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Abstract. Cellular Carry Lookahead (CLA) adders are systematically implemented in arithmetic units due to their
regular, well-balanced structure. In terms of testability and with respect to the classical Cell Fault Model (CFM),
cellular CLA adders have poor testability by construction. Design-for-testability (DFT) modifications for cellular
CLA adders have been proposed in the literature providing complete CFM testability making the adders either
level-testable or C-testable. These designs impose significant area and performance overheads. In this paper, we
propose DFT modifications for cellular CLA adders to achieve complete CFM testability with special emphasis on
the minimum impact in terms of area and performance. Complete CFM testability is achieved without adding any
extra inputs to the adder, with very small area and performance overheads, thus providing a practical solution. The
proposed DFT scheme requires only 1 extra output and it is not necessary to put the circuit in a special test mode,
while the earlier schemes require the addition of 2 extra inputs to set the circuit in test mode. A rigorous proof of the
linear-testability of the adder is given and a sufficient linear-sized test set is provided that guarantees 100% CFM
fault coverage. Surprisingly, the size of the proposed linear-sized test set is, in most practical cases, comparable or
even smaller than a logarithmic-sized test set proposed in the literature.
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1. Introduction

High-performance processors require fast adders
within their datapath, either as a separate module or as
part of the Arithmetic Logic Unit (ALU). Carry Looka-
head (CLA) adder architecture is the most common
architecture for fast addition. Regular, cellular CLA
adders [1] are preferred by many designers, since their
enhanced regularity leads to efficient circuit implemen-
tation. Additionally, cellular CLA adders can be easily
generated by automatic generators either as stand-alone
fast adders or embedded in fast ALU modules.

The demand for high test quality in today’s dense
and complex processors (such as dense cellular struc-
tures) cannot be based on traditional fault models,
such as the stuck-at fault model. To achieve high test
quality, cellular adder architectures should adopt the
combinational cell-level fault model, namely the Cell
Fault Model (CFM) [2], which has been widely used
[3–18]. A CFM-based test strategy is cell implementa-
tion independent, i.e. valid for any internal gate-level
implementation of the cells. Unfortunately, cellular
CLA adders due to their convergent-tree structure have
serious testability problems when CFM is considered
[3, 4].

Cellular CLA adder architecture is based on regular
convergent tree structures to reduce the delay associ-
ated with carry generation. Lynch and Swartzlander
[1] proposed efficient, modular CLA adders with high
regularity, suitable for VLSI implementation. This ar-
chitecture has been adopted in the Advanced Micro De-
vices AM29050 microprocessor [1, 19]. The adder de-
sign is based on a combination of a tree circuit (carry
lookahead) for the generation of a subset of regularly
distributed carry signals and one-dimensional arrays
(connected in a ripple carry—RC fashion) which use
the carry signals generated by the CLA logic for the
computation of the final sum and carry outputs. This
adder architecture, (termed spanning tree CLA adder
[1], or cellular CLA adder which is the term that we
use in this paper), combines the advantages of fast carry
generation and propagation of a CLA adder with the
great regularity of an RC adder. Thus, it provides a bal-
ance between circuit speed and complexity resulting in
a very efficient CLA adder design.

When CFM testability is considered in this cellu-
lar adder architecture, serious problems appear due
to poor testability of the internal generate/propagate
logic, as it is demonstrated in the paper. In order to
provide a complete CFM testability solution to these

problems, Blanton and Hayes relied on their conver-
gent tree circuit testing methodology [3, 4]. Based on
this methodology, they proposed Design For Testabil-
ity (DFT) modifications to the adder design to make
it either level-testable (testable with a number of pat-
terns growing linearly with the number of levels of the
convergent tree) or C-testable (testable with a constant
number of test patterns), with respect to CFM. These
DFT modifications resolved the testability problems
with the addition of two extra inputs that make the cir-
cuit to operate in test mode, when they are asserted. The
CFM testability problems are solved putting the adder
to operate in test mode. The major drawback of the de-
signs proposed in [3, 4] is that the DFT modifications
impose significant hardware and delay overheads over
the original CLA adder. For this reason, there is a diffi-
culty in the implementation of the DFT modifications
of [3, 4] in practical arithmetic units.

In this paper, we propose a novel DFT modifica-
tion to the cellular CLA adder design which makes it
completely CFM testable. According to the proposed
method, the adder design is CFM testable without re-
quiring extra control inputs and thus can be completely
tested in its normal mode. The adder’s poor testabil-
ity is resolved by properly modifying the functionality
of the cells without affecting the overall circuit behav-
ior and taking advantage of don’t cares without adding
extra cell inputs as in [3] and [4]. Few observability
problems of the original design are resolved with the
insertion of only one extra output.

The imposed area overhead of the proposed CFM
testable cellular CLA adder design ranges between
5.29% and 6.53% for adders of lengths between 8 bits
and 64 bits, while the performance overhead ranges
between 4.59% and 8.97% for the same word lengths
range. This is a significant improvement over the de-
signs of [3, 4] and makes the proposed DFT mod-
ifications appropriate for a practical CFM testable
implementation.

We prove the linear-testability of the proposed adder
based on the theory of the testability of convergent trees
of monoid operations given in [16, 17]. We also present
a sufficient linear-sized test set that achieves 100%
CFM testability. The test set size is 16(n − r − 1) + 2,
and growths linearly to n, the word length of the adder
(r is the length of the ripple carry chains). Even for
large CLA adders of up to 64-bits wide, the test set size
is practically very small and provides the high quality
of a classical cellular fault model. The length of the
proposed linear test set is comparable or even smaller
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than the logarithmic-sized test set for the level-testable
design of [3] for most practical word lengths.

