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Off-grid systems based on PV and batteries are becoming a solution of great interest for rural electrifica-
tion. Nevertheless, sizing these systems is not straightforward since it means matching unpredictable
energy sources with uncertain demands while providing the best reliability and costs. In our opinion,
the effect of users’ energy consumptions uncertainty on the sizing of these systems has not been appro-
priately investigated. This paper addresses this issue and analyzes the effect of load profile uncertainty on
the off-grid PV systems optimum design. Specifically a novel sizing methodology has been introduced
based on: (i) an effective approach of modelling rural energy needs; (ii) an innovative stochastic method
which formulates different possible realistic daily load profiles for un-electrified rural areas; (iii) a PV-
battery techno-economic analysis via steady-state simulation; (iv) the evaluation of the optimum system
sizing via a numerical method based on net present cost and loss of load probability. Finally, the proposed
methodology has been applied to find the optimum size of an off-grid PV system for a peri-urban area of
Uganda. The results show that the optimum system configurations are significantly affected by load pro-
files; consequently an approach to identify the robust solution with regards the assumed uncertainty is
proposed.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

The application of PV systems as renewable source of energy in
transmission and distribution grids [1] or as source of power for
dedicated loads [2] is well-known. Nevertheless, in emerging coun-
tries there is a growing demand for off-grid PV systems eventually
coupled with electro-chemical storage [3]. These systems are rec-
ognized as a reliable and cost-effective solution which can supply
electricity in un-electrified areas, which can substitute or retrofit
conventional diesel/petrol generators or which can act as back-
up of weak national grids. The costs reduction, the increase of
products suppliers, the growing popularity, the integration in gov-
ernmental programs and the wide range of systems configurations
(i.e. solar lanterns, home-based systems and micro-grids [4]) are
fostering the implementation of these systems to provide electric-
ity in rural and remote areas in particular [5–8].

The study of the optimum sizing is one among the technical
issues about off-grid PV systems [9]. Indeed, sizing the main
components of these systems (i.e. PV array, battery bank, inverter,
etc.), is not straightforward since it means matching unpredictable
energy sources with unknown or uncertain load demands and, at
the end, providing the most favorable conditions in terms of relia-
bility and costs [10,11]. Within this issue, in our opinion, the anal-
ysis of the effect of users’ energy consumptions uncertainty on the
selection of the main systems components sizes (i.e. PV array peak
power and capacity of the battery banks) has not been appropri-
ately investigated. As a matter of fact, when dealing with analyses
of electrification of rural and remote areas, information about
users’ electric consumptions are typically not available owing to
the fact that electric consumptions do not exist or are limited to
small sources apparatus for portable devices (e.g. mobile phones,
radios). Therefore, consumptions have to be properly estimated
being one of the main input data in the design process of off-grid
PV systems. Clearly, such estimates are prone to a significant
degree of uncertainty since they have to represent the expected
consumptions of people with their own habits, needs, and who
often do not have electricity access yet. Focusing on the advanced
methods for the optimum sizing of off-grid PV systems (i.e. those
based on energy steady-state simulation and on size optimization
via numerical or analytical approaches [9]), it is worthwhile to
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Nomenclature

(1 + r)y discount factor
dij functioning cycle
Eclass,day user class daily energy consumption
ED total user energy demand for one year
Epc,year per capita yearly energy consumption
fC,j coincidence factor
fL,j load factor
hij overall time each appliance is on during a day: function-

ing time
i type of electrical appliances
Inv(y) investment and replacement costs

j specific user class
LL(t) loss of load at time-step (t)
LT system life-time
nij amount of appliances within a class
Nj amount of users within a class
Pij nominal power rate of an appliance
Rhij maximum percentage of hij subjected to a random vari-

ation
Rwij maximum percentage of wF,ij subjected to a random

variation
wF,ij functioning windows
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mention that solar irradiation and electric load data are required in
form of time series which are typically made of hourly values cov-
ering one year.

In rural and remote areas lack of detailed solar radiation data
occurs, however information can be retrieved from weather sta-
tions usually located in the main cities, several databases are avail-
able [12–15], and a number of models have been developed [16–
18]. Moreover, some methods have been elaborated in order to
embrace in the sizing process the uncertainty associated with solar
irradiation [19–21].

On the contrary, as Khatib et al. highlighted in their review [9],
the forecast or realistic estimates of load profiles is still a main
challenge for off-grid PV systems size optimization. This is even a
more critical element when dealing with rural electrification
actions (i.e. when considering off-grid systems to provide access
to electricity to dwellers of partially- or un- electrified areas). In
fact, no data are typically available in these cases. Nevertheless,
we noticed that no particular attention has been devoted to meth-
ods or models dealing with daily load profiles for off-grid con-
sumers of rural areas. Indeed most of the literature, which
addresses the formulation of daily load profiles, deals with the
theme of domestic electric consumptions in developed countries
[22]. In practice, researchers dealing with off-grid systems sizing
for rural electrification introduce daily load profiles in three man-
ners: (i) profiles are defined without clear explanations about their
origin [23–25]; (ii) profiles are adapted from similar contexts [26–
31]; (iii) profiles are formulated without any defined procedure,
but employing assumptions on electric appliances functioning
periods [32–36]. Moreover, no methods have been developed in
order to embrace in the sizing process the uncertainty associated
with daily load profiles of rural consumers. Actually, few contribu-
tions in the literature address this problem: Celik in [37] brought
about the issue of load profiles and off-grid PV systems sizing by
comparing resulting loss of load probabilities and the costs of elec-
tricity for five different input load profiles, while Boait et al. [38]
proposed a bottom-up approach for daily load profile computation
which employs Monte Carlo simulation to obtain probability distri-
bution of load values for each hour of the day on the basis of user
defined electrical appliances features (number of appliances, rate
power and a daily probability of use ‘‘duty cycle”).

