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In this paper, an efficient approach of combining Takagi–Sugeno–Kang fuzzy system with wavelet based
neural network is presented. The model replaces the constant or a linear function of inputs in conclusion
part of traditional TSK fuzzy model with wavelet neural network (WNN), thus each rule uses fuzzy set to
separate the input space into subspaces spanned by different wavelet functions. For finding the optimal
values for parameters of our proposed fuzzy wavelet neural network (proposed-FWNN), a hybrid learning
algorithm integrating an improved particle swarm optimization (PSO) and gradient descent algorithm is
employed. The two-layer inline-PSO process is proposed in this paper, whose adjustment scheme is more
fitting the consequent pattern learning based gradient descent optimization and will locate a good region
in the search space. Simulation examples are given to test the efficiency of proposed-FWNN model for
identification of the dynamic plants. It is seen that our modeling and optimization approach results in
a better performance.

� 2014 Published by Elsevier Ltd.
Introduction

Recently, the concepts of neural network, fuzzy logic, wavelet
technology have got a lot of attention by researchers. In the field
of artificial intelligence, neural networks have been widely used
on account of its ability of nonlinear approximation and advantage
of easy realization [1–3]. Due to the ability of wavelet transforma-
tion for revealing the property of function in localize region,
different types of wavelet neural network (WNN) which combine
wavelets with neural networks have been proposed [4–6]. In
WNN, the wavelets were introduced as activation functions of
the hidden neurons in traditional feedforward neural networks
with a linear output neuron. There are two different WNN architec-
tures: one type has fixed wavelet bases possessing fixed dilation
and translation parameters. In this one only the output layer
weights are adjustable. Another type has the variable wavelet base
whose dilation and translation parameters and output layer
weights are adjustable. Several WNN models have been proposed
in the literatures. In [7], a four-layer self-constructing wavelet net-
work (SCWN) controller for nonlinear systems control is described
and the orthogonal wavelet functions are adopted as its node
functions. In [8], a local linear wavelet neural network (LLWNN)
is presented whose connection weights between the hidden layer
and output layer of conventional WNN are replaced by a local lin-
ear model. In [9], a model of multiwavelet-based neural networks
is proposed. The structure of this network is similar to that of the
wavelet network, except that the orthonormal scaling functions
are replaced by orthonormal multiscaling functions.

Fuzzy logic systems are often used to deal with complex nonlin-
ear systems with ill-defined conditions and uncertain factors
[10,11]. Compared with the difficulty to understand the meaning
associated with each neuron and each weight in the neural net-
work, fuzzy logic uses linguistic terms and the structure of if-then
rules. The traditional Takagi–Sugeno–Kang (TSK) fuzzy model con-
sist of a set of rules, and each rule uses fuzzy set to separate the
input space into local fuzzy regions. As the form of combining
the benefits of neural network and fuzzy systems, fuzzy neural
networks have emerged as a powerful approach to solving many
problems [12–15]. In [12], a fuzzy modeling method using fuzzy
neural networks with the backpropagation algorithm is presented
which can identify the fuzzy model of a nonlinear system automat-
ically. In [13], a hybrid neural fuzzy inference system (HyFIS) for
building and optimizing fuzzy models is proposed which is applied
to an on-line incremental adaptive learning for the prediction and
control of nonlinear dynamical systems. In [14], the adaptive
neural fuzzy inference system is used as classifier of fault in power
distribution system and makes good performance. In [15], a
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self-organizing complex neuro-fuzzy system is presented and
applied to the problem of time series forecasting.

Taking account of the neural networks’ self learning ability,
fuzzy logic’s handling uncertainty capacity and wavelet trans-
forms’ analyzing local details superiority, several researchers have
made a synthesis model of a fuzzy wavelet neural network
(FWNN) [16–20]. In [16], a fuzzy wavelet network is proposed
for approximating arbitrary nonlinear functions. Each rule of net-
work corresponding to a sub-wavelet neural network consists of
single-scaling wavelets. In [17], a dynamic time-delay fuzzy wave-
let neural network model is presented for nonparametric identifi-
cation of structures using the nonlinear autoregressive moving
average with exogenous inputs approach. In [18], the proposed
fuzzy wavelet neural network is used for the identification and
the control of the dynamic plants. Each rule in FWNN includes a
wavelet function in the consequent part of the rule and multi-
dimensional wavelet functions are the summation form. In [19],
the genetic algorithm (GA) approach is used to adjust the FWNN
parameters of dilation, translation, weights, and membership
functions. In [20], a hybrid adaptive wavelet-neuro-fuzzy system
is proposed using wavelets as membership functions in the ante-
cedent part as well as the activation functions in the consequent
part of fuzzy rules.