The organization of the paper is as follows. In
Section 2, the adopted fault model, CFM, is briefly
presented. In Section 3, we describe the architecture of
the cellular CLA adder design. In Section 4 the pro-
posed DFT modifications are presented and the pro-
posed linear-testable scheme is compared with previ-
ously proposed approaches [3, 4]. In Section 5, the
linear-testability of the proposed adder is proven and
the linear-sized test set is given. Section 6 concludes
the paper.

2. Cellular Circuits Fault Modeling

Cell Fault Model (CFM) proposed in [2] is the classical
and well adopted combinational fault model for testing
cellular circuits. It is an implementation independent
fault model which does not depend on the gate-level
implementation of the circuit cells since it provides
exhaustive application of all possible cell input com-
binations. At most one cell can be faulty at a time and
any fault inside a faulty cell can happen as long as its
function remains combinational. In order to be tested
for CFM, each cell must receive all possible input com-
binations and all possible faulty cell outputs must be
propagated to primary circuit outputs.

CFM is very important today, because of the rapid
growth in the use of high-level synthesis, and the par-
allel increase in complexity and density of ICs. Using
CFM as the target fault model, allows the test to be
independent of the adopted synthesis tool and vendor
standard cells library.

Particularly, arithmetic modules (adders, sub-
tracters, shifters, multipliers, dividers etc.), due to their
high regularity are designed in a very dense fashion.
The use of a more comprehensive fault model than
single stuck-at fault model is required to cover actual
failure mechanisms of these dense designs. CFM cov-
ers all combinational faults that may happen in a single
faulty cell. As a subset of all combinational faults, all
single or multiple stuck-at faults inside the faulty cell
are completely detected.

CFM has been extensively used in research so far for
testing general array structures and specific arithmetic
module architectures [3–18]. In [14] and [18] two
methodologies are presented so that stuck-at fault based
Automatic Test Pattern Generators and Fault Simula-
tors can be used to perform automatic test generation
and fault simulation with respect to CFM. This way,

no special ATPGs or fault simulators need to be devel-
oped for CFM. In this paper, we have verified complete
CFM testability using the approach of [14].

3. Cellular CLA Adder Architecture

In [1], the structure of the “spanning tree” carry looka-
head adder (we call it a cellular carry lookahead adder)
is introduced and a special layout-level implementation
of the adder for the Advanced Micro Devices AM29050
microprocessor [19] is described. In [3, 4] a modified
version of the adder is described based on cells of spe-
cific functionality. We describe the adder architecture
based on the 16-bit cellular CLA adder depicted in
Fig. 1. Its architecture is a combination of:

• Two convergent trees for the generation of three
regularly distributed carry signals (c4, c8, c12). The
trees consist of the well-known types of cells used in
CLA adders for the extraction of generate/propagate
logic: gp-cells (first level generate/propagate), GP-
cells (higher levels generate/propagate) and C-cells
(carry cells). The cells functions and their corre-
sponding number of gate equivalents are given in
Table 1 (we use a resolution of 0.5 gate equivalent
so that the calculations following in this paper are
as accurate as possible; for example, an inverter is
equivalent to 0.5 gates, a 2-input NAND gate and a
2-input NOR gate are equivalent to 1.0 gates and a 2-
input AND gate and a 2-input OR gate are equivalent
to 1.5 gates).

⇒ a gp-cell produces a pair of generate/propagate
signals (gi, pi) from a pair of operand bits (ai,
bi).

⇒ a GP-cell receives two generate/propagate sig-
nal pairs (gi, pi), (gj, pj) and produce a pair of
next level generate/propagate signals (gi:j, pi:j).
For example, the leftmost GP-cell of the top level
receives (g1, p1) and (g2, p2) and produces (g1:2,
p1:2), while the leftmost GP-cell of the second
level (the root GP-cell of the first convergent
tree) receives (g1:2, p1:2) and (g3:4, p3:4) and pro-
duces (g1:4, p1:4).

⇒ a C-cell receives a generate/propagate pair and
a carry input signal to produce a carry output
signal. For example the leftmost C-cell uses the
generate/propagate pair (g1:4, p1:4) and the carry
input signal c0 to produce the carry output signal
c4.
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Fig. 1. 16-bit cellular CLA adder.

• Four one-dimensional arrays (ripple-carry adder
chains) for the computation of the final sum and carry
outputs. Each ripple carry adder takes the carry sig-
nal produced by the corresponding C-cell to compute
the sum values. (The first stage ripple carry addition
uses as carry input the carry input c0 of the adder).

The XOR gate shown in the figure is a testability en-
hancement and will be explained in the related section.

In general, an n-bit cellular CLA adder consists of
q independent convergent trees. The i-th convergent
tree has di inputs (i = 1, . . . , q) and consists of di gp-
cells, and di − 1 GP-cells. The number of levels of the

Table 1. Original cell functions.

Cell function Gate equivalents

p = a ⊕ b 4.5

g = a b

P = p1p0 4.0

G = g1 + g0p1

C = G + P cin 2.5

GP-cells of the i-th convergent tree is log2(di) when a
regular binary tree structure is used and for this reason
di is selected to be a power of 2 whenever possible.
The outputs of the root GP-cell of the i-th convergent
tree are connected to a C-cell (root C-cell) to generate
the carry signal of the (i + 1)-th convergent tree. If a
convergent tree is required to generate more than one
carry signals, additional C-cells are connected to the
outputs of intermediate level GP-cells of the tree (see
for example the C-cell that generates signal c8 in Fig. 1).

An n-bit adder also consists of ripple carry chains of
full adders of the same length, r, that depends on the im-
plementation technology and the tradeoff between the
propagation delays of the convergent trees and the rip-
ple carry chains [1]. All carries with distance r are gen-
erated by the C-cells, i.e. cr·i (i = 1, . . . , 	n/r
 − 1).

It follows from the above discussion that the adder
consists of: n − r gp-cells, n−r−q GP-cells, 	n/r
−1
C-cells and n FA-cells.