The focus of this paper is to address this issue and specifically it
presents the application of an innovative stochastic method devel-
oped and validated by the authors to formulate different realistic
daily load profiles for rural un-electrified areas [39], and it analyzes
the effect of users’ energy consumptions uncertainty on the opti-
mum sizing of off-grid PV systems in the rural electrification frame.
To this purpose a novel sizing methodology which embraces
uncertainty on load profiles has been developed, implemented
and employed. Such a procedure is based on: (i) the modelling of
users’ energy needs, (ii) the formulation of different realistic daily
load profiles via the innovative stochastic method, (iii) the PV-
battery techno-economic analysis via energy steady-state system
simulation, and (iv) the identification of the optimum system siz-
ing via a numerical method and based on net present cost (NPC)
and loss of load probability (LLP) parameters. Moreover, since we
prove that the optimum system configurations are significantly
affected by the users’ load profiles; an approach to identify the
robust solution with regards the assumed uncertainty has been
proposed.

Finally, the proposed methodology has been applied to perform
the optimum sizing under load profile uncertainty of an off-grid PV
system for a peri-urban area of Uganda and we discuss the results.
The input data for the case study were collected during a two
months in-field mission via local observations and surveys.

Methods and models for optimum sizing of off-grid PV systems
under load profile uncertainty

This section introduces the methods and models that have been
employed to perform the optimum sizing of off-grid PV systems
considering uncertainty on the daily load profiles of rural con-
sumers. The combination of these methods and models makes up
a sizing methodology devoted to this purpose (Fig. 1).

The methodology can be described as follows:

1. in the users’ electric needs modelling block, targeted users and
their electric needs are modelled into user classes, electric
appliances and usage habits;

2. the load profiles formulation block refers to an innovative
stochastic method developed by the authors which formulates
different possible realistic daily load profiles for given users’
electric needs. Being capable to formulate different profiles
with the same input data, this method allows embracing load
profile uncertainty in the sizing process;

3. the solar resource availability modelling block employs a model
available in the literature to formulate yearly time series of
hourly solar radiation;

4. the techno economic modelling block considers well-known
steady-state modellings of off-grid PV systems components as
well as a model for life-cycle economic analysis;

5. a classical method based on energy steady-state simulation is
employed to compute the main techno-economic performance
parameters of off-grid PV system (i.e. NPC and LLP);

6. the new size optimization method, which has been developed to
identify the robust solution with regards the assumed load
uncertainty, is based on the following considerations: each pos-
sible daily load profile (formulated at step 2) has an NPC-LLP
optimum in terms of sizes of PV and batteries; this optimum
PV-battery combination may differ among the possible load
profiles (this allow analyzing the effect of uncertainty on the
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Fig. 1. Graphical representation of the proposed sizing methodology with main building-blocks.
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optimum sizing); among all the optima, one is the most robust
with regards to all the considered load profiles (this allow per-
forming the optimum sizing considering uncertainty).

In the following the most innovative elements of the proposed
sizing methodology (blocks 1, 2, 6) are described. However, hints
are also provided to the methods and modellings taken from the
literature.
Users’ electric needs modelling

A parametric model that allows modelling the users’ electric
needs is proposed (Table 1):

& targeted consumers are grouped into different user classes.
Such classes are defined according to the fact that consumers
within a class show a broadly similar demand behavior;

& a classification of electrical appliances is required;
& the daily overall time each appliance is in use is required, i.e. the

functioning time (hij);
& the period(s) during the day when each appliance can be in use

is required, i.e. the functioning window(s) (wF,ij);
& each appliance is modelled with its nominal power. Further-

more its functioning is modelled as on-off mode considering a
minimum continuous functioning cycle (dij).

Given all these parameters for the targeted users:

& the total required daily electric energy of each user class can be
computed;

& a theoretical maximum power peak of each user class can be
computed;

& a load factor for each user class relating to the theoretical max-
imum power peak and the total required daily electric energy
can be computed.

These parameters are the input data for the daily load profile
formulation method. They are the necessary-minima required to
formulate a profile of a given group of consumers in rural areas
Table 1
Parameters for modelling users’ electric needs.

i type of electrical appliances (e.g. light, mobile charger, radio, TV)
j specific user class (e.g. household, school, stand shop, clinics)
Nj amount of users within each class
nij amount of appliances within each class
hij overall time each appliance is on during a day: functioning time
wF,ij period(s) during the day when each appliance can be on: functioning

windows
Pij nominal power rate of each appliance
dij functioning cycle, i.e. minimum continuous functioning time of the

appliance once it is on
and they can be assumed based on practical experience on similar
context conditions or by mean of local surveys.

Load profile formulation with a stochastic method

We develop an innovative method to formulate daily load pro-
files which allows considering users’ energy consumptions uncer-
tainty. This method has been implemented in an algorithm based
on MATLAB and named LoadProGen (i.e. Load Profile Generator).
Hereafter an introduction of its main structure and features is
given to the benefit of clarity for the following analyses.

The method has the following main features:

& it is based on the users’ electric needs parameters;
& it builds up the coincidence behavior of the appliances and the

power peak value with regards to the correlation between num-
ber of users, load factor and coincidence factor;

& it is based on a stochastic approach in order to embrace uncer-
tainty, i.e. the method allows formulating a number of different
possible realistic profiles.

In Fig. 2 a block representation of the method is presented. It is
divided in three sections: input data, operational elements, and
output data.

The input data are the parameters employed for modelling the
users’ electric needs (Table 1). Nevertheless two more parameters
are introduced with the purpose of embracing uncertainty on the
values of functioning times (hij) and functioning windows (wF,ij)
respectively. It has been referred to them as Rhij and Rwij, and they
set the maximum percentage of hij and wF,ij subjected to a random
variation.