Inspired by social behavior of bird flocking or fish schooling,
particle swarm optimization (PSO) was firstly introduced by Ken-
nedy and Eberhart in 1995 [21,22]. After several years of develop-
ment, PSO and its modified forms have evolved as an important
branch of stochastic techniques to explore the search space for
optimization, which have been successfully applied in many areas:
function optimization, artificial network training, fuzzy system
control and so on [23–27]. The attractive features of PSO include
ease of implementation and the fact that no gradient information
is required. However, PSO does exhibits some disadvantages: like
other heuristic algorithms, it takes more calculation time than tra-
ditional gradient descent method when you want to achieve simi-
lar accuracy; it sometimes is easy to be trapped in local optima,
and the convergence rate decreased considerably in the later per-
iod of evolution; when reaching a near optimal solution, the algo-
rithm stops optimizing, and thus the accuracy the algorithm can
achieve is limited.

In this paper, a novel fuzzy wavelet neural network is proposed,
which use the concepts of fuzzy logic in combination with WNN. In
our proposed fuzzy wavelet neural network (proposed-FWNN),
each fuzzy rule corresponds to a WNN consisting of several wave-
lets with adjustable translation and dilation parameters. In the
aspect of optimizing the proposed-FWNN, in order to avoid the
trial-and-error process and the impact coming from random ini-
tialization, we adopt a hybrid learning algorithm. Firstly, an
inline-PSO algorithm is proposed to find a relative good initial
value of adjustable parameters. The inline-PSO shows a faster con-
vergence than the basic PSO and the updating scheme of the veloc-
ity and position of particles are more coordinating with the
following pattern learning based gradient descent algorithm. Sec-
ondly, the gradient descent algorithm is adopted to adjust param-
eters in the proposed-FWNN. For getting a more reasonable model,
the performance criterion of training and testing signals during
learning are both investigated.

The rest of the paper is organized as follows. The proposed-
FWNN is introduced in Section ‘‘The proposed fuzzy wavelet neu-
ral network modeling’’. A hybrid learning algorithm for training
proposed-FWNN is described in Section ‘‘Hybrid learning algo-
rithm to optimize the proposed-FWNN’’. In Section ‘‘Simulation
examples’’, two simulation examples of system identification
are given to demonstrate the better performance of proposed-
FWNN. Finally, a brief conclusion is drawn in Section ‘‘Conclusion’’.

 

 

The proposed fuzzy wavelet neural network modeling

Motivated by the reason stated in Section ‘‘Introduction’’, we
present a novel type of fuzzy wavelet-based model. TSK fuzzy
models are employed to describe the proposed-FWNN by some
fuzzy rules, and WNNs consisting of several wavelets with adjust-
able translation and dilation parameters form the consequent parts
of each fuzzy rules.

Takagi–Sugeno–Kang fuzzy system

In a TSK fuzzy model, the domain interval of each input is sep-
arated into fuzzy regions and each region shows a membership
function in the IF part of the fuzzy rules. A constant or a linear
function of inputs is used in the THEN part of the rules. That is,
the IF-THEN rules are as follows [10]:

Rk: IF x1 is Ak1 AND x2 is Ak2 AND � � � AND xn is Akn

THEN yk ¼ ak0 þ ak1x1 þ � � � þ aknxn;
ð1Þ

where Rk represents the kth fuzzy inference rule, xj and Akj are fuzzy
variables and fuzzy sets with membership functions.

The fuzzy membership functions of Akj are Gaussian function
defined by (2):

lkjðxjÞ ¼ exp � xj � ckj

rkj

� �2
 !

; ð2Þ

where ckj denote the centers and rkj denote the standard deviation
for membership function associated with rule k. The output of TSK
fuzzy system with M rules is aggregated as (3):

y ¼
PM

k¼1yk

Qn
j¼1lkjðxjÞPM

k¼1

Qn
j¼1lkjðxjÞ

: ð3Þ

The TSK fuzzy model is based on a fuzzy partition of input space and
it can be viewed as expansion of a piecewise linear partition.