Thus, using the above equations and the gate equiv-
alents of Table 1, the total number of gate equivalents
for the original n-bit adder is: 17,5 n + 2, 5	n/r
−8,5 r
−4 q − 2, 5
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The above equation will be used in the following
for the evaluation of the proposed design and earlier
approaches in terms of hardware overhead. Besides,
the maximum propagation delay of the n-bit cellular
CLA adder is approximately: D[gp-cell] + log2(dq)·
D[GP-cell] + D[C-cell] + r · D[FA-cell] where D[X]
is the propagation delay of module X which in any case
depends on the implementation of the logic functions
of the module in a specific technology library.

The worst-case propagation delays in any of the sub-
sequent designs depend on the implementation library
and thus we do not provide any formula, but instead
we implement all different testable designs for a set of
common word lengths, i.e. 8-bits, 16-bits, 32-bits and
64-bits.

4. Novel CFM Testable CLA Adder Design

In this section, we present our novel linear-testable cel-
lular CLA adder design for complete CFM testability.
The section begins with a demonstration of the testa-
bility problems of the cellular CLA adders. Then we
discuss earlier attempts to increase CFM testability of
the cellular CLA adders [3, 4, 15]. Finally, we propose
our novel CFM testable cellular CLA adder design and
compare it with the previous approaches.

4.1. Cellular CLA Adder Testability Problems

The original implementation of cellular CLA adders
[1] has the following testability problems as described
in [4], when CFM is the target fault model.

• The original function of the gp-cells (Table 1) is not
surjective, i.e. there is one output combination (gp
= 11) which never appears at the cell outputs. This
missing combination causes CFM testability prob-
lems to the GP-cells whose inputs are directly fed by
gp-cells outputs, since they cannot receive all possi-
ble input combinations required for complete CFM
testability.

• The original GP-cell function (Table 1) requires the
application of value gp = 11 to at least one of the two
generate/propagate pairs in order to produce the out-
put combination GP = 11. Thus the above mentioned
CFM testability problem of GP-cells that directly re-
ceive inputs from gp-cells is transferred to all sub-
sequent GP-cells which also cannot be completely
tested with respect to CFM. Thus, no GP-cell can
receive the input combination 11 in any of its gen-
erate/propagate pairs. This means that 7 of the total

16 input combinations of the GP-cells cannot be ap-
plied to them, i.e. at most 56.25% CFM testability
can be achieved for the GP-cells.

• The original function of the C-cells is not able to
distinguish all values appearing at their GP inputs,
i.e. the input combinations GP = 10 and 11 produce
the same output value independent on the value of
cin. Considering a fault that occurs on any gp-cell or
GP-cell and affects the GP-input of a C-cell chang-
ing it from 10 to 11 or vice versa, the C-cell cannot
propagate the fault to its output and thus the fault
is not detected. This is therefore a fault propagation
problem to be resolved.

DFT modifications have been proposed in [3] and [4]
to make the cellular CLA adder design either level-
testable (testable with a number of test vectors increas-
ing linearly with the number of levels in the convergent
tree) or C-testable (testable with a constant number of
test vectors not depending on the size of the adder) with
respect to CFM. In both cases the DFT modifications
require the addition of two extra inputs to the design
and the modification of the cell functions. Due to the
use of extra inputs significant area and performance
overheads are imposed, as we will see in the following
subsections.

A linear-testable cellular CLA adder design (testable
with a number of test vectors increasing linearly with
the adder word length) has been proposed in [15].
This design does not provide complete CFM testabil-
ity, since as we show in the following, its C-cell does
not distinguish all values appearing at its GP-inputs and
thus it has the same propagation problem as the original
function. No observability alternative is proposed.

4.2. Level-Testable Cellular CLA Adder

In [3] the gp-cell functions are transformed into sur-
jective ones with the addition of one extra cell input
z1 to the gp-cells. One more extra input z2 is added to
C-cells. Additionally, GP-cell functions are modified
to achieve level-testability. As a result the proposed
design is level-testable with respect to CFM with an
excessive hardware overhead as we show below. Ad-
ditionally, we note that the adder has to operate both
in normal mode (z1 = z2 = 0) and test mode (z1 = 1
and/or z2 = 1), where in test mode it does not perform
addition. The functions of the gp, GP and C cells used
in the level-testable CLA adder proposed in [3] and
their corresponding gate equivalents are:
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Table 2. Cell functions for the level-testable CLA de-
sign of [3].

Cell function Gate equivalents

p = z1
′ (a ⊕ b) + z1b 10.5

g = z1
′ (a b) + z1a

P = g1
′ p1p0 + g1p1

′g0
′ + g1p1

′p0 17.0

+ g1g0
′ p1 + g1p1g0 p0

′

G = g1 + g0p0 + p1g0

C = z2
′ (G + P cin) + z2 P 5.5

Using the equations of Section 3 and the gate equiv-
alents of Table 2, the total number of gate equiv-
alents for the level-testable adder is: 36,5 n + 5,5
	n/r
 − 27,5r − 17q − 5,5

Total circuit area (gate equivalents) and execution
time (critical path) and the corresponding hardware and
delay overheads for the 8 up to 64-bits versions of the
level-testable design of [3] compared to the original
design are presented in Table 3. AMS 0.8 um standard
cell library [20] was used for the implementation of all
adders. Veritime timing simulator from Cadence was
used for the calculation of critical path delay.

The size of the test set proposed in [3] grows logarith-
mically with the adder word length n and is 64(log2n
+ 1) + 25.