As regards the operational elements and output data, the
method first formulates the daily load profile for each single user
class and then it computes the overall profile by aggregating the
single class profiles. Hence, the applied steps to each single user
class considered are the following:

& functioning times and functioning windows are randomized by
means of Rhij and Rwij;

& the total daily electric need of the user class, the possible theo-
retical maximum power peak, and the peak time are computed
(peak value computation block). Then, the class coincidence fac-
tor is computed according with the empirical correlation exist-
ing between amount of users (Nj), load factor (fL,j) and
coincidence factor (fC,j). The obtained value of the coincidence
factor is employed to compute the reference value of the class
power peak. The mentioned correlation results as follows [40]:

f c;j ¼ a � f L;j þ ð1� a � f L;jÞ � N�1=a
j ð1Þ

where the formulation of the coefficient a and the related parame-
ters have been presented and empirically calculated in [41,42];
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& the functioning of each appliance is defined by sampling ran-
domly the switching on times within the relative functioning
windows (load curve computation block). Specifically the
amount of times each appliance is switched on is defined by
dividing the total amount of times the appliance ij is function-
ing in a day (numerator) divided by the minimum time the
same appliance has been considered it operates once switched
on (divisor):

nt;ij ¼ hij þ randomðhij � RhijÞ
dij

ð2Þ

where random(hij*Rhij) refers to the computation of a random value
[�(hij*Rhij), +(hij*Rhij)]. Once the random sampling is carried out for
all the appliances of the user class, the functionings of the single
appliances are aggregated and the class daily load profile is com-
puted. Nevertheless the resulting peak may not comply with refer-
ence power peak computed in the peak value computation block
(via Eq. (1)). Therefore, an iterative process has been implemented
so that the resulting power peak matches, assuming an error
defined by the designer, with the reference power peak;
& repeating the previous computational steps for each user class

and aggregating the different class profiles leads to compute
the total daily load profile.
This stochastic method has been implemented in an algorithm

based on MATLAB and named LoadProGen. LoadProGen allows for-
mulating realistic load profiles since:
& by developing the load profiles of each single appliance for each
user and then by aggregating them, the coincidence behavior
within a class is achieved in a similar way as it occurs in real
power systems [43];

& by employing the empirical correlation between amount of
users, load factor and coincidence factor, it estimates realistic
class power peaks according to the parameters of users’ electric
needs.

Moreover LoadProGen allows formulating different possible load
profiles all complying with the given input data since:

& due to the stochastic approach in defining the peak time and the
switching on times of each appliance, the algorithm computes a
different load profile each time it is run;

& Rhij and Rwij allow considering a further degree of uncertainty
as regards the functioning times and functioning windows,
which are key parameters of users’ electric need modelling.

Solar resource availability modelling

We retrieved from the Surface meteorology and Solar Energy
website of NASA [12] the values of the mean daily solar irradiations
for the targeted location which then are employed in the method
presented in [17] to generate synthetic hourly solar radiation inci-
dent on the surface of the PV array throughout a year.
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Techno-economic modelling

The considered models for the simulation stage of the off-grid
PV system are those implemented in the well-known energy
steady-state simulation and numerical optimization approaches
[44,45]. Specifically, the off-grid PV system has been considered
as composed by PV array, battery bank and inverter. Each of these
components is modelled from the technical and economical point
of view.

Technical modellings of the system components have the fol-
lowing features:

& the PV array power output depends on the solar radiation, on
the effect of the PV cell’s temperature [46], and on the balance
of system efficiency;

& the battery bank model considers round-trip efficiency, mini-
mum threshold in the state of charge (SOC), power-to-energy
ratio, and it employs the rainflow counting method to evaluate
battery life-time [47];

& the inverter model considers an energy conversion efficiency.

All the system components are economically modelled by
means of investment and replacement costs based on their size.
In particular, battery bank life-time depends on its operation and
hence replacement cost depends on the particular load profile sim-
ulated. Yearly operation and maintenance costs are given as an
overall value for the whole system according to the PV array size.
Steady-state simulation method

Steady-state simulation of the off-grid PV system is based on
the solving of the energy balance between the energy produced,
consumed and stored. This balance is solved for a given time-
step throughout a given period of time. In the case under study,
the simulation has been performed with an hourly time-step over
a year (8760 h). The final purpose of the simulation is to compute,
for a given power rate of the PV array and for a given capacity of
the battery bank, the LLP and the NPC which are the parameters
employed to identify the optimum sizing of the system
components.

The simulation is performed as follows: (i) for each time-step
the balance between produced and required energy is performed,
(ii) the remaining energy is assigned to the battery that injects or
absorbs energy accordingly, (iii) the battery SOC is computed
together with the loss of load that occurs if the load remains unsat-
isfied because of the minimum battery SOC reached, (iv) the
remaining battery life-time is evaluated. Once the simulation is
performed over the whole year, the LLP is calculated as follows
[44]:

LLP ¼
P8760

t¼1 LLðtÞ
ED

ð3Þ

where LL(t) is the loss of load at the time-step (t) and ED is the total
user energy demand for one year. Moreover, considering a system
life-time (LT) in terms of years, the NPC is computed as follows [48]:

NPC ¼
XLT

y¼1

InvðyÞ þ O&MðyÞ
ð1þ rÞ y ½€� ð4Þ

where, for each year (y): Inv(y) considers the investment and
replacement costs of the system components, O&M(y) are the oper-
ation and maintenance costs, and (1 + r)y is the discount factor.
Size optimization method

The optimum sizing of off-grid PV system under daily load pro-
files uncertainty has been performed as follows:

1. for a given load profile, ranges of PV array sizes and battery
capacities are defined and the simulation stage is performed
for all the possible size combinations of PV-battery. Then the
PV-battery combination that results in having the minimum
NPC while respecting the maximum LLP (defined by the
designer) is the optimum solution.