Wavelet neural network

Wavelets in the following form:

wa;b ¼ jaj
�1=2w

x� b
a

� �
; ða; b 2 R; a – 0Þ ð4Þ

are a family of functions generated from one single function wðxÞ by
the operation of dilation and translation. wðxÞ 2 L2ðRÞ is called a
mother wavelet function that satisfies the admissibility condition:

Cw ¼
Z þ1

0

jŵðxÞj2

x
dx < þ1; ð5Þ

where ŵðxÞ is the Fourier transform of wðxÞ [28,29].
Grossmann and Morlet [30] proved that any function f ðxÞ in

L2ðRÞ can be represented by (6):

f ðxÞ ¼ 1
Cw

ZZ
Wf ða; bÞjaj�1=2w

x� b
a

� �
1
a2 dadb; ð6Þ

where Wf ða; bÞ given by (7):

Wf ða; bÞ ¼ jaj�1=2
Z þ1

�1
w

x� b
a

� �
f ðxÞdx ð7Þ

is the continuous wavelet transform of f ðxÞ.
Superior to conventional Fourier transform, the wavelet trans-

form (WT) in its continuous form provides a flexible time–fre-
quency window, which narrows when observing high frequency
phenomena and widens when analyzing low frequency behavior.
Thus, time resolution becomes arbitrarily good at high frequencies,



Fig. 1. Structure of WNN.
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while the frequency resolution becomes arbitrarily good at low fre-
quencies. This kind of analysis is suitable for signals composed of
high frequency components with short duration and low frequency
components with long duration, which is often the case in practical
situations.

Inspired by the wavelet decomposition of f ðxÞ 2 L2ðRÞ in (6) and
a single hidden layer network model, Zhang and Benveniste [5] had
developed a new neural network model, namely, wavelet neural
network (WNN). The structure of a WNN is shown in Fig. 1. For
the modeling of multivariable processes here, multi-dimensional
wavelets must be defined. In the present work, multi-dimensional
wavelets are defined as (8):

WiðxÞ ¼
Yn

j¼1

w
xj � bij

aij

� �
; i ¼ 1;2; . . . ;N; ð8Þ

where x ¼ ðx1; x2; . . . ; xnÞT is the input vector, bi ¼ ðbijÞ and ai ¼ ðaijÞ
are the translation and dilation vectors, respectively. The network
output y ¼ ðy1; y2; . . . ; yqÞ

T is computed as (9):

ym ¼
XN

i¼1

wmiWi þ �ym; m ¼ 1;2; . . . ; q; ð9Þ

where w ¼ ðwmiÞ and �y ¼ ð�y1; �y2; . . . ; �yqÞ defines the connecting
weights and the bias terms between the hidden layer and the out-
put layer, respectively. N is the number of units in hidden layer. It is
easy to see that the WNN is in fact a feed-forward neural network
with one hidden layer where wavelet functions act as activation
functions in the hidden nodes and a linear output layer.
Fig. 2. Structure of p
Structure of the proposed-FWNN

As mentioned earlier, in most fuzzy models, the approximated
function is a linear combination of the input variables plus a con-
stant term. These systems do not have localizability and their con-
vergence is generally slow. In the case of modeling of complex
nonlinear processes, the lack of full mapping capabilities of the
consequent part of these fuzzy systems will show more obviously.
In this paper, we propose a new network using WNN (rather than
linear functions) in (9) as the consequent part of TSK fuzzy models,
which can achieve the desired accuracy with less number of rules
compared with other fuzzy models (simulation results are illus-
trated in Section ‘‘Simulation examples’’). For a convenient expres-
sion, the proposed-FWNN with one output node is considered here.

