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A work breakdown structure (WBS) can prove to be pivotal to successful project management planning. There
are few published studies about the methodologies or tools to develop the appropriate WBS for a project, and
those that are available are limited to the specific areas of construction such as apartment-building construction
and boiler manufacturing. This research has an emphasis on developing a methodology with higher generaliz-
ability, which has the capability to be customized to complex underground projects. To address this issue, a
newmethodology that employs hierarchical neural networks to develop theWBS of complex underground pro-
jects is presented. This methodology has been applied to several tunnel case studies and it has been shown that
for a real project, the model is able to generate theWBS and its activities that are comparable to those generated
by a project planner. Consequently, it is concluded that thesemodelingmethods have the capacity to significantly
improve theWBSs for complex underground projects and improve key project tasks, such asworkload planning,
cost estimating and scheduling.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A comprehensive efficient work breakdown structure (WBS) can
prove pivotal within project management planning processes by
partitioning projects into stages, deliverables and work packages. Con-
sequently, it can positively impact other projectmanagement processes,
such as activity definition, project schedule, risk analysis and response,
control tools or project organization [1].

The planning of undergroundwork andWBSs is different from other
civil construction, when one considers the complexity, uncertainty and
large number of activities involved [2]. An experienced complex under-
ground project manager knows that despite detailed planning and exe-
cution, there is always the possibility of errors,mishaps and unexpected
outcomes on the horizon. Developing the work breakdown structure of
a complex underground project in a systematic, thorough, andmethod-
ological manner will decrease the potential for unwanted possibilities
while providing a baseline for planning, estimating, scheduling and
effective project management.

Despite such significance and repercussions, there is a dearth of
research concerning methodologies or tools for the development of
appropriate work breakdown structures (WBSs) for a project. The avail-
able research is mostly limited to a given range of construction projects,
and therefore, the generalizability of the research remains limited to
specific conditions. However, more recent research utilizing case-based
reasoning (CBR) methods offers valuable material while providing a
model for the acquisition and reuse of specific planning knowledge.

FASTRAK-APT, which was developed by Lee et al. [3], offers an im-
portant case- and constraint-based project planning tool for apartment
construction. FASTRAK-APT relies on the fact that a human expert
project planner uses previous cases for planning a new project. Despite
the evident use of CBR methods for planning, the applicability of the
system is limited; in contrast, the proposed methodology is applicable
to domains that have available data and structured knowledge, such
as apartment construction.

Dzeng and Tommelein [4] proposed a case-based expert system,
CasePlan, based on a product model that describes and reuses the
existing boiler erection project in power plant construction for planning
a new project. The researchers believe that CasePlan will prove viable
for projects with distinct components; thus, it may not be applicable
for complex underground projects, which have no distinct component.
Ryu et al. [5] developed CONPLA-CBR, a case-based reasoning planning
tool with greater applicability. However, its applicability has not been
evaluated for complex underground projects. More recently, some
researchers have emphasized the use of neural networks in the
development of planning systems [6,7]. Hashemi and Emamizadeh [8]
proposed a decision tool that employs a modular neural network to
plan the WBS of a limited project domain. The author cited the vast
amount of knowledge required in generating a work breakdown
structure as the primary reason why the use of neural networks is a
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preferable alternative; however, the proposedmethodology is applicable
to small-scale projects. For large-scale complex underground projects,
the number of possible work breakdown structures and activities can ex-
pand rapidly and a bigger size of neural network should be employed.
Therefore, designing and training of the neural network will be more
complex and time consuming. Sharifzadeh et al. [9] formulated an
approach forWBSdevelopment in tunnel projects using neural networks.
Large-scale tunnel projects were tested by their proposed model;
however, their model had the similar disadvantage, and hence the
accuracy of the predicted WBS was decreased by increasing the number
of WBS elements.

There is not a good process to objectively determine the WBS of
complex underground projects and correlate them with the projects
nature. With this in mind, this paper is going to introduce a process
which helps a planer to make a more informed choice of WBS compo-
nents and structure regarding project attributes. The outcome of the
process is a hierarchical neural network, which has been implemented
to develop the WBS of complex underground projects. First, the main
concepts, including the work breakdown structure of a complex
underground project and its attributes, are described, followed by
detailed description of the proposed methodology. Finally, the results
of applying the proposed methodology to several case studies are
discussed.