2. Actually, this is the classical approach which is employed to
perform the optimum sizing of any kind of off-grid system
[23,30,32]. In this work, we employ the capability of LoadProGen
to formulate different possible realistic load profiles in order to
identify the optimum sizing under load profile uncertainty. This
entails the development of two further steps;

3. for a given set of parameters of users’ electric needs, n load pro-
files are formulated via LoadProGen. Then for each formulated
profile the classical optimization approach is performed thus
providing n optimum systems. Accordingly, this analysis
allows: (a) to analyze the effect of load profile uncertainty on
the optimum sizing by obtaining a region of optimum solutions
instead of a single optimum solution, and (b) to identify the
most robust solution since some system configuration would
occur to be the optimum one more frequently;

4. for the same set of parameters of users’ electric needs, but con-
sidering different combinations in the value of Rhij and Rwij

(which define different scenarios), step 2 is repeated. This allows
considering the uncertainty associated with the functioning
times and functioning windows, which greatly affects the for-
mulation of the load profiles.

Case study context: a peri-urban area of Uganda

The proposed sizing methodology has been applied to perform
the optimum sizing under load profile uncertainty of an off-grid
PV system to supply power to a peri-urban area of a small town
in Uganda.

Uganda is a country in sub-Saharan Africa with about 39 million
people and 84% living in rural areas. It has a Human Development
Index of 0.484, ranking 164� over 187 countries, and standing
among those nations with Low Human Development [49]. As
regards the energy situation, 97% of the population relies on tradi-
tional biomass for cooking, while 55% and 7% have access to elec-
tricity in urban and rural areas respectively [50]. The electricity
consumption per capita is low (about 215 kW h per year) and the
supply service suffers for frequent inefficiencies with about 6
outages per month which last about 7 h [51]. Besides, the current
trends shows a stable economic growth (6% in the past five years)
which is reflected in a strong increase of electricity demand (10%
per year) [52,53]. This results in a high pressure on the electric sys-
tem of the country. However, despite the abundant domestic
energy resources, the implementations of dedicated energy
reforms in the past years did not provide for the expected improve-
ments on the power sector. Furthermore, the government, in the
past decade, began to consider solar photovoltaic technology as
the main options for off-grid rural electrification actions [54].

In Uganda, three typologies of potential off-grid electric con-
sumers can be identifies:

& isolated single rural households without access to electricity via
the national grid which power portable devices (e.g. mobiles,
radios) with small batteries;

& rural villages (i.e. agglomerate of households) often without
access to electricity via the national grid, but where traditional
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generators (diesel / petrol generators) are employed by few
well-off households and local services (e.g. clinics, churches);

& peri-urban areas, which are typically reached by the national
grid, but where only a share of households, local services and
income activities are connected. In these areas, traditional gen-
erators are more common particularly for those who already
have electricity and needs to find a solution to the frequent
outages.

Especially for rural villages and peri-urban areas, an appropriate
solution to provide access to electricity or to improve the actual
power supply can be off-grid micro-grids1 based on PV and batter-
ies, which might also integrate the local available traditional gener-
ators. Indeed, in rural villages this can be a first-step solution to get
access to electricity considering a future integration with the
national grid, while in peri-urban areas PV-based micro-grids may
improve the power supply service by completely replacing the
national grid or by acting as back-up of the national grid, thus reduc-
ing the use of the traditional generators [55].

In both cases, the optimum sizing of the main components of a
PV-based micro-grid (i.e. PV array peak power and battery capac-
ity) is not straightforward mainly owing to the lack of data about
solar resource and users’ electric consumptions. In particular, with
regards to users’ load profiles, two typical situations occur:

1. most often data about energy consumptions or load profiles are
not available because people do not have access to electricity
yet;

2. more rarely it is possible to collect data in terms of energy con-
sumptions (Wh/day) or the data gathering is limited to few
daily load profiles (average load power over 1 to tens of minutes
throughout a day). This is due to the fact that load metering is a
challenging task in these contexts, actually simple energy
meters are adopted (i.e. with limited capability in storing data)
or, more frequently, the metering campaign is based on mobile
apparatus (and the metering campaign itself is limited to few
days/weeks) [56].

Therefore, the proposed modelling of users’ electric needs as
well as the stochastic method for load profiles formulation (i.e.
LoadProGen) can support the analysis and development of the
design of a PV-based micro-grid especially in the case of rural vil-
lages and peri-urban areas.

In this framework, from October to December 2013 we carried
out a mission in Uganda to support the activities of Village Energy
Ltd [57], a local medium enterprise which works in the designing,
procurement and installation of off-grid PV systems. Main task of
the mission was to develop appropriate tools for supporting the
design and quotation process of small off-grid PV systems [8]. Nev-
ertheless, the proposed sizing methodology (Fig. 1) has been also
applied to perform the optimum sizing under load profile uncer-
tainty of a PV-based micro grid that supplies power to a peri-
urban area of Soroti, which is a small but expanding town in the
central-east district of Uganda (1.72N/33.6E).