The fuzzy rules of the proposed-FWNN are of the following
form:

Rk: IF x1 is Ak1 AND x2 is Ak2 AND . . . AND xn is Akn

THEN Yk ¼
XNk

i¼1

wk
i W

k
i þ �yk;

where x1; x2; . . . ; xn are the input variables, Y1;Y2; . . . ;YM are the
output variables, Akj is the kth fuzzy set with Gaussian membership
functions defined in (2). Conclusion parts of the rules contain differ-
ent WNNs with Nk wavelet activating functions

Wk
i ¼

Yn

j¼1

wk
ij ¼

Yn

j¼1

w
xj � bk

ij

ak
ij

 !
ð10Þ

in the hidden neurons. wk
i and �yk are the connecting weights and the

bias terms.
The structure of the proposed-FWNN is depicted in Fig. 2. It

includes 7 layers. Nodes in layer 1 pass the input signals to the sec-
ond layer. Nodes in layer 2 act as the membership functions in the
IF part of the rules. So we called it the fuzzification layer. The fuzz-
ification neuron performs the mappings from crisp value xj into
fuzzy set Akj , with degree lkjðxjÞ as in (2). In layer 3, each node
represents one fuzzy rule. AND operator is used to calculate the
output signals showed as (11):

Ok ¼ Oð3Þk ¼
Yn

j¼1

lkjðxjÞ; ðk ¼ 1;2; . . . ;MÞ: ð11Þ

Layer 4 accepts the variables x1; x2; . . . ; xn as input signals,
which consists of M wavelet neural networks and each network
roposed-FWNN.
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corresponds to a consequent part of a fuzzy rule. The number of
wavelet neurons in WNN corresponding to the kth fuzzy rule is
Nk , and the outputs of layer 4 are calculated as (12):

Yk ¼ Oð4Þk ¼
XNk

i¼1

wk
i W

k
i þ �yk: ð12Þ

The Defuzzification inference is described in layer 5–7. In layer 5,
the output signals of layer 3 are multiplied by the output signals
of layer 4. Two neurons in layer 6 perform as the summation
operator to the output signals from layer 5 and layer 3 respec-
tively. And the output neuron in layer 7 calculates the quotient
which shows the contribution of each WNN to the final output
of proposed-FWNN. The specific formulas are described by
(13)–(15):

Oð5Þk ¼ Oð3Þk � O
ð4Þ
k ¼ Ok � Yk: ð13Þ

Oð6Þ1 ¼
XM

k¼1

Oð5Þk ; Oð6Þ2 ¼
XM

k¼1

Oð3Þk : ð14Þ

y ¼ Oð7Þ ¼ Oð6Þ1

Oð6Þ2

¼
PM

k¼1OkYkPM
k¼1Ok

: ð15Þ

The structure of our proposed-FWNN is different from the FWNN
structures designed in some existing literatures. In [16,31] for
example, each rule of the FWNN corresponds to a sub-wavelet
neural network consists of single-scaling wavelets. While the
translation and dilation parameters in our WNN in the consequent
part of fuzzy rule are all adjustable. In [18], the multidimensional
wavelet function is the summation form, while we adopt the mul-
tiplication form that is employed in much more cases. Moreover,
in out models, the input space is made a fuzzy partition to ‘‘multi-
dimensional’’ sub-space with several wavelet bases. While in [18],
the partition is to ‘‘unidimensional’’ sub-space in nature. That is
to say, our proposed-FWNN have more freedom in design and
may employ less fuzzy rules to achieve certain accuracy.

Hybrid learning algorithm to optimize the proposed-FWNN

The parameter vector in proposed-FWNN to be updated is
H ¼ ðckj;rkj; b

k
ij; a

k
ij;w

k
i ; �ykÞ consisting of the center parameters ckj

and standard deviation parameters rkj of the membership func-
tions in the layer 2; translation parameters bk

ij , dilation parameters
ak

ij of wavelet functions, weight parameters wk
i and bias �yk in the

layer 4. Here k ¼ 1;2; . . . ;M , i ¼ 1;2; . . . ;Nk , j ¼ 1;2; . . . ;n are the
subscripts corresponding to the fuzzy rule, wavelet neurons and
input signals respectively. In this paper, all parameters are
adjusted by a hybrid learning algorithm consisting of initialization
by a proposed inline particle swarm optimization (inline-PSO) and
adjustment by the gradient descent algorithm (GDA).