4.3. C-Testable Cellular CLA Adder

Similarly to the level-testable design of [3], a C-testable
design is proposed in [4] which adds two extra inputs
z1, z2 to the gp-cells and C-cells, respectively. Addi-
tionally, GP-cell functions are modified to achieve C-
testability. As a result the proposed design is C-testable
with respect to CFM with an even more excessive hard-
ware overhead than the linear-testable design. Also in
this case, the adder has to operate both in normal mode
(z1 = z2 = 0) and test mode (z1 = 1 and/or z2 = 1),
where in the test mode it does not perform addition.

Table 3. Overheads for the level-testable CLA design of [3].

Area (g.e.) Speed (ns)

Size (bits) Original Level-testable Overhead (%) Original Level-testable Overhead (%)

8 122,5 219,5 79,18 5,91 9,68 63,79

16 245,5 456,5 85,95 8,73 13,54 55,10

32 491,5 930,5 89,31 13,92 19,77 42,03

64 1053,5 2086,5 98,05 18,27 25,05 37,11

Table 4. Cell functions for the C-testable CLA design
of [4].

Cell function Gate equivalents

p = z1
′ (a ⊕ b) + z1b 10.5

g = z1
′ (a b) + z1a

P = g1
′p1p0 + g1p1p0

′ + g1p1
′g0p0 19.5

G = g1p1g0
′ + g1g0

′p0 + g1
′g0p0

+ p1g0p0
′ + g1g0p0

′

C = z2
′ (G + Pcin) + z2P 5.5

The functions of the gp, GP and C cells used in the
C-testable cellular CLA adder proposed in [4] and their
corresponding gate equivalents are:

Using the equations of Section 3 and the gate equiv-
alents of Table 4, the total number of gate equivalents
for the C-testable adder is: 39 n + 5,5 	n/r
 − 30r −
19,5q − 5,5

Total circuit area and execution time and the corre-
sponding hardware and delay overheads for the 8-bits,
16-bits, 32-bits and 64-bits versions of the C-testable
design of [4] compared again to the original design
are presented in Table 5. The hardware and delay over-
heads imposed by both the level-testable and C-testable
designs are prohibitively large and cannot be adopted
in a well-optimised CLA adder core in terms of area
and speed.

We next present our novel linear-testable CLA adder
design which achieves complete CFM testability with-
out excessive hardware and delay overheads and thus
can be used in practical CLA adder designs.

4.4. Proposed Linear-Testable CLA Adder Design
with Complete CFM Testability

In order to overcome the practical problem of the ear-
lier modified designs, we introduce a novel CLA adder
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Table 5. Overheads for the C-testable CLA design of [4].

Area (g.e.) Speed (ns)

Size (bits) Original C-testable Overhead (%) Original C-testable Overhead (%)

8 122,5 229,5 87,35 5,91 9,62 62,77

16 245,5 481,5 96,13 8,73 13,48 54,41

32 491,5 985,5 100,50 13,92 19,71 41,59

64 1053,5 2216,5 110,39 18,27 24,99 36,78

Table 6. Cell functions for the novel linear-
testable CLA design.

Cell function Gate equivalents

p = a ⊕ b 3.0

g = a

P = p1p0 6.5

G = g1p1
′ + g0p1 + g1p0

C = GP′ + Pcin 3.5

design which solves the CFM testability problems of
the cellular CLA adders. The proposed design is supe-
rior over the two earlier approaches in two key points:

(a) It can be tested with respect to CFM operating in
its normal operating mode (no special test mode is
required as in [3] and [4]).

(b) The hardware and delay overheads imposed by the
DFT modifications that we propose are very small
and in all cases significantly reduced compared to
the designs of [3, 4].

The functions of the cells in the proposed design are
modified accordingly in order to solve the CFM testa-
bility problems previously mentioned without adding
extra inputs to the modified cells which is not the case
with the modifications proposed in [3, 4]. The proposed
design takes advantage of the missing combination
(gp = 11) and modifies the functions of the cells as
follows (Table 6):

The new cell functions have the following charac-
teristics:

• Table 7 shows the truth table of the modified gp-cell
function. The modified gp-cell function is surjective
since it produces all 4 possible output combinations
without adding any extra circuit input. Consequently,
GP-cells directly connected to the gp-cells outputs

Table 7. gp-cell truth table.

a b g P

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

can receive all possible input combinations. The
gp-cell function we use is propagate-dominant, i.e.
when both g and p are 1 (gp = 11, the missing combi-
nation which now appears) the meaning is propagate
and not generate. In other words, states gp = 01 and
11 are equivalent and both denote propagate.

• Table 8 shows the truth table of the modified GP-cell
function, where g1 p1 is the most significant gener-
ate/propagate pair and g0 p0 is the least significant

Table 8. GP-cell truth table.

g0 p0 g1 P1 G P

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 1 0

0 0 1 1 0 0

0 1 0 0 0 0

0 1 0 1 0 1

0 1 1 0 1 0

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 1 1 0

1 1 0 0 0 0

1 1 0 1 1 1

1 1 1 0 1 0

1 1 1 1 1 1
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pair. The GP-cell function is modified to preserve the
equivalence between the gp states 01 and 11. It can be
easily proved that the GP-cell function is also surjec-
tive. Thus, all the subsequent GP-cells can be fully
tested with respect to CFM. Also, modified GP-cell
function propagates any faulty input to its outputs as
it can be easily verified from Table 8. Let’s consider
an error generated in a single gp-cell or GP-cell. It
results in a faulty generate/propagate pair at the in-
puts of a GP-cell. The error can be propagated to the
cell outputs by setting the side generate/propagate
pair to the value 01 (Table 8). This way, the error is
propagated to at least one GP-cells tree output, re-
gardless of the size of the tree. The 01 value 01 of
a generate/propagate pair is the identity (or neutral)
element of the GP-cell function which is a monoid
operation [16, 17]. The existence of such an identity
element guarantees the propagation of faulty cell out-
puts and provides the linear-testability of such con-
vergent trees. We elaborate further on the monoid
operation of the GP-cells and the linear-testability in
the next section.