2. Complex underground project attributes

Underground construction necessitates firm commitments and obli-
gation to comprehensive and complicated procedures. Underground
construction demands high management expertise to address complex
and challenging eventualities. Lack of understanding of a number of sig-
nificant factors, such as the unique contingent features and ensuing in-
terrelated complexities, can increase the difficulties of underground
construction endeavors [2]. Thus, complex underground construction
projects are characterized by a large number of variables that can unfold
in various quantities and combinations, including participating parties
and individuals, a sundry ofwork packages at play, requirements, draw-
ings, plans and reports, in addition to budget items and the time plan.
Factors that affect project management may be enumerated as follow
[2,10]:

1. Underground structures are a necessity of modern life, and such
necessities cannot be disregarded.

2. Consideration of the needs of the general public as the major
stakeholders is critical to the success of such projects.

3. Urban underground projects are constructed in dense, complex, and
restrictive environments.

4. Public policy, public relations and the effective use of media can
positively impact the construction of tunnel projects.

5. Underground construction is capital intensive and reliant on a high
injection of initial capital expenditures.

6. Underground projects take considerable time to conclude.
7. Underground construction is carried out under conditions of

geological uncertainty.
8. Underground construction is risky.

It is important to understand the key attributes of an underground
project before the creation of the project WBS. Project stakeholders,
for example, affect some of the main characteristics of the WBS such
as the level of details. In larger projects such as subway tunnels, politi-
cians, owners, nearby resident and public might be the stakeholders.
On the contrary, smaller projects such as a diversion tunnel might
have only one or two stakeholders including themembers of the parlia-
ment and environmental organizations. It should be noted that these at-
tributes vary in different underground projects in different countries.
Other factors have more or less similar effects on WBS development.
However, the complexity arises from the variation of these attributes
in different underground projects. Geological conditions might be
highly variable for a certain project while it is almost constant in anoth-
er project. The expectation of an underground project client might be
too high so that weekly reporting is required, whereas a client of anoth-
er project needs monthly reports. A few millimeters settlement during
the construction of an urban tunnel might be the concern of the nearby
residents and hold the project for months, while larger settlements are
acceptable in other projects [11]. All of these attributes affect the main
characteristics of the work breakdown structure and they should be
well understood before the development of the WBS.

3. Work breakdown structure (WBS) of complex underground
projects

Work breakdown structure (WBS) is the process of dividing a
project's overall work to several moremanageable hierarchy structured
tasks. The level of details should represent the overall scope of the pro-
ject while keeping the tasksmanageable [1,12]. TheWBS is typically de-
signed through a top-down procedure. The upper levels of theWBS are
decomposed into logical groupings of work, followed by the next level
down and so on. Thus, the lowest-level component of WBS can be
scheduled, and its cost can be estimated, monitored, and controlled.
Fig. 1 illustrates thework breakdown structure of ametro tunnel project
as an example.

There are many different methods that can be employed to create a
WBS.While there is general agreement that theWBS is the fundamental
managerial component upon which many project management pro-
cesses are based, there is surprisingly little agreement on the bestmeth-
od for creating the WBS [1]. One of the main questions in this regard is
how the optimalWBS can be identified from all possible structures. The
Project Management Institute [13] stipulated that “a quality WBS is a
WBS constructed in such a way that it satisfies all of the requirements
for its use in a project”. When applying this quality principle, the opti-
mal WBS in a complex underground project is a high-quality work
breakdown structure, wherein specific content and the type of WBS el-
ements appropriately address the full set of needs of the project. Exam-
ples of a quality WBS characteristic in a complex underground project
are as follow:

• Contains specific types of WBS components necessary for a complex
underground project.

• Provides “sufficient” detail for communicating the scope of a complex
underground project.

• Achieves a “sufficient” level of decomposition for effective complex
underground project management.

Therefore the best method for creating the WBS of complex under-
ground projects is a method that could find the optimal work break-
down structure with all necessary components, sufficient details and
sufficient level of decomposition. One might ask what the exact defini-
tion of “sufficient” is in this context. Considering the varying attributes
of a complex underground project, the real answer is that it depends.
The attributes of a complex underground project entail the use of
project-specific WBS characteristics. A specific WBS may prove highly
appropriate for one project while failing completely for another. In
fact, considering the variability and complexities of underground pro-
ject management, it is not surprising that specific standards for WBS
characteristics of complex underground projects are difficult to find.

4. Methodology

The overall process of the proposed methodology is presented in
Fig. 2 under the headings ‘State Problem’, ‘System Design’, ‘Verification’
and ‘Validation’. The ‘State Problem’, ‘System Design’ and ‘Verification’
steps are presented in the following sections, while the ‘Validation’
step and results are discussed in Section 5.
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Table 2
Structure of the proposed neural model with optimum networks parameters.