Basic PSO algorithm

PSO is an evolutionary computation technique mimicking the
behavior of flying birds and their means of information exchange.
In PSO, each single solution is a particle in the search space. All of
particles have fitness values that are evaluated by the fitness
unction to be optimized, and have velocities that direct the flying
of the particles. Similar to other population based evolutionary
algorithms, PSO as an optimization tool can solve a variety of
difficult optimization problems. The system is initialized with a
population of random solutions and searches for optima by
updating generations.

In the basic PSO algorithm, the velocity and position updating
rule is given by (16) and (17) [21,22]:

 

 

vkþ1
id ¼ xvk

id þ c1r1ðpbestk
id � xk

idÞ þ c2r2ðgbestk
d � xk

idÞ; ð16Þ
xkþ1

id ¼ xk
id þ vkþ1

id ; ð17Þ

where c1 and c2 are positive constants named acceleration coeffi-
cients. r1 and r2 are two independent random numbers uniformly
distributed in the range ½0;1�. x is the inertia weight factor which
can be a constant or a variable of iteration. Empirical studies of
PSO with inertia weight have shown that a relatively large x have
more global search ability while a relatively small x results in a fas-
ter convergence. pbestk

id is the best previous position along the dth
dimension of particle i in the iteration k and gbestk

d is the best pre-
vious position among all the particles along the dth dimension in
iteration k.

Inline-PSO algorithm of proposed-FWNN

As an optimization algorithm, basic PSO and its improved
schemes has already been applied in many areas, such as function
optimization, artificial neural network training, pattern classifica-
tion and fuzzy system control. In consideration of the PSO’s disad-
vantage of taking more calculation time for a relatively good
accuracy, in this paper, we would like to combine it with gradient
descent algorithm to train the proposed-FWNN. That is to say, a
‘‘reasonable’’ PSO with relatively small population size and less
number of iterations is performed to get a good initialization of
proposed-FWNN, and then a gradient descent algorithm is used
to get the final values of parameters which make the model achiev-
ing the satisfactory solution.

The advantages of the hybrid learning algorithm are obvious.
Firstly, it brings more stable training process than that employing
only one optimization algorithm (PSO or GDA), which shows stron-
ger dependent on the random factors of training. Secondly, as men-
tioned in some literatures, the particles may shows the ‘‘similarity’’
phenomenon in optimization procedure, which makes the conver-
gence of PSO very slow. Combining with the gradient descent algo-
rithm can speed the convergence of the training process.

In this subsection, taking into account of the adjustment
scheme of parameters in pattern learning based gradient descent,
which update the parameter after each measurement ðxl; f lÞ
,ðl ¼ 1;2; . . . ;KÞ in the opposite direction of the gradient of function
defined by (18):

EðH;xl; f lÞ ¼
1
2
ðylðH;xlÞ � f lÞ

2
; ð18Þ

a modified PSO named inline-PSO algorithm containing two fitness
functions is proposed. yl in (18) refers to the output of network
based on input xl and parameter vector H. Its optimization scheme
is constituted by two layers. In the outer layer, particles’ velocity
and position are updated based on fitness values calculated by the
performance index of root mean square error (RMSE) given by (19):

RMSEðH; ~x; fÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK

l¼1
ðyl � f lÞ

2

r
: ð19Þ

where ~x ¼ fx1;x2; . . . ;xKg; f ¼ ff 1; f 2; . . . ; f Kg. In the inner layer, par-
ticles’ velocity and position are updated based on fitness values cal-
culated by (18).

The detailed inline-PSO approach is as follows:

Step 1: Initialization. Set the population size ðpsizeÞ and the ter-
mination iterative number ðMaxgenÞ of evolution. Initialize
velocity and position of particles randomly. Let the iterative
number k ¼ 1 .
Step 2: Calculate the fitness value of each particle by (19) and
represent it by fitnessi ,ði ¼ 1;2; . . . ; psizeÞ. Find the best
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previous position pbestk
i of particle i and choose the best previ-

ous position gbestk among all the particles.
Step 3: Update the velocity and position of particles by (16) and
(17).
S3.1: Sort the input vectors randomly and record the new input
sequence as fx̂lgK

l¼1. Let l ¼ 1 .
S3.2: Calculate the fitness value ðEðH; x̂l; f lÞÞ of each particle by
(18) and represent it by Infitnessi , ði ¼ 1;2; . . . ; psizeÞ . Find the
best previous position Inpbestk

i of particle i and choose the best
previous position Ingbestk among all the particles.
S3.3: Update the velocity and position of particles by

vkþ1
id ¼ xvk

id þ c1r1ðInpbestk
id � xk

idÞ þ c2r2ðIngbestk
d � xk

idÞ;
xkþ1

id ¼ xk
id þ vkþ1

id ;