• Table 9 shows the truth table of the modified C-
cell function. The modified C-cell function holds
a similar fault propagation problem as the original
cell function since it cannot distinguish between the
equivalent states gp = 01 and 11 (the original func-
tion does not distinguish between 10 and 11). This
problem can be easily overcome by monitoring the
G outputs of only the root GP-cells using one ex-
tra output T, as shown in Fig. 1. Root GP-cells are
the GP-cells whose outputs are only connected to C-
cells inputs. The root GP-cells (for any size of the
cellular CLA adder the number of root GP-cells is q
i.e. the number of the independent convergent trees)
are shown shaded in Fig. 1. The extra output T is the
XOR function of the G outputs of the root q GP-cells.

Table 9. C-cell truth table.

G P cin cout

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

The generate/propagate pair of only one root GP-cell
can present an error due to a single faulty gp-cell
or GP-cell since every convergent tree of GP-cells
ends to a unique root GP-cell. Thus the XOR func-
tion will propagate to the extra output T all the faults
that result to a faulty G output of a root GP-cell and
consequently all the faults that change the GP out-
puts of a root GP cell to 01 instead of 11 and vice
versa.

Before proceeding to the calculation of the circuit
area and execution time of the proposed adder, we will
prove that it still functions correctly as an adder with
the new functions of its cells. This proof is necessary in
the case of the proposed design since it does not have
a special test mode as the previously proposed designs
and its improved testability is due to the use of the new
functions.

Theorem 1. The cellular design of Fig. 1 implement-
ing the cell functions of Table 6 correctly performs
addition.

Proof: Table 6 shows the proposed cell functions for
the gp-cells, GP-cells and C-cells. Therefore, in order
to prove that the new design is still an adder it is suf-
ficient to prove that the carry signals driven from the
convergent trees to the ripple-carry adder chains are
the same as in the adder design with the original cell
functions.

The new gp-cell function (truth table given in
Table 7) is propagate-dominant, meaning that the gp =
11 combination means for the new design propagate.
Thus, gp-cell outputs 01 and 11 both denote carry prop-
agate. In the original gp-cell function combination 11
never appears, so the only combination of gp outputs
denoting propagate is 01.

The new GP-cell function (truth table given in
Table 8) preserves the equivalence of gp states 01 and
11 which both denote propagate. Therefore, when a
root GP-cell gives at its outputs the GP combination
01 or 11 this means that a carry is propagated at this
stage. In the original functions a root GP-cell would
never produce a 11 output. A carry propagate in the
original adder is denoted by a root GP-cell giving a 01
output, while in the new design it is denoted by a root
GP-cell output of either 01 or 11. What is left is the
new C-cell function to equivalently deal with the two
GP-cell output combinations 01 and 11.

The new C-cell function as shown in its truth ta-
ble of Table 9 produces exactly the same carry output
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Table 10. Overheads for the proposed linear-testable CLA design.

Area (g.e.) Speed (ns)

Size (bits) Original Linear-testable Overhead Original Linear-testable Overhead

8 122,5 130,5 6,53% 5,91 6,44 8,97%

16 245,5 259,5 5,70% 8,73 9,50 8,82%

32 491,5 517,5 5,29% 13,92 14,92 7,18%

64 1053,5 1118,5 6,17% 18,27 19,11 4,59%

when GP is equal to 01 and when it is equal to 11.
In the original function of the C-cell no 11 GP input
appears.

Therefore, the carry signals that are produced in
the original design and the new design by the C-cells
are in all cases the same. Since, these signals drive
the same ripple adder chains, the new adder design
correctly performs addition. �

Using the equations of Section 3 and the gate equiva-
lents of Table 6, the total number of gate equivalents for
the proposed novel linear-testable adder is (the XOR
gate is also included):

18, 5 n + 3, 5	n/r
 − 9, 5 r − 2, 5 q − 7, 5

We present circuit area and execution time and the cor-
responding hardware and delay overhead in Table 10
for the 8-bits, 16-bits, 32-bits and 64-bits versions
of the proposed design. It is obvious that the hard-
ware and delay overheads of the proposed design are
much less than the overheads imposed in the designs of
[3, 4].

This significant improvement in terms of overheads
is due to the fact that the missing state 11 from the
outputs of the original gp-cells now participates in the
normal operation of the circuit and not only in special
test mode that requires the addition of extra inputs as
in [3, 4]. This fact gives us the capability of using the
original P function for the GP-cells and to add only a
very small overhead to the G function.

In [15], an attempt for a linear-testable cellular CLA
adder design is presented. The gp-cells are modified as
in [3, 4] by using an extra input z1, the original GP-cell
function is used and the C-cell function of Table 9 is
also used. This adder design is not completely testable
with respect to CFM since, as we analysed above, the
C-cell function of Table 9 is by construction not able to
distinguish between the GP values 01 and 11 and thus

any fault causing a C-cell GP-inputs to change from 01
to 11 and vice versa cannot be detected.

5. CLA Adder Linear Test Set

We first prove that the proposed CLA adder is linear-
testable with respect to CFM based on the testability
theory of convergent tree structures of monoid opera-
tions [16, 17]. Then we give a sufficient linear test set.

A finite set M and an associative operation ∗ : M ×
M → M constitute a finite monoid where there exists
an identity (or neutral) element e so that for every
element m of M it is satisfied that: m ∗ e = e ∗ m = m.