Networks parameters WBSL1 WBSL2 WBSL3 WBSL4 WBSL5 WBSL6

No. of input layer
neurons

90 195 832 905 678 664

No. of output layer
neurons

105 742 815 597 574 882

No. of hidden layer
neurons

49 73 57 52 35 62

No. of hidden layer 1 1 1 1 1 1
Training algorithm BPN BPN BPN BPN BPN BPN
Training mode BT BT BT BT BT BT
Stop criteria CV CV CV CV CV CV
Learning rate (η) 0.9 0.9 0.5 0.1 0.5 0.9
Momentum (μ) 0.5 0.1 0.5 0.9 0.9 0.5
No. of training
epochs

107 109 107 113 113 111

MSE 0.00172 0.00234 0.00095 0.00723 0.00651 0.00096

BPN: Back-propagation.
BT: Batch training.
CV: Cross validation.

Table 1
The specification of attributes to describe the projects.

Project attributes Type of quantity Bit space ID

Project related feature
Client expectations Lexical 2 A1
Contractor expectations Lexical 2 A2
Project stakeholders Lexical 9 A3
Location of the project Lexical 2 A4
Land possession Lexical 2 A5
Time Numerical 8 A6
Cost Numerical 17 A7

Characteristics of excavation
Purpose Lexical 2 A8
Shape Lexical 3 A9
Diameter Numerical 11 A10
Length Numerical 15 A11
Depth Numerical 10 A12
Construction method Lexical 5 A13

Ground condition
Surrounding rock/soil Lexical 3 A14
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4.1. State problem

The main problems of developing WBSs for complex underground
projects have been detailed in previous sections. The main purpose of
this study is to propose a specific methodology to model the relation-
ship between the attributes of projects and WBSs. This task relies on
the premise that the optimal WBS of a complex underground project
could be related to the attributes of the project. Previous studies have
shown that this relation is very complex and cannot be represented by
the classical methods of knowledge representation. However, a sub-
stantial number of case histories of previously constructed projects
and their WBSs are available. Therefore, artificial neural networks
(ANNs) were used to extract the unknown, complex and implicit
knowledge of underground projects experts in WBS planning. A brief
introduction of this method is provided below.

Artificial neural networks (ANNs) employ amassive interconnection
of simple processing elements that are capable of performing a signifi-
cant number of parallel computations for data processing and knowl-
edge representation [14,15]. ANNs imitate some of the brain's creative
processes, albeit in a simplistic way, that cannot be imitated by existing
conventional problem-solving methods [16]. The attractiveness of
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neural networks comes from their ability to learn and generalize [14].
The artificial intelligence of neural networks is provided by combination
of several simple computations at neurons level [17,18]. Each neuron
receives inputs, and associated with every input is a weight that corre-
sponds loosely to electrochemical impulses and synaptic connections
in the brain [19]. The synaptic weights are determined as the ANN
learns. The method used in this study, supervised learning, uses an
actual output for each input pattern guiding the learning process. One
of the most widely used supervised algorithms is the feed-forward
back-propagation network (BPN) [20]. A BPN consists of an input
layer, an output layer and one or more hidden layers. In this type of
network, the data are fed forward into the network without feedback.
The development of ANNs in this study constitutes a cycle of three
phases that will be presented in the following sections.

4.2. System design

Themain objective of system design is to determine the structure of
ANN and learning rules. This phase also involves data collection and
partitioning the data into three distinct subsets for use during the
training, testing and validation processes. Theperformance of the neural
networks strongly depends on the quality of the training data; thus the
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sufficient amount of data from previous successful complex under-
ground projectswith a qualityWBS should be collected to train the neu-
ral networks. A dataset of 20 tunnel projects (including 3433 activities)
was accumulated. The selected projects are the most successful under-
ground projects constructed in Iran according to tunneling experts,
and the project WBSs are high quality. The maximum number of levels
in theWBSs of the selected projects is 6. Also the selectedWBSs (devel-
oped by project contractor) contain 3433 activities in total. The data
from 18 projects were used in the verification process, while data
from 2 projects were used in the validation process.

The generalization of theANNmodels to unseen datawill be affected
by the size of database. Training data should be sufficiently large to
cover the possible variation in the problem domain. Database size can
be expanded by obtaining new data. In this study data enrichment
was not possible; hence, the leave-one-out method [21] was used for
Table 3
The project attributes for validation datasets.