S3.4: Let l ¼ lþ 1 . If l < K þ 1 , go to S3.2; otherwise go to
Step 4.
Step 4: Let k ¼ kþ 1 . Calculate the fitness value fitniessi of each
particle and find the best previous position pbestk

i of particle i
and choose the best previous position gbestk among all the par-
ticles. If k > Maxgen , stop and pick up gbestk ; otherwise go to
Step 3.
Remarks.

1. Inertia weight factor x here can be a constant or a variable of
iteration. In this paper, we prefer to a variable that linear
decrease with the number of iterations which has been used
in some literatures [32,33] and showed a satisfactory perfor-
mance. The linear decreasing weight is as follows:
xðkÞ ¼ xstart � ðxstart �xendÞ � k=Maxgen; ð20Þ
where xstart ¼ 0:9 and xend ¼ 0:4. For reducing the calculation
time,less input–output pairs can adopted for updating particles’
velocity and position in step 3 if the number of training dada is
large.

2. After same iteration steps, the particles of inline-PSO will reach
a less fitness value compared with the basic PSO, which can be
illustrated in the simulation examples in Section ‘‘Simulation
examples’’. And due to the two-layer adjustment scheme, two
advantages are brought. Firstly, particles in population can
maintain a certain degree of diversity accompanied with nar-
rowing search space around the global best position. Secondly,
parameters in particles of the inline-PSO can fit the consequent
gradient descent optimization well and reach the optimal
solution quickly.

3. The inline-PSO algorithm is used to locate a good region in the
search space and then a gradient descent search algorithm is
employed to fine tune the optimal solution as the following
subsection.
Gradient descent algorithm following the inline-PSO of proposed-
FWNN

Gradient descent method is implemented for training the pro-
posed-FWNN after parameter initialization by inline-PSO. Parame-
ters H ¼ ðckj;rkj; b

k
ij; a

k
ij;w

k
i ; �ykÞ are adjusted in the opposite

direction of the gradient of the objective function defined by
(21), which is based on each pattern presentation:

EðH;x; yÞ ¼ 1
2
ðy� f Þ2; ð21Þ

and the adjusting formulas are:

Hðt þ 1Þ ¼ HðtÞ þ DH;

DH ¼ �cc
@E
@ckj

;�cr
@E
@rkj

;�cb
@E

@bk
ij

;�ca
@E
@ak

ij

;�cw
@E
@wk

i

;�c�y
@E
@�yk

 !
;

ð22Þ

where c is the learning rate. The values of derivatives in (22) can be
calculated by the following formulas (23)–(28):

@E
@ckj
¼ðy� f Þ � @y

@Ok
� @Ok

@lkj
�
@lkj

@ckj
¼ðy� f Þ � @y

@Ok
� @Ok

@lkj
�lkj �

2ðxj�ckjÞ
r2

kj

; ð23Þ

@E
@rkj

¼ðy� f Þ � @y
@Ok
� @Ok

@lkj
�
@lkj

@rkj
¼ðy� f Þ � @y

@Ok
� @Ok

@lkj
�lkj �

ðxj�ckjÞ2

r3
kj

; ð24Þ

where @y
@Ok
¼ Yk �

PM

k0¼1
Ok0 þ
PM

k0¼1
Ok0 Yk0PM

k0¼1
Ok0

� �2 ; @Ok
@lkj
¼
Qj�1

l¼1lkl

Qn
l¼jþ1lkl.