In [17] the testability of two types of convergent
tree structures of monoid operations is studied. Condi-
tions are provided that characterize the tree structures as
C-testable, level-testable and linear-testable with con-
stant, logarithmic and linear test complexity, respec-
tively. The two types of convergent trees are the ex-
pression evaluation (EEV) tree and the parallel prefix
computation (PPC) tree. The EEV tree calculates the
expression en = m1 ∗ · · · ∗ mn where mi (i = 1 . . . n)
are elements of M , i.e. it is a single output convergent
tree structure. The PPC tree on the other side, calcu-
lates all the expressions ei = m1 ∗ · · · ∗ mi where
mi (i = 1 . . . n) are elements of M , i.e. it is a multiple
output convergent tree structure.

The convergent tree of GP-cells in the cellular CLA
adder studied in this paper is a subset of a PPC tree
since not all GP expressions are outputs of the tree.
Characterizing the testability of the PPC tree we can
characterize also the testability of its subset which has
lower observability that the PPC tree.

In the following, we first formally prove that the set
of GP signal pairs M = {00, 01, 10, 11} supplied with
the GP-cell function of the proposed adder design (see
Table 8) constitute a monoid and then we will prove
that a convergent tree of GP-cells of the adder is linear-
testable with respect to CFM since it does not satisfy
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the conditions described in [17] for C-testability and
level-testability.

Theorem 2. The set of GP signal pairs M = {00,

01, 10, 11} and the GP-cell function of the proposed
adder design constitute a monoid.

Proof: As it is mentioned earlier a monoid is char-
acterized by the existence of an identity element and
the associativity property. The identity element of the
GP-cell function is the element 01, as it can be easily
verified from Table 8. The P operation of the GP-cell
function is the boolean AND operation and therefore it
is associative. We prove below that G operation is also
associative. The G operation of the GP-cell function is
given in Table 6.

Let us consider 3 elements of M (pairs of gp signals
at the first level): g2p2,g1p1, g0p0. We do not use capital
G and P for the cell inputs to avoid confusion between
GP-cell inputs and outputs and to be consistent with the
notation of Tables 6, 7 and 8. What we need to prove
is that G(2:1):0 = G2:(1:0). Note that from Table 6: Gj:i =
gj pj

′ + gi pj + gj pi (when j > i). Therefore: G(2:1):0 =
G2:1 P2:1

′ + g0 P2:1 + G2:1 p0 = (g2 p2
′ + g1 p2 + g2

p1) (p2 p1)′ + g0 (p2 p1) + (g2 p2
′ + g1 p2 + g2 p1) p0

= (g2 p2
′ + g1 p2 + g2 p1) (p2

′ + p1
′ + p0) + g0 p2 p1

= g2(p2
′ + p1p0) + g1(p2 p1

′ + p2 p0) + g0p2 p1

Also: G2:(1:0) = g2 p2
′ + G1:0 p2 + g2 P1:0 = g2 p2

′

+ (g1 p1
′ + g0 p1 + g1 p0) p2 + g2 (p1 p0) = g2 (p2

′ +
p1 p0) + g1(p2 p1

′ + p2 p0) + g0p2 p1

Therefore, the associativity property holds for both
G and P operations and thus the set M supplied with
the GP-cell function constitute a monoid. �

According to [17] a convergent tree of monoid opera-
tions is, in the worst case, linear-testable. If conditions
are satisfied [17] such tree may be either C-testable or
level-testable. We show that the proposed GP-cell func-
tion does not satisfy the conditions given in [17]. First,
we show that the convergent tree of GP-cells using the
GP-cell function of Table 8 is not C-testable.

According to [17] a convergent tree of monoid op-
erations is C-testable with respect to CFM if and only
if M supplied with the monoid operation is a group. In
other words, each element m of set M has an inverse
element m−1 such that m ∗ m−1 = m−1 ∗ m = e. We
easily verify from Table 8 that only element 01 of set M
has an inverse element (it is inverse of itself). Elements
00, 10 and 11 do not have an inverse element.

Secondly, the convergent tree of GP-cells using the
GP-cell function of Table 8 is not level-testable.

As we have mentioned the GP-cells tree of the adder
is a subset of a complete PPC type convergent tree.
Therefore, if we prove that a complete PPC type con-
vergent tree is not level-testable then its subset (which
has a restricted observability) cannot be level-testable
as well.

According to [17] a convergent tree of monoid op-
erations of the PPC type is level-testable with respect
to CFM if and only if M supplied with the monoid op-
eration is not a group and for all elements m, m ′ of M ,
m �= m ′ there exists an element y of M such that:

(i) m ∗ y = (m ∗ y)2

(ii) m ∗ y ∗ m �= m ∗ y ∗ m ′

As it was shown above M is not a group.
Let us consider the elements m = 00 and m ′ = 01.

Condition (i) is satisfied for any y of M , but condition
(ii) cannot be satisfied for any y of M .

Therefore, there exists at least one pair of elements
m, m ′ of M (the pair 00, 01) for which the condition
for level-testability is not satisfied. Thus, the complete
PPC type tree is not level-testable and as a consequence
its subset, the GP-cells tree of the cellular CLA adder
is not level-testable.

In what follows, we provide a sufficient linear-sized
test set for the CLA adder. The basic idea behind the
proposed linear test set is the way to control the inputs
of the GP-cells and observe their faulty outputs, us-
ing the identity element 01 of the monoid operation
described above. The following two Theorems sup-
port the effectiveness of the proposed linear-sized test
set.

Theorem 3. Assume a CLA convergent tree with in-
puts ak . . . al and bk . . . bl where k < l. A test set that
applies all 16 different input combinations to the 4 in-
puts (ai , bi , ai+1, bi+1) of each pair of adjacent gp-
cells, for every i between k and l − 1 while setting the
inputs of the remaining gp-cells to 01, completely tests
the convergent tree with respect to CFM, i.e.:

• applies to all the gp and GP-cells of the convergent
tree all their possible cell input combinations and

• any faults occuring in a single cell are propagated
to the outputs of the tree (outputs of root GP-cell)

Proof: For each GP-cell of the convergent tree, there
is a unique pair of adjacent gp-cells that have a path (ei-
ther directly or through other GP-cells) towards the two
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Fig. 2. Testing of the leftmost GP-cell of a tree.

gp-inputs pairs of GP-cell. For example, see Fig. 2 and
Fig. 3 which depict the largest (rightmost) convergent
tree for the 16-bit cellular CLA adder of Fig. 1.