In Soroti the national electric grid reaches only few income
activities and houses in the city center, while a number of other
users employ small diesel generators to power domestic appli-
ances and working equipment. There are large residential areas
where households live without electricity and make use of kero-
sene lamps for lighting, and of small batteries and charging sta-
tions to power portable devices. During the mission in Uganda
1 We consider as an off-grid micro-grid, an energy system which comprises one or
more power sources and energy storage systems which are interconnected and
managed as a single virtual power plant in order to supply power to severa
consumers via a distribution grid.
l

we did not have the possibility to carry out a metering campaign
about energy consumptions and loads (in the authors’ opinion this
is not really a lack of the approach proposed; actually, such condi-
tions are relevant to the most frequent scenarios for applications in
developing countries), but we surveyed the typical conditions of
the peripheral areas of Soroti in order to collect the required infor-
mation to model the users’ electric need. In particular we looked at
the presence of income activities and services, at the different
households’ living standards, at the available electrical devices,
and at the usage habits in the already electrified users. Moreover,
we also collected information about the local costs of the main sys-
tem components (i.e. PV panels, lead-acid batteries, off-grid
inverters).
Sizing of the PV-based micro-grid under load profiles
uncertainty: calculation and results

In this section, the application of the proposed sizing methodol-
ogy to the case study of Soroti is described. The case study is intro-
duced by following the structure of the sizing process; moreover
comments to the results are provided.
Modelling of local energy needs and load profiles formulation

In the case study a hypothetical PV-based micro-grid which
addresses the energy needs of 100 households and 47 surrounding
activities (e.g. micro and small enterprises, kiosks, market place,
school, etc.) are considered. Thanks to the surveys carried out in
Soroti, we assumed that the targeted households can be divided
into 6 classes according to the income levels. Moreover, further
11 user classes which comprise business activities and local ser-
vices have been identified. According to the collected data, we
defined the parameters that model the targeted users’ electric
needs. These data are reported in Table 2, while Table 3 reports a
summary of the user class energy consumptions.

LoadProGen has been employed to formulate the daily load pro-
files for the targeted users. Specifically, we consider 10 different
scenarios for the formulation of the profiles. All scenarios have
the same assumptions as regards the users’ electric needs mod-
elling (Table 2), but have different settings for the parameters Rhij
and Rwij. In particular, all the combinations of Rhij and Rwij assum-
ing the values 0%, 10%, 20% and 30% have been considered. For each
scenario, 150 profiles have been formulated, which in the authors’
opinion are adequate to represent the uncertainty associated to the
daily load profiles within a scenario.

Figs. 3 and 4 report examples of the formulated profiles for the
scenarios with Rhij and Rwij equal to 0% and 30% respectively. Figs. 5
and 6 show the box plots resulting from the 150 profiles generated
for the same scenarios. The box plots report, for each hour, average,
maximum and minimum values obtained from the 150 profiles.
Moreover, key parameters of the generated load profiles for all
the scenarios are reported in Table 4. These figures and the table
allow highlighting the capability of LoadProGen to model the
stochastic behavior of the load. Indeed, the ‘‘shapes” of the profiles
are similar since they all refer to the same users’ electric need
parameters; however, the values of average power required in each
hour of the day vary, thus leading to different power peak values
(which can also occur at different times) and different load factors.
Furthermore, increasing Rhij and Rwij, the profiles have higher vari-
ability. Specifically, when Rhij is greater than 0% the daily energy
consumption varies; when Rwij is greater than 0% the switching
time of each device occur in wider windows thus leading to less
blocky profiles.

In order to highlight the capabilities of LoadProGen to formulate
possible realistic load profiles, Fig. 7 shows the profile based on the



Table 2
Users’ electric needs modelling for the area in Soroti.

Class Type j Nj App Name i Pij [W] nij dij[min] hij[h] wf,ij_1 wf,ij_2 wf,ij_3

hstart hstop

Household_1 50 Lights 3 4 10 6 0 2 17 24 – –
Phone Charger 5 2 30 3 0 9 13 15 17 24
Security Light 5 1 30 12 0 7 17 24 – –

Household_2 15 Lights 3 4 10 6 0 2 17 24 – –
Phone Charger 5 2 30 3 0 9 13 15 17 24
Security Light 5 1 15 12 0 7 17 24 – –
Radio 5 1 30 4 6 9 17 24 – –
AC-TV (small) 100 1 30 5 11 15 17 24 – –

Household_3 15 Lights 3 8 10 6 0 2 17 24 – –
Phone Charger 5 2 30 3 0 9 13 15 17 24
Radio 5 1 15 4 6 9 17 24 – –
Security Light 5 2 30 12 0 7 17 24 – –
AC-TV (small) 100 1 30 5 11 15 17 24 – –
Fridge (small) 250 1 10 5 0 24 – – – –

Household_4 10 Lights 3 12 10 6 0 2 17 24 – –
Phone Charger 5 4 30 3 0 9 13 15 17 24
Radio 5 1 15 4 6 9 17 24 – –
Security Light 5 4 30 12 0 7 17 24 – –
AC-TV (small) 100 1 30 5 11 15 17 24 – –
Standing Fan 55 1 30 6 8 24 – – – –
Decoder 15 1 30 5 11 15 17 24 – –
Fridge (small) 250 1 10 5 0 24 – – – –
Internet Router 20 1 30 6 0 24 – – – –
Laptop (small) 55 1 30 6 0 2 11 15 17 24

Household_5 5 Lights 3 16 10 6 0 2 17 24 – –
Phone Charger 5 4 30 3 0 9 13 15 17 24
Radio 5 2 15 4 6 9 17 24 – –
Security Light 5 6 30 12 0 7 17 24 – –
AC-TV (big) 200 1 30 6 11 15 17 24 – –
Standing Fan 55 2 30 6 8 24 – – – –
Decoder 15 1 30 6 11 15 17 24 – –
Fridge (big) 400 1 10 5 0 24 – – – –
Internet Router 20 1 30 8 0 24 – – – –
Laptop (big) 80 2 30 8 0 2 11 15 17 24