@E

@bk
ij

¼ðy� f Þ � @y
@Yk
� @Yk

@wk
ij

�
@wk

ij

@bk
ij

¼ðy� f Þ � @y
@Yk
� @Yk

@wk
ij

�w0 ��1
ak

ij

; ð25Þ

@E
@ak

ij

¼ðy� f Þ � @y
@Yk
� @Yk

@wk
ij

�
@wk

ij

@ak
ij

¼ðy� f Þ � @y
@Yk
� @Yk

@wk
ij

�w0 �
�ðxj�bk

ijÞ
ðak

ijÞ
2 ; ð26Þ

@E
@wk

i

¼ðy� f Þ � @y
@Yk
� @Yk

@wk
i

¼ðy� f Þ � @y
@Yk
�Wk

i ; ð27Þ

@E
@�yk
¼ðy� f Þ � @y

@Yk
�@Yk

@�yk
¼ðy� f Þ � @y

@Yk
; ð28Þ

where
@y
@Yk
¼ OkPM

k0¼1
Ok0
; @Yk

@wk
ij
¼ wk

i

Qj�1
l¼1w

k
il

Qn
l¼jþ1w

k
il; k ¼ 1;2; . . . ;M; i ¼ 1;2; . . . ;

Nk; j ¼ 1;2; . . . ;n.

Simulation examples

In order to evaluate the performance of proposed-FWNN, two
simulation studies of nonlinear system identifications are carried
out employing the proposed model and learning algorithm. The
structure of the identification scheme with proposed-FWNN is
shown in Fig. 3. The inputs of the model are delayed values of con-
trol signal uðkÞ and plant output yðkÞ . Here, the problem is to find
such values of parameters of proposed-FWNN by using them in the
system for all input values of uðkÞ the difference between plant
output yðkÞ and network output ynðkÞ will be minimum. In all
experiments here, Gauss wavelet functions are adopted as the acti-
vation functions in proposed-FWNN.

Example 1

In this example, the plant to be identified is described as

yðkÞ ¼ 0:72yðk� 1Þ þ 0:025yðk� 2Þuðk� 2Þ þ 0:01u2ðk� 3Þ
þ 0:2uðk� 4Þ: ð29Þ

This plant is the same as that used in [34,18]. The current output of
the plant depends on two previous outputs and four previous



Table 1
comparison of simulation results of different models for Example 1.

Model Number of
fuzzy rules

Number of
parameters

RMSE of
training

RMSE of
testing

ERNN [36] – 54 0.036 0.078
RSONFIN [35] – 49 0.03 0.06
TRFN-S [34] 3 33 0.0067 0.0313
FWNN [18] 3 27 0.019736 0.022609
FWNN [18] 5 43 0.018713 0.020169
proposed-FWNN 2 30 0.0067 0.0163

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration

F
itn

es
s 

V
al

ue

PSO
inline−PSO

Fig. 4. Fitness values obtained during iteration of two PSO methods for Example 1.
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Fig. 6. Results of identification for Example 1.
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Fig. 5. RMSE values obtained during training and testing for Example 1.
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inputs. However, we only adopt the current state of system and the
control signal feeding into the proposed-FWNN as inputs. Input sig-
nals used for training proposed-FWNN are same as in literatures
[34,18], which is an independent and identically distributed uni-
form sequence over ½�2;2� for about half of the 900 time steps
and a sinusoid given by 1:05sinðpk=45Þ for the remaining time. To
see the identification result, the following input signal is adopt for
test:

uðkÞ ¼

sinðpk=25Þ; k < 250
1:0; 250 6 k < 500
�1:0; 500 6 k < 750
0:3sinðpk=25Þ þ 0:1sinðpk=32Þ
þ0:6sinðpk=10Þ; 750 6 k < 1000:

8>>>>>><
>>>>>>:

ð30Þ

Two rules ðM ¼ 2Þ and two wavelet neurons ðNk ¼ 2; k ¼ 1;2Þ in
each WNN are employed in our experiment. So the number of
adjustable parameters is N ¼ 30. The hybrid learning algorithm sta-
ted in Section ‘‘Hybrid learning algorithm to optimize the proposed-
FWNN’’ is used to train the proposed-FWNN. The optimization
results of inline-PSO and basic PSO are compared and illustrated
in Fig. 4. The population size psize ¼ 20 and the termination itera-
tive number Maxgen ¼ 50 , which are set relatively small to shorten
the runtime and lest overtraining of the training signal which may
lead to narrow search space of testing signal. The acceleration coef-
ficients c1 and c2 are set to 2, and the linear decreasing inertia
weight defined by (20) are adopted here. As shown in Fig. 4, the
convergence of inline-PSO is faster than that of PSO, which reach
the fitness values of 0.0250 and 0.0380 respectively.