In Fig. 2 the two shaded gp-cells–that have direct
access to the inputs of the shaded GP cell—receive
all 16 input combinations. Since gp-cell function is
surjective they produce all 16 possible combinations
to their outputs and thus the inputs of the shaded GP-
cell. By applying the identity element 01 of the monoid
operation (GP-function) to the remaining gp-cells, the
propagation of any faults of the shaded gp or GP-cells to
the outputs of the tree (the outputs of the root GP-cell)
is guaranteed. Similarly, in Fig. 3, the inputs of shaded
GP-cell (root) are fully controlled by the inputs of the
shaded (adjacent) gp-cells if the inputs of the remaining
gp-cells are set to the identity element 01. Thus the

gp gp
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Fig. 3. Testing of the root GP-cell of a tree.

shaded GP-cell along with the two adjacent gp-cells
are tested together by applying all 16 combinations to
the 4 inputs of the shaded gp-cells. Concluding, to test
the gp-cells and GP-cells of a convergent tree for CFM
it is sufficient that all the adjacent gp-cells receive all
16 input combinations while the remaining gp-cells
receive the identity element 01. �

Theorem 4. Assume the proposed cellular CLA
adder. When the linear test set described in Theorem 3
is applied to each convergent tree of the adder, any
fault that occurs in the convergent tree is propagated
either in the primary outputs of the adder or the extra
output T (the XOR function of the G outputs of the root
GP-cells of the convergent trees) if the input cin of the
C-cell that follows the root GP-cell of the tree receives
the value ai

′ ai+1
′ + ai+1

′ bi+1
′ + ai

′ bi
′ bi+1

′ (where
ai , ai+1, bi , bi+1 are the 4 inputs of adjacent gp-cells).

Proof: Let us consider the different scenaria for the
propagation of the fault from the root GP-cell outputs
to either the primary outputs of the adder or extra output
T (a fault exists either in a gp-cell or in a GP-cell):

(a) The error free output of the root GP-cell is 00:
If a fault changes the output of root GP-cell to

10 or 11, then the fault will be propagated to the
extra output T, since only one of the G outputs of
the root GP-cells is affected by the fault.

If a fault changes the output of root GP-cell to
01, then the fault cannot be detected in T. Such a
fault will be propagated to the output of the C-cell
that follows the root GP-cell and consequently to
the primary outputs of the adder via a subset of full
adder cells if cin = 1, since C = G P′+ P cin and
G = 0. Therefore if the root GP-cell is 00 then
cin = 1 during testing.

(b) The error free output of the root GP-cell is 01:
If a fault changes the output of root GP-cell to

10 or 11, then the fault will be propagated to the
extra output T, since only one of the G outputs of
the root GP-cells is affected by the fault.

If a fault changes the output of root GP-cell to
00, then the fault cannot be detected in T. Such a
fault will be propagated to the output of the C-cell
that follows the root GP-cell and consequently to
the primary outputs of the adder via a subset of full
adder cells if cin = 1, since C = G P′+ P cin and
G = 0. Therefore if the root GP-cell is 01 then cin =
1 during testing.

(c) The error free output of the root GP-cell is 10:
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If a fault changes the output of root GP-cell to
00 or 01, then the fault will be propagated to the
extra output T, since only one of the G outputs of
the root GP-cells is affected by the fault.

If a fault changes the output of root GP-cell to
11, then the fault cannot be detected in T. Such a
fault will be propagated to the output of the C-cell
that follows the root GP-cell and consequently to
the primary outputs of the adder via a subset of full
adder cells if cin = 0, since C = G P′+ P cin and
G = 1. Therefore if the root GP-cell is 10 then cin =
0 during testing.

(d) The error free output of the root GP-cell is 11:
If a fault changes the output of root GP-cell to

00 or 01, then the fault will be propagated to the
extra output T, since only one of the G outputs of
the root GP-cells is affected by the fault.

If a fault changes the output of root GP-cell to
10, then the fault cannot be detected in T. Such a
fault will be propagated to the output of the C-cell
that follows the root GP-cell and consequently to
the primary outputs of the adder via a subset of full
adder cells if cin = 0, since C = G P′+ P cin and
G = 1. Therefore if the root GP-cell is 11 then cin =
0 during testing.

In Table 11 we summarize the requirements. Column
1 shows inputs of the tested GP-cell. Column 2 shows
outputs of the tested GP-cell and thus the outputs of
the root GP-cell. In column 3 the inputs of the adjacent
gp-cells required to generate the corresponding inputs
to the tested GP-cell are shown. In column 4 the values
of cin according to the previous reasoning are given.
From columns 3 and 4 after minimization of the logic
function it is derived that cin = ai

′ ai+1
′ + ai+1

′ bi+1
′

+ ai
′ bi

′ b′
i+1, where ai biai+1 bi+1 are the inputs of

the adjacent gp-cells. This provides an easy way of
calculating the necessary cin value for the proposed
test set. �

Based on Theorems 3 and 4 we conclude that in order
to test the gp-cells and GP-cells of each convergent
tree with respect to CFM it is sufficient that all the
adjacent gp-cells receive all 16 input combinations, the
remaining gp-cells receive the value 01 and cin input
of the C-cell takes value ai

′ ai+1
′ + ai+1

′ bi+1
′ + ai

′ bi
′

bi+1
′.