Household_6 5 Lights 3 16 10 6 0 2 17 24 – –
Phone Charger 5 4 30 3 0 9 13 15 17 24
Radio 5 2 15 4 6 9 17 24 – –
Security Light 5 6 30 12 0 7 17 24 – –
AC-TV (big) 200 1 30 6 11 15 17 24 – –
Standing Fan 55 2 30 6 8 24 – – – –
Decoder 15 1 30 6 11 15 17 24 – –
Fridge (big) 400 1 10 5 0 24 – – – –
Internet Router 20 1 30 8 0 24 – – – –
Laptop (big) 80 2 30 8 0 2 11 15 17 24
Hair Dryer 1000 1 5 0.5 17 24 – – – –
Printer 50 1 5 0.5 17 24 – – – –
Stereo 100 1 30 3 17 24 – – – –
Water Heater 660 1 15 2 0 2 18 24 – –

Enterprise_1 15 Fluor. Tube (small) 36 10 60 6 7 11 16 20 – –
Phone Charger 5 4 30 3 7 13 15 20 – –
Security Light 5 4 60 12 0 7 17 24 – –
Internet Router 20 1 60 10 7 20 – – – –
Laptop (big) 80 1 60 8 7 13 15 20 – –
Laptop (small) 55 5 60 8 7 13 15 20 – –
Printer 50 2 5 2 7 13 15 20 – –
Standing Fan 55 2 30 8 7 13 15 20 – –

Enterprise_2 5 Fluor. Tube (big) 47 20 30 6 7 11 16 20 – –
Phone Charger 5 15 30 3 7 13 15 20 – –
Security Light 5 10 30 12 0 7 17 24 – –
Internet Router 20 1 30 10 7 20 – – – –
Laptop (big) 80 5 30 8 7 13 15 20 – –
Laptop (small) 55 10 30 8 7 13 15 20 – –
Standing Fan 55 5 5 8 7 13 15 20 – –
Water dispenser 550 1 30 3 7 13 15 20 – –
Photocopier 750 1 15 1 7 13 15 20 – –
Ceiling Fan 75 5 5 8 7 13 15 20 – –
PC 400 1 30 10 7 20 – – – –
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Table 2 (continued)

Class Type j Nj App Name i Pij [W] nij dij[min] hij[h] wf,ij_1 wf,ij_2 wf,ij_3

hstart hstop

Mobile Money 5 Lights 3 2 10 3 8 11 16 20 – –
Phone Charger 5 3 30 3 8 18 – – – –
Standing Fan 55 1 30 6 10 18 – – – –

Kiosk 10 Lights 3 2 10 3 8 11 16 20 – –
Phone Charger 5 1 30 3 8 18 – – – –
Standing Fan 55 1 30 6 10 18 – – – –
Fridge (small) 300 1 5 8 0 24 – – – –
Fridge (big) 500 1 10 8 0 24 – – – –

Barber 2 Lights 3 5 10 8 8 13 15 20 – –
12V shaver 10 5 5 6 8 13 15 20 – –
Ceiling Fan 75 3 30 8 8 13 15 20 – –
UV sterilizer 50 1 5 2 8 13 15 20 – –

Tailor 3 Lights 5 3 30 8 8 13 15 20 – –
Sewing machine 50 1 15 3 8 13 15 20 – –
Ceiling Fan 75 1 30 8 8 13 15 20 – –

Market Place 1 Lights 3 25 30 3 8 11 16 20 – –
Security Light 5 25 30 12 0 7 17 24 – –
Fridge (small) 300 3 5 8 0 24 – – – –
Fridge (big) 500 3 10 8 0 24 – – – –
Standing Fan 55 10 30 8 8 13 15 20 – –
Radio 5 10 15 4 10 13 15 18 – –

Club 3 Fluor. Tube (small) 36 10 30 8 0 4 17 24 – –
Fluor. Tube (big) 47 5 30 8 0 4 17 24 – –
Security Light 5 5 30 12 0 7 17 24 – –
Phone charger 5 10 30 8 15 24 – – – –
AC-TV (small) 130 2 30 9 0 4 15 24 – –
AC-TV (big) 200 1 30 9 0 4 15 24 – –
PC 400 1 30 9 0 4 15 24 – –
Laptop (big) 80 10 30 6 15 24 – – – –
Printer 50 1 5 1 15 20 – – – –
PicoProjector 18 1 30 4 0 2 20 24 – –
Amplifier 6 1 30 4 0 2 20 24 – –
Ceiling Fan 75 3 30 8 0 4 15 24 – –
Music System 178 1 30 8 0 4 15 24 – –
Internet Router 20 1 30 9 0 4 15 24 – –
Fridge (small) 300 2 5 8 0 24 – – – –
Fridge (big) 500 1 10 8 0 24 – – – –

Street Lights 1 Lights (Street) 50 100 30 12 0 7 17 24 – –
Led strips 8 100 30 12 0 7 17 24 – –

Primary School 1 Fluor.Tube (small) 36 10 30 4 8 17 – – – –
Phone Charger 5 7 30 3 8 17 – – – –
Security Light 5 4 30 12 0 7 17 24 – –

Pharmacy 1 Lights 3 10 30 3 8 11 16 20 – –
Security Light 5 4 30 12 0 7 17 24 – –
Fridge (small) 300 3 5 8 0 24 – – – –
Fridge (big) 500 2 10 8 0 24 – – – –
Standing Fan 55 3 30 8 8 13 15 20 – –
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same users’ energy modelling and resulting by the application of a
classical literature-based method for load profile formulation. This
method can be considered as the typical one employed in previous
works about off-grid system sizing for rural electrification [39]. The
resulting profile, can be compared with the examples generated by
LoadProGen (Figs. 3 and 4). Hence: (i) being the method only based
on the average power contributions of the appliances, the profile
results a flat and blocky (i.e. not realistic), and (ii) the method
allows computing a single profile from the given input data (i.e.
it is not possible to consider load profile uncertainties).
Local availability of solar resources

Table 5 reports the data about solar resource and ambient tem-
perature in Soroti. These data have been employed in the method
presented in [17] to compute the synthetic hourly solar radiation
incident on the PV surface and the PV cell temperature throughout
a year. Fig. 8 shows, the resulting radiation profile for 10 days of
January, and it highlights how the method employed is capable
to take into accounts the variability of the solar resource.
Techno-economic data set

Technical parameters of the system components modelling are
reported in Table 6, while economic parameters are shown in
Table 7. Information about PV modules, batteries and off-grid
inverters are the result of a survey among Ugandan local suppliers,
while O&M and other investment costs have been estimated based
on our experience.
Results of the optimization process under load profile uncertainty and
discussion

The optimization of the PV-based micro-grid has been per-
formed by simulating all the possible combinations of PV-battery
within previously defined size ranges and for a given load profile.



