performance (Xu and Ouyang 2012;

Zheng and Fu 2013).

The main aim of this study is to develop a raw water

quality assessment method that is specially oriented toward

the drinking water treatment process. We first study the

influence of various raw water quality parameters on

drinking water treatment and propose a raw water quality

assessment standard for drinking water treatment. An RBF

neural network trained by a PSO algorithm is then estab-

lished as a model or on-line raw water quality assessment.

Following this, a composite feedforward and feedback

control scheme is developed to guide chemical dosing

during drinking water production. In the feedforward

control loop, the control action is based upon on-line

assessment of raw water quality, while an internal model

controller (IMC) is designed for the feedback control loop.

One of the unique aspects of this work is that the assess-

ment method is oriented specifically toward drinking water

treatment and can be utilized directly for the real-time

control of practical chemical dosing processes. Addition-

ally, a feedforward and feedback composite control

scheme based on the assessment of raw water quality is

developed here for the first time. Finally, this work has

been experimentally implemented in the chemical dosing

control systems of the Xiangcheng water treatment plant

(XWTP) in Suzhou, China.

Material and methods

Raw water quality assessment standard

The XWTP (capacity of 300; 000m3/day) was originally

put into service in 2007, and the raw water is captured from

Taihu Lake at Jinsu station. Taihu lake is the third largest

freshwater lake in China, with a surface area of 2338 km2.

It is shallow, with an average depth of around 2.0 m, and

eutrophic, with wind-induced sediment resuspension

occurring frequently. Owing to variations in wind speeds
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and directions, in addition to differences in the growth of

animals and plant in different seasons, the amount of sus-

pended material in the lake water is seen to change

throughout the year. Thus, the water quality in the lake is

seriously affected by such seasonal changes (Blindow et al.

2002). In general, the concentrations of total nitrogen (TN)

and total phosphorus (TP) in the water are higher in the

summer, whereas the concentrations of ammoniacal nitro-

gen are higher in the winter. Statistical analysis of the time

series of daily values of water quality parameters of

Xiangcheng water treatment plant during 2012–2014 is

summarized in Table 1, while the time series of monthly

averages of water quality parameters are illustrated in

Fig. 1. As can be seen, the average concentrations of

temperature, turbidity, NHþ
4 -N, and CODMn are 16:7�C,

25.3 NTU, 0.22 mg/L, 2.6 mg/L, respectively, and the

standard deviation is 5:2�C, 2.3 NTU, 0.06 mg/L, 0.11 mg/

L, respectively.

In order to evaluate the influence of these raw water

quality parameters on the chemical dosing process,

including alum and ozone, we study the daily operating

data of chemical dosage under different conditions of raw

water quality using statistical analysis methods. Moreover,

we refer to operators with rich experience and select those

parameters that have a significant influence on the chemical

dosing process, namely temperature, turbidity, NHþ
4 � N,

and CODMn, as the factors for raw water quality assess-

ment. Based on the statistical analysis of historical data of

raw water quality parameters, ideal process output and

corresponding chemical dosage during 2012–2014, which

is collected from the online measuring system of Xiang-

cheng water treatment plant, the raw water quality

assessment standard oriented to the control of chemical

dosing process is established in Table 2. The water quality

grades and the desired output defined herein refer to the

optimum chemical dosage for reference.

Raw water quality assessment modeling

Raw water quality assessment modeling is a crucial part of

raw water quality assessment. Here, an RBF neural net-

work model is established to enable real-time assessment

of raw water quality. RBF neural networks are effective

feedforward neural networks with one hidden layer, which

have excellent nonlinear mapping capabilities. As shown in

Fig. 2, the structure of a basic RBF neural network com-

prises one input layer, one hidden layer, and one output

layer. The output of a single-output RBF neural network

can be described as

y ¼
Xq

k¼1

xk/kðXÞ ð1Þ

where X the input vector, including temperature, turbidity,

NHþ
4 � N, and CODMn, q the number of hidden nodes, xk

the neural network weight that connects the kth hidden

node and output, and /k the output of the kth hidden node,

which is often defined by a Gaussian function shown as

follows

/kðXÞ ¼ e
� X�lkj jj j2

dk
2 k ¼ ð1; 2; . . .; qÞ ð2Þ

where lk the center of the kth hidden node and dk the

variance of the kth hidden node.

The number of hidden nodes q is a key factor affecting

the prediction performance of the neural network. If it is

excessively large, the generalization capability of neural

network may decrease, possibly even resulting in prob-

lematic over-learning phenomena. If it is too small, how-

ever, the desired prediction performance may be not

achieved. For determining the number of hidden nodes,

RBF neural networks with different hidden nodes have

been tried, and three hidden nodes are selected by con-

sidering the tradeoff between generalization capability and

modeling accuracy.