Attribute ID Project 1

Attribute value Input neuron valu

A1 High 00
A2 High 00
A3 Members of the parliament 100000010

Environmental organizations

A4 Neutral 10
A5 Difficult 0
A6 42 01010100
A7 18820 001000011001001
A8 Diversion tunnel 11
A9 Horseshoe 010
A10 830 01111100110
A11 870 011001101100000
A12 200 000100110
A13 Drilling & Blasting 0000
A14 Rock-Moderate 100
developing the neural networks. In this method, a network is trained
on M-1 (i.e. 18-1) example, and is tested on the one hold-out example.
The process is repeated M times. The solution of M network is then
averaged to obtain a solution with higher generalizability.

The projects data contain values for project attributes and theirwork
breakdown structures. Project attributes are a limited set of variables
that should represent the general nature of a complex underground
project. To this end, three major sets of project attributes were defined.
The first is the project-related features, which include the total amount
of time, total budget and location of the project. The second set is the
characteristics of the underground excavation, such as the size and
construction method. The third set is ground conditions.

The attributes of project set can be defined by A = {Ai}, (0 b i b 14).
The members of A are arranged in a column vector. Then, the values of
the project attributes are assigned to the related rows of the resulting
vector. Therefore, there are 20 column vectors that will be considered
as the inputs for the training, testing and validation patterns. Project
attributes are assigned by a combination of lexical and numerical values.
As the inputs and outputs of a neural network should be numerical,
binary code is assigned to each assignable lexical value. Furthermore,
the equivalent binary forms of the project attributes are used for distinct
quantities. Table 1 shows the specifications of the complex under-
ground project attributes.

AWBS consists of elements fromdifferent levels. Regarding the large
number ofWBS elements in complex underground projects, the collect-
ed WBSs were decomposed into vectors according to the component
level to show WBS in the outputs. The vector of the WBS level can be
represented by Ll = {w1, w2, …, wnl}, where Ll is the level vector of the
WBS at level l, l is the level ID, wi is the component and nl is the maxi-
mum number of components at level l. Therefore, 20 level vectors
with the same size for each level of the WBS are created. These
vectors will be considered as the outputs of the training, testing and
validating examples.

This study employs feed-forward neural networks with back-
propagation learning algorithms, also known as a back-propagation
network (BPN). The proposed model is a hierarchical neural network
consisting of six different BPNs,which are used to establish the relation-
ships between project attributes and their work breakdown structure.
Six BPNs are used due to the hierarchical structure of WBSs. Each BPN
has a different configuration, which is used to infer the complex under-
ground project WBS and activities from the project attributes. Fig. 3
shows the structure of the proposed neural model. As shown in Fig. 3,
the inputs of WBSL1 only consist of project attributes. This BPN should
establish which components should be implemented in the first level
of the WBS with respect to the project attributes. Therefore, the output
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of WBSL1 is a row vector whose columns are linked to the individual
elements of the first level of the project's WBS. If any columns take a
value of 1, the related element can be employed in the first level of
the project'sWBS. Next, the L1-vector and the vector of the complex un-
derground project attributes are considered as the inputs of WBSL2.
This network establishes which components should be implemented
in the second level with respect to the project attributes and the
upper level of the WBS. Therefore, the output of WBSL2 is represented
in the second level of the project WBS. Similarly, WBSL3 establishes
the third level, WBSL4 establishes the fourth level and so on. As
shown in Fig. 3, a six-level complex underground project WBS can be
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4.3. Verification

Verification involves training of the proposed neural model using
the training and test subsets and simultaneously assessing the network
performance by analyzing the mean squared error. The leave-one-out
method [21], which is an extreme form of multifold cross-validation,
was used to minimize the impact of data dependency on the result.
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Accordingly, the data from 17 projects (i.e., 18-1) were used to train a
model to establish the model parameters, while the hold-out example
was used to test the generalization capability of themodel. This process
was repeated 18 times, with a different example being left out for
verification during each run. The squared errors were then averaged
over the 18 rounds of training.
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BPN training requires the selection of proper values for network
parameters. In this study, the optimal values of the network parameters
were determined through three stages. In the first stage of simulation,
16 different combinations of learning rate (η) and momentum (μ)
within [0, 1] are investigated. Each combination is trained with the
same set of initial weights. At the end of stage 1, the model with the
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minimum error is selected for use in the following stages. In the second
stage of simulation, 10 independent models with different initial ran-
dom weights are trained with the optimal learning parameters found
in the previous stage. Finally, the optimal size of the hidden layer is
determined by a search of the possible structures. This search begins
with a certain number of nodes, which are the minimum value of a
calculated hidden node number based on several rules of thumb that
are available in the literature [22–24]; in this manner, the model is
trained and analyzed. Each time, the number of hidden nodes is in-
creased by one. Again, cross-validationwas used to determine the prop-
er size of the hidden layers. Table 2 illustrates the structure of the
proposed neural model with the optimum network parameter values.