Table 3
Summary of energy consumptions for the defined user classes.

Class Type j Nj Eclass,day [kW h/day] Epc,year* [kW h/year/pc]

1 Household_1 50 8.1 7.4
2 Household_2 15 10.2 31.1
3 Household_3 15 31.0 94.2
4 Household_4 10 31.4 143.3
5 Household_5 5 30.7 280.0
6 Household_6 5 41.4 377.9
7 Enterprise_1 15 98.7 –
8 Enterprise_2 5 130.8 –
9 Mobile money 5 2.0 –
10 Kiosk 10 67.6 –
11 Barber 2 4.6 –
12 Tailor 3 2.6 –
13 Market place 1 25.5 –
14 Club 3 91.1 –
15 Street lights 1 69.0 –
16 Primary school 1 1.8 –
17 Pharmacy 1 16.9 –

Total daily load 663.4 kW h/day

* Considering 8 persons per households.[58]

Fig. 3. Samples of load profiles generated with LoadProGen for the case Rhij and Rwij equal to 0%.

Fig. 4. Samples of load profiles generated with LoadProGen for the case Rhij and Rwij equal to 30%.
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Specifically the simulations were performed in MATLAB by ranging
PV array size from 180 to 250 kW with 3 kW step and battery bank
size from 680 to 1000 kW h with 8 kW h step. Then the PV-battery
combination that results in having the minimum NPC while
respecting a maximum LLP of 5% is identified as the optimum
solution.
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Fig. 5. Box plot for the scenario with Rhij and Rwij equal to 0%.
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Fig. 6. Box plot for the scenario with Rhij and Rwij equal to 30%.

Table 4
Key parameters for the 150 formulated profiles within the 10 scenarios.

Scenarios Daily energy[kW h/day] Load peak [kW] Load factor

Rhij Rwij min av. max min av. max min av. max

1 0% 0% ‘‘ 663.4 ‘‘ 56.4 64.1 72.5 0.38 0.43 0.49
2 0% 10% ‘‘ 663.4 ‘‘ 56.0 62.9 72.6 0.38 0.44 0.49
3 10% 0% 646.7 663.9 687.2 55.5 63.7 73.9 0.38 0.44 0.50
4 0% 20% ‘‘ 663.4 ‘‘ 54.2 62.3 70.6 0.39 0.44 0.51
5 20% 0% 630.6 663.9 698.9 54.2 63.4 73.5 0.38 0.44 0.49
6 0% 30% ‘‘ 663.4 ‘‘ 52.9 60.3 69.8 0.40 0.46 0.52
7 30% 0% 608.6 665.4 717.9 52.3 63.0 72.1 0.38 0.44 0.51
8 10% 10% 647.9 663.7 679.3 53.2 63.3 72.4 0.39 0.44 0.52
9 20% 20% 628.9 665.2 697.7 52.9 61.6 70.3 0.39 0.45 0.52
10 30% 30% 601.4 662.3 726.1 50.0 59.1 67.2 0.40 0.47 0.55

Fig. 7. Load profile computed via classical literature-based method.
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Table 5
Solar resource and temperature data for Soroti [7].

Month Mean daily irradiation [kW h/
m2/day]

Ambient Temperature
[�C]

January 6.22 21.9
February 6.56 22.5
March 6.36 21.9
April 5.99 21.1
May 5.72 20.7
June 5.39 20.7
July 5.29 20.8
August 5.67 21.1
September 6.22 20.8
October 6.01 20.5
November 5.83 20.6
December 6.07 21.2

Table 6
Technical modelling assumptions.

Balance of system efficiency 85 %
Minimum battery SOC 40 %
Battery power-to-energy ratio 50 %
Battery round-trip efficiency 75 %
Inverter efficiency 90 %

Table 7
Economic modelling assumptions.

Note Cost

PV modules Monocrystalline 1000 €/kW
Battery Lead-acid (sealed) 140 €/kW h
Off-grid inverter 500 €/kW
Other investment costs % on main component costs 20 %
O&M 50 €/kW/year
Plant lifetime LT 20 Years
Discount rate r 6 %
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The effect of load profiles uncertainty on the optimum sizing
has been introduced by employing LoadProGen to formulate differ-
ent possible realistic load profiles for a single reference context (i.e.
for a set of users’ electric needs, Table 1). In practice, we looked for
the optimum PV-battery combinations resulting from the opti-
mization process applied to each load profile within each scenario
(i.e. 150 profiles formulated for each scenario, 10 scenarios consid-
ered. cf. Section 4.1). Fig. 9 shows the results of this analysis. In
particular, each rainbow colormap:

& refers to a particular scenario, defined by a combination of the
parameters Rh and Rw;

& covers the search space of the optimum solutions defined by the
PV and battery sizes ranges;

& identifies with different colors (according to the colorbar) the
frequency at which a specific combination of PV-battery sizes
has resulted to be the optimum one. In the figure, the frequency
has been normalized to 100 and according to the most frequent
combination in the considered scenario.