The model parameters of the RBF neural network, such

as the centers and widths of the hidden RBF functions and

the weightings associating the hidden nodes with the output

nodes, have a strong influence on the performance of an

RBF neural network model. Particle swarms explore the

search space through a population of particles. Each par-

ticle tries to find the best global solution, by adjusting its

trajectory toward its own best position pi and the best

particle of the swarm pg at each iteration. The velocity and

position are updated according to the following equations:

vi
ðkþ1Þ ¼ hðkÞvi

ðkÞ þ c1r1ðpiðkÞ � xi
ðkÞÞ þ c2r2ðpgðkÞ � xi

ðkÞÞ
ð3Þ

xi
ðkþ1Þ ¼ xi

ðkÞ þ vi
ðkÞ ð4Þ

Table 1 Raw water quality of Xiangcheng water treatment plant

during 2012-2014

Parameter Max Min Average SD

pH 9.3 6.9 8.4 0.17

Temperature=�C 33.9 1.5 16.7 5.2

Turbidity/NTU 197.4 9.2 25.3 2.3

NHþ
4 -N/mg L�1 2.21 0.03 0.22 0.06

CODMn/mg L�1 5.2 1.7 2.6 0.11

TOC/mg L�1 6.27 3.58 4.17 0.12

TP/mg L�1 0.527 0.003 0.052 0.011

TN/mg L�1 4.62 0.079 1.22 0.17

Bromide/mg L�1 0.378 0.182 0.272 0.026
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Fig. 1 Time series of monthly averages of water quality parameters during 2012–2014
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where i ¼ 1; 2; . . .; n, nis the number of the particle 50 in

this study, vi
k the present velocity of the particle i, xi

k the

present position of the particle i, k the inertia number, c1
and c2 the acceleration constants, r1 and r2 the random

numbers selected between [0,1], hk the inertia weight,

which can be described as follows:

hðkÞ ¼ ðh1 � h2Þðkmax � kÞ=kmax þ h2 ð5Þ

where kmax is the max inertia number, h1 and h2 the initial

inertia weight and final inertia weight, respectively.

The fitness function of particle is shown in the following

equation:

Fitness ¼ 1

N

XN

i¼1

ðyi � ytÞ2 ð6Þ

where N is the number of training samples, yi the ideal

output, and yt the actual output.

Therefore, since PSO algorithms have been shown to

produce superior training results compared with conven-

tional algorithms, we use the PSO approach to train the

parameters of our RBF neural network model.

3000 groups of historical data for the sampling fre-

quency of three times a day from XWTP during 2012–2014

are collected and divided into two parts. The first 2000

groups are used to train the RBF neural model, and the

remaining 1000 groups are used to test the performance of

the model. It is noted that the abnormal data have been

eliminated and smooth processing for the 3000 groups of

historical data has been conducted to deal with noise or

missing values in the dataset.

The Theil’s inequality coefficient (TIC) value represents

the goodness-of-fit between model output and desired

output:

TIC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ðŷi � yiÞ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiP
i ŷ

2
i

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiP
i y

2
i

p ð7Þ

where ŷi the model output, yi the desired output.

Feedforward–feedback composite control scheme

Owing to the reactivity of the substances involved, the

chemical dosing processes of drinking water treatment are

seriously affected by the factors, such as water flow, water

quality, and chemical dosage. It is therefore difficult to sta-

bilize the quality of treated waters using the traditional

Table 2 Raw water quality assessment standard oriented to the control of chemical dosing process

Water quality

grade

Temperature

(�C)
Turbidity

(NTU)
NHþ

4 -N

(mg L�1Þ
CODMn

(mg L�1Þ
Desired output Optimum alum

dosage (mg L�1Þ
Optimum ozone

dosage (mg L�1Þ

I 10 20 0.5 2 0.1 9 0.7

II 10 40 1 2 0.2 11 0.8

III 10 80 2 2.5 0.3 14 0.9

IV 20 20 0.5 2.5 0.4 8 0.8

V 20 40 1 3 0.5 10 0.9

VI 20 80 1.5 3.5 0.6 13 1

VII 30 20 0.5 4 0.7 7 0.9

VIII 30 40 1 4.5 0.8 9 1

IX 30 80 2 5 0.9 12 1.2

Fig. 2 Structure of the RBF

neural network
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feedback control scheme, especially during periods of rapid

change in rawwater quality. Thus,we propose a feedforward–

feedback composite control scheme, as illustrated in Fig. 3.

For the alum dosing process, the process model is the

model of alum dosing process, the front link is the pre-

ozonation, and the following link is the sand filtration. For

the ozone dosing process, the process model is the model of

ozone dosing process, the front link is the sand filtration

and the following link is the biological activated carbon

filtration. It is noted that turbidity is the output of alum

dosing process and dissolved ozone residual (resO3) is the

output of ozone dosing process. y is the actual value of

process output (turbidity or resO3). yr is the reference value

of process output (turbidity or resO3). ym is the process

model output (turbidity or resO3). u is the control input

(alum dosage or ozone dosage). Within this composite

control scheme, the feedforward compensation is based

upon the raw water quality assessment, while an IMC is

used for the feedback control loop.