Furthermore, in order to test all convergent trees with
respect to CFM, it is sufficient that all the adjacent gp-
cells receive all 16 input combinations, the remaining
gp-cells receive the value 01 and the c0 input of the

Table 11. Value of the cin of the C-cell.

gi pi gi+1 pi+1 G P ai bi ai+1 bi+1 cin

0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1 1

0 0 1 1 0 0 0 0 1 0 1

0 0 1 0 1 0 0 0 1 1 0

0 1 0 0 0 0 0 1 0 0 1

0 1 0 1 0 1 0 1 0 1 1

0 1 1 1 1 1 0 1 1 0 0

0 1 1 0 1 0 0 1 1 1 0

1 1 0 0 0 0 1 0 0 0 1

1 1 0 1 1 1 1 0 0 1 0

1 1 1 1 1 1 1 0 1 0 0

1 1 1 0 1 0 1 0 1 1 0

1 0 0 0 0 0 1 1 0 0 1

1 0 0 1 1 0 1 1 0 1 0

1 0 1 1 1 0 1 1 1 0 0

1 0 1 0 1 0 1 1 1 1 0

C-cell takes the value ai
′ ai+1

′ + ai+1
′ bi+1

′ + ai
′ bi

′

bi+1
′.

If the tested cell belongs to the left convergent tree
then c0 must take the value ai

′ ai+1
′ +ai+1

′ bi+1
′ +ai

′ bi
′

bi+1
′. If the tested cell belongs to any of the following

convergent trees then the cin input of the C-cell of this
tree must take the above value. This is accomplished by
simply setting input c0 to this value since the value will
be propagated through the intermediate C-cells since
cin = G P′ + P c0 and GP = 01.

We can easily verify that all remaining cells of
the adder are completely tested for CFM when the
linear test is applied to the adder with the addition
of two extra test vectors described in the following.
Particularly:

• From Theorem 4 it is verified that the C-cells receive
the input combinations (G, P, cin) = (0, 0, 1), (0, 1,
1), (1, 0, 0), (1, 1, 0) during testing of the their corre-
sponding convergent GP-cell tree. When the 16 input
combinations are applied to the following adjacent
gp-cells: the rightmost gp-cell of the leftmost tree
and the leftmost gp-cell of the rightmost tree, two of
the remaining input combinations, i.e. (G, P, cin) =
(0, 1, 0), (1, 1, 1) are applied to the C-cells. In order
to apply the remaining two input combinations (G,
P, cin) = (0, 0, 0), (1, 0, 1) to all C-cells, we only
need to apply two extra input patterns to the adder:
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the all 0’s input to both operands with cin = 0 and
the all 1’s input to both operands with cin = 1.

• The XOR gate implementing the function T is also
completely tested. For example, when the 16 input
combinations are applied to the following adjacent
gp-cells: the rightmost gp-cell of the leftmost tree
and the leftmost gp-cell of the rightmost tree, the
XOR gate receives all 4 possible input combinations.

• The full adder cells in the CLA adder are tested with
all 8 input combinations, since all pairs of adjacent
FA cells receive all 16 inputs sufficient for complete
CFM coverage as it shown earlier in the literature.
We have also verified that if each ripple-carry full
adder chain is replaced by a carry-select adder (two
parallel ripple-carry chains, one calculating the sum
bits assuming a 0 carry-in for the chain, and one
calculating the sum bits assuming a 1 carry-in for
the chain, and a final multiplexing stage to select the
sum bits based on the actual carry-in signal), then
the cells of this structure (half and full adders and
multiplexers) are also completely tested with respect
to CFM.

As a conclusion, in order to test an entire n-bit cellu-
lar CLA adder (with inputs a1a2. . . an, b1b2. . . bn and
c0) with respect to CFM, it is sufficient that each 4-
bits group of operand inputs ai biai+1 bi+1 for i =
1 . . . n − r − 1, receives all 16 different values while
at the same time input c0 receives the values shown
in Table 11, bits akbk with k �= i and k �= i + 1 and
k ≤ n − r receive values ak = 0 and bk = 1, respec-
tively and bits ambm with m > n − r bits (which are
the inputs of the full adder cells of the last chain) re-
ceive the same values as the tested 4-bit group (ai bi

ai+1 bi+1). Additionally, two extra test vectors, the all
0’s input with cin = 0 and the all 1’s input with cin = 1
must be applied to the adder.

Therefore, the test set size is linear to the word length
n of the adder and equal to 16(n − r − 1) + 2. Com-
pared to the logarithmic-sized test set for the level-
testable adder design of [3], our linear-sized test set is
surprisingly comparable or even smaller for practical
word lengths of the adder. This is due to the fact that in
our design, n is multiplied only by a factor of 16 while
in the test set of [3] the multiplication factor is 64 (64
(log2n + 1) + 25). Table 12 shows the test set sizes for
most common word lengths.

The complete CFM testability of the cellular CLA
adder for the proposed linear-sized test set was addi-
tionally verified with the Verifault-XL single stuck-at

Table 12. Test set sizes comparison.

Linear test set Logarithmic test
Size (bits) size (Proposed) set size [3]

8 82 281

16 178 345

32 370 409

64 882 473

fault simulator, according to a technique that allows
evaluation of CFM testability of a cellular circuit using
classical stuck-at fault simulators [14].

6. Conclusion

We have proposed a completely CFM testable cellular
CLA adder which is tested without setting the circuit
in special test mode. No extra inputs are required to
achieve complete CFM testability. The required DFT
modifications impose significantly less hardware and
delay overhead than the modifications of the designs
proposed earlier in the literature and therefore the new
design can be clearly applied to practical designs. We
have shown that the new design is linear-testable with
respect to CFM, based on the theory of the testabil-
ity of finite monoids. A linear-sized test set was also
proposed for the cellular CLA adder which is, surpris-
ingly, comparable or even smaller that the logarithmic-
sized test set proposed in [3] for practical word
lengths.
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