The RMSE reduction curve during training and testing of gradi-
ent descent algorithm in the consequent part of hybrid learning
scheme is illustrated in Fig. 5. And the actual and predicted outputs
of the plant for the test signal are drawn in Fig. 6. As shown in
Fig. 5, due to the suitable initialization of network in the stage of
two-layer inline-PSO, whose adjustment scheme is coordinate
with following gradient descent, the RMSE values can reduce
smoothly with iteration when small learning rates are adopted.
The dashed line of RMSE during testing indicates the rationality
of the model.

The RMSE values of proposed-FWNN-based identification sys-
tem for training and testing data are illustrated in Table 1, which
give the results of other models as well. From Table 1, it can be
seen that the proposed-FWNN model shows better performance
than the other models in this system identification problem even
though fewer fuzzy rules are employed.

Example 2

In this example, the second-order nonlinear plant to be identi-
fied is described as

yðkþ 1Þ ¼ f ðyðkÞ; yðk� 1Þ; yðk� 2Þ;uðkÞ; uðk� 1ÞÞ; ð31Þ

where

f ðx1; x2; x3; x4; x5Þ ¼
x1x2x3x5ðx3 � 1Þ þ x4

1þ x2
3 þ x2

2

: ð32Þ

The identification of the same plant are considered in [34,35,18].
The current output of the plant depends on three previous output
values and two previous input values. However, we only adopt
the current state of system and the control signal feeding into the
proposed-FWNN as inputs. The testing signal is adopted as in (30)
too. The number of fuzzy rules and wavelet neurons in each WNN
are same as example 1 and thus the number of adjustable parame-
ters is N ¼ 30 too. The hybrid learning algorithm stated in Sec-
tion ‘‘Hybrid learning algorithm to optimize the proposed-FWNN’’
is used to train the proposed-FWNN. The acceleration coefficients

 

 



Table 2
Comparison of simulation results of different models for Example 2.

Model Number of
fuzzy rules

Number of
parameters

RMSE of
training

RMSE of
testing

RFNN [37] 16 112 0.0114 0.0575
RSONFIN [35] – 36 0.0248 0.0780
TRFN-S [34] 3 33 0.0084 0.0346
FWNN [18] 3 27 0.029179 0.031212
FWNN [18] 5 43 0.028232 0.030125
proposed-FWNN 2 30 0.0202 0.0274
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Fig. 7. Fitness values obtained during iteration of two PSO methods for Example 2.
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Fig. 9. Results of identification for Example 2.
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in inline-PSO and basic PSO are c1 ¼ c2 ¼ 2, and the inertia weight
x is linear decreasing during iteration. The population size
psize ¼ 20 and the termination iterative number Maxgen ¼ 30,
which are set relatively small for the same reason sated in the
previous example. The optimization results of inline-PSO and basic
PSO are compared and illustrated in Fig. 7, which shows obviously
that the convergence of inline-PSO is faster than that of PSO, which
reach the fitness values of 0:0350 and 0:0492 respectively.

Fig. 8 displays the RMSE reduction curve during training and
testing of gradient descent algorithm in the consequent part of
hybrid learning scheme. And the actual and predicted outputs of
the plant for the test signal are drawn in Fig. 9. Table 2 compares
the RMSE values of proposed-FWNN-based identification system
with other approaches reported in the other literatures. As it is
seen, the proposed-FWNN models are again successful in identifi-
cation than the other models even though fewer fuzzy rules are
employed.

Conclusion

In this paper, a novel approach to fuzzy wavelet neural network
modeling as well as optimization algorithm is proposed. In the
structure design aspect of proposed-FWNN, the TSK fuzzy logic is
combined with wavelet neural network which derive a fuzzy par-
tition of input space into different wavelet based subspaces. In the
training aspect of proposed-FWNN, a hybrid training algorithm
combining a so called inline-PSO and gradient-based algorithm is
proposed. The proposed inline-PSO finds the optimal solution by
adjusting parameters after each measurement as well as that con-
tains all vectors, which corresponds to the adjustment scheme of
the consequent gradient descent algorithm and could make a faster
convergence. In both two simulation examples of system identifi-
cation, proposed-FWNN gets a better performance than other mod-
els, despite fewer rules and smaller number of parameters.
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