The integral of absolute error (IAE) is chosen as the

quantitative index to evaluate the closed-loop control

performance:

IAEðtÞ ¼ 1

N

XN

t¼1

jyrðtÞ � yðtÞj ð8Þ

where yrðtÞ is the reference value of process output, y(t) the
actual value of process output.

Results and discussion

Raw Water Quality Assessment Results.

The results of our testing of the RBF neural network

model are presented in Fig. 4. It can be seen from this that the

assessment model performs well in predicting the relevant

desired output given by the assessment standard in Table 2.

The TIC values of 0.06 are much lower than 0.3, indicating

good model performance (Zhou 1993). On the basis of this,

we can assume that the RBF neural network model is able to

give an acceptable raw water quality assessments.

TheRBFneural networkmodel is thus used to provide real-

time assessments of raw water quality in the XWTP, on the

basis of on-line measurements of various raw water quality

parameters, including water temperature, turbidity, CODMn,

and NHþ
4 � N. Table 3 shows real-time raw water quality

assessment results of 12 May 2015 at XWTP. It is clear from

this that raw water quality undergoes an abrupt change at

10:00 following heavy rains and the optimum chemical

dosage becomes greater according to the assessment output.

It should be noted that the parameters of raw water

quality typically vary simultaneously and cannot be con-

trolled artificially. It is therefore difficult to address all of

the chemical conditions of raw water quality during the

production of drinking water. As a result, further real-time

assessments with a different range of raw water qualities

are necessary to more thoroughly validate the proposed

assessment method.

Fig. 3 Feedforward–feedback composite control scheme

Fig. 4 Testing results of RBF neural network model
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Experimental results of the feedforward–feedback

composite control scheme

In order to test the practical capability of the proposed raw

water quality assessment method, the feedforward–feed-

back composite control scheme developed in this study has

been experimentally implemented at the XWTP. All of the

on-line signals delivered to and from the chemical dosing

process are interconnected by a distributed control system

(DCS) as shown in Fig. 5. Process data are saved in the

database of a computer server, and the control schemes are

programmed on the computer and executed through a

programmable logic controller (PLC).

Results from this experimental implementation of the

proposed feedforward–feedback composite control

scheme are shown in Fig. 6 and are compared with the IMC

feedback control alone, under the abrupt changes of raw

water quality seen in 12 May 2015. The corresponding per-

formance indices are shown inTable 4. It can be seen that the

feedforward–feedback composite control scheme gives

more steady output (solid line). This is very important

especially in the conditions of big and frequent changes of

raw water quality. The experimental results are basically

consistent with the theoretical analysis in the preceding

sections, which determined that the chemical dosage sup-

plied by the feedforward–feedback composite control

scheme can be adjusted over time to address changes in raw

water quality. In order to providemore reliable feedforward–

feedback composite control of the chemical dosing process,

the proposed control scheme should be tested for at least one

year to cover all the typical conditions of abrupt changes of

raw water quality and the modifications of control parameter

adaptation might be required.

Conclusions

Rawwater quality assessment for the drinkingwater treatment

has been conducted in this paper. A feedforward–feedback

composite control scheme based on the raw water quality

assessment is designed for the chemical dosing process con-

trol of drinking water treatment to cope with the changes of

raw water quality and to stabilize the quality of treated water.

Thus, the consumer’s health is protected from chemical and

Table 3 Real-time assessment results of raw water quality of 12 May 2015 at XWTP

Time Temperature

ð�CÞ
Turbidity

(NTU)
NHþ

4 -N

(mg L�1Þ
CODMn

(mg L�1Þ
Assessment

output

Optimum alum

dosage (mg L�1Þ
Optimum ozone

dosage (mg L�1Þ
Water

quality grade

6:00 17.1 76 0.62 2.2 0.49 9.8 0.89 V

7:00 17.3 79 0.63 2.3 0.51 10.3 0.91 V

8:00 17.5 89 0.69 2.5 0.53 10.9 0.93 V

9:00 17.6 85 0.65 2.3 0.52 10.6 0.92 V

10:00 18.1 101 0.73 2.7 0.58 12.4 0.98 VI

11:00 18.6 107 0.77 2.8 0.59 12.7 0.99 VI

12:00 18.5 122 0.81 2.7 0.63 11.2 0.97 VI

13:00 18.3 125 0.92 2.5 0.67 8.8 0.93 VII

14:00 18.9 130 0.91 2.9 0.69 7.6 0.91 VII

15:00 19.1 131 0.96 3.1 0.69 7.6 0.91 VII

Fig. 5 DCS for the chemical

dosing process
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microbiological risks.Meanwhile, the proposed feedforward–

feedback composite control scheme makes the operation of

drinking water treatment more efficient and brings great

improvements in plant management. To realize wider appli-

cation, further research of real-time assessment for different

water sources should be developed and further stability

evaluations of feedforward–feedback composite control

scheme should be conducted.
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