With reference to Fig. 9 some considerations can be reported:

& the fact that the optimum combinations cover an areas of the
search space (i.e. they generate a spot of optimum solutions)
proves that load profiles affect the optimum design of the PV-
based micro-grid. The effect is significant since optimum sizes
of PV and batteries range between about 205–225 kW and
about 800–900 kW h respectively even in the scenarios with
Rh and Rw equal to zero;
Fig. 8. Solar radiation hourly profile
& the effect of Rw is more relevant on the battery capacity rather
than on the PV power size when moving from scenario with
Rh = 0% and Rw = 0% to scenario with Rh = 0% and Rw = 10–20–
30%. This is due to the fact that random changes on wF,ij may
lead to move the power peak of the load profiles (and the
related period with relative high energy requirement) from
day to night (or vice versa), thus leading to need more (less)
storage capacity;

& the effect of Rh is relevant both on the battery capacity and the
PV power size and it increases (i.e. the spot expands steadily)
when moving from scenario with Rh = 0% and Rw = 0% to sce-
nario with Rh = 10–20–30% and Rw = 0%. Indeed, random
changes on hij lead to higher (lower) daily energy requirements,
thus requiring larger (smaller) size of PV and battery capacity to
cover and store more (less) energy.

Beside the analysis of the effect of the load profiles uncertainty
on the optimum sizing, it is worthwhile to investigate the identifi-
cation of the robust solution among those that define the spot of
optimum solutions. Two options have been compared: (i) the
robust solution is the most frequent combination of PV and battery
that has occurred, (ii) the robust solution is the barycenter of the
spot of optimum solutions. Table 8 reports a summary of this anal-
ysis. It presents the scenarios according to the values of Rh and Rw,
data about the most frequent solutions and the barycenters. With
regards to the most frequent solutions, their frequencies among
the 150 load profiles considered in each scenario have been
for 10 days of January in Soroti.



Fig. 9. Rainbow colormaps of the PV-battery optimum sizing combinations for different LoadProGen parameters hypotheses.
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reported. Accordingly, as expected the frequency generally
decreases when considering scenarios with Rh and Rw greater than
0: from 22 occurrences whit Rh and Rw equal to 0% and 10% respec-
tively, to 5 occurrences with Rh and Rw equal to 0% and 30%
respectively. Nevertheless, the optimum solutions are weakly
affected by the change in the Rh and Rw parameters.

This analysis has been completed by considering also the spot of
optimum solutions resulting from overlapping all the scenarios.
This could be a way to embrace uncertainty on the LoadProGen
parameters which most likely are not known by the system
designer. Therefore, the overlapping of all the scenarios allows
identifying the most robust solution with regards the overall
degree of uncertainty considered in the problem.

Accordingly, Fig. 10 shows the rainbow colormap for this latter
case. The most frequent system configuration has occurred 72
times over a total of 1500 (each one refer to a formulated load pro-
file) and is composed by a PV array of 219 kW peak and a battery
bank of 856 kW h. The barycenter identifies the most robust solu-



Table 8
Robust solutions identified by the most frequent and barycenter for each scenario.

Scenarios The most frequent Barycenter

Rhij Rwij Frequency among 150 PV [kW] Battery [kW h] PV [kW] Battery [kW h]

1 0% 0% 20 219 872 222 856
2 0% 10% 22 219 856 222 840
3 10% 0% 9 216

219
864
872

222 840

4 0% 20% 11 219
219

840
856

219 840

5 20% 0% 7 216 872 219 856
6 0% 30% 14 219 848 222 856
7 30% 0% 7 219 832 222 848
8 10% 10% 8 219

222
848
832

222 840

9 20% 20% 6 222
225

880
824

222 848

10 30% 30% 5 219
225

848
840

219 840

Fig. 10. Rainbow colormap of the PV-battery optimum sizing combinations for all the LoadProGen scenarios.
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tion as composed by a PV array of 222 kW peak and a battery bank
of 848 kW h. Finally, the dispersion of the optimum solutions is
characterized by PV array powers that range from 198 kW to
243 kW, while battery capacities that range from 768 kW h to
920 kW h.
Conclusions

In this paper we highlighted the effect of load profiles uncer-
tainty on the sizing of PV-battery systems with particular reference
to off-grid applications for rural electrification. This has been car-
ried out by employing a new stochastic method which formulates
possible realistic daily load profiles for given set of users’ electric
needs, on the basis of classical approaches for steady-state simula-
tion, and by means of a new approach to identify the robust solu-
tion with regards the assumed uncertainty. Accordingly, a
numerical case study has been proposed based on data collected
during a field mission in Uganda.

Specifically, for the given set of parameters of users’ electric
needs, several possible realistic load profiles have been formulated
via LoadProGen (an algorithm which implements the new stochas-
tic method). Then for each formulated profile the classical sizing
approach has been performed thus providing several optimum sys-
tems. Moreover, the analysis has been completed by focusing on
further uncertainties introduced on the given set of users’ electric
needs.

The results confirmed the hypothesis concerning the effect of
load profiles uncertainty on the optimum sizing of off-grid PV sys-
tems. The case study also highlight that it is possible to recognize a
robust solution among all the optimum ones. Some systems config-
urations turned out to be the optimum one more often being cap-
able to optimally adapt to different load profiles. It resulted that
the introduction of further stochastic effect on the input parame-
ters does not significantly affect the robust solution, while it affects
the dispersion of the optimum systems configurations.

In conclusion, this work highlighted that attention is required
when defining load profiles for off-grid PV-battery system sizing
since, given the typical inputs for users’ electric needs, several sys-
tem configurations may be the optimum one. Besides, a further
development of this analysis should consider not only the uncer-
tainty on load profiles for given static users’ electric needs, but also
possible evolution in time (year by year for instance) according to
change in the consumers’ welfare and habits.
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