5. Validation and results

In verification, the proposed model was tested against the test data
during the training process. Furthermore, for the purpose of enhanced
rationale, the proposed model was validated for its generalization
capability. In this phase, the capability of the proposedmodel to respond
accurately to projects that have not been used in network development
is confirmed. Two tunnel projects were considered in the validation
subset. Their attributes and WBSs demonstrated that both projects
were substantially different from those used in the training and testing
subsets.

Fig. 4 shows the calculatedWBS for project 1 (Golabar diversion tun-
nel, with attributes per Table 3). The attributes of project 1were entered
into the model. The L1 vector from WBSL1 was calculated with respect
to the project attributes. First level of theWBS in Fig. 4 represents the L1
vector. The attributes of the project and the L1 vectorwere then entered
to theWBSL2, and the L2 vector was calculated. Second level of theWBS
in Fig. 4 represents the L2 vector. Subsequently, the outputs of WBSL3,
the L3 vector, were calculated, and a similar process was conducted
for L4, L5 and L6. In this case, the outputs for L3 to L6 vectors were
zero. Thus, the calculated WBS has only two levels.

The same procedure was used to calculate the WBS of the project 2
(Karaj Metro Tunnel). The attributes of the project (Table 3) were
entered into the model. The L1 vector from WBSL1 was calculated
with respect to the project attributes. The attributes of the project and
the L1 vector were then entered to the WBSL2, and the L2 vector was
calculated. Subsequently, the outputs of WBSL3, the L3 vector, were
calculated, and a similar process was conducted for L4, L5 and L6.
Figs. 5 and 6 show the calculated WBS for project 2. Developed WBS is
illustrated in two individual Figures (Figs. 5 and 6) due to the large
Cons
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Fig. 7. Second level of the calculated W
number of the WBS elements. Fig. 5 depicts levels 1 to 4 of the WBS,
and levels 5 to 6 are presented in Fig. 6. Furthermore, in order to make
a better representation of the whole WBS, several elements of the
level 3 and 4 also are illustrated in Fig. 6.

Three types of element outlines can be recognized in Figs. 4 to 6.
Each line dash type represents the validity of WBS element which will
be discussed further in the following.

The outputs were validated by comparing the calculated vectors and
equivalent level vectors of the actual WBS of the project. The vectors of
the WBSs were compared by the values of their elements. For this pur-
pose, three validity indiceswere defined. Each element of the calculated
vectors (wi) was assigned to one of the following validity indices:

(1) Valid: the related component is a part of the actual WBS of the
project.

(2) Possible: the related component is not a part of the actualWBS of
the project (or the component that should be a part of the project
WBS, while it is not been produced by themodel), but it could be
valid with respect to the judgment of experts.

(3) Invalid: the related component cannot be a part of the actual
WBS of the project (or the component that should be a part of
the project WBS, while it is not been produced by the model).

The second level of the calculated WBS and actual WBS of project 2
are illustrated in Fig. 7. “Ramp B” in Fig. 7.b. is a valid component, be-
cause it is a part of the real WBS of the project. “Ramp A” takes a value
of 0 in L2 vector (Fig. 7. b); hence, it is not a component of the calculated
WBS. However, the real WBS includes the “Ramp A” component in the
second level. “Ramp A” is therefore an invalid component.

“Possible” index were assigned to the project's WBS elements
according to the tunneling project management experts. “Type I&II tun-
nels” component in Fig. 7a, for example, was not calculated by the
model. However, this project specific component can be excluded
from a tunnel project WBS according to the project manager's decision.
“Valid”, “Possible”, and “Invalid” components of the calculated WBS of
projects 1 and 2 are presented in Figs. 4 to 6. In Figs. 4 to 6, rectangular
shapes with solid line represent the “Valid” elements, with dashed line
“Possible” elements, and with dot line the “Invalid” elements.

The entire model and its networks were validated by calculating the
statistics of the validity indices that were assigned to the validation pro-
cess outputs. The outputs of the networks were validated by dividing
the total number of calculated vector elements (wi) that were validated
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Table 4
Validity of proposed model and its networks.

Network ID Validation projects Total number of elements Number of elements in validity index: Percentage of elements in validity index:

Valid Possible Invalid Valid Possible Invalid

WBSL1 Project 1 8 6 1 1 75 12.5 12.5
Project 2 5 4 1 – 80 20 –

WBSL2 Project 1 10 8 – 2 80 – 20
Project 2 7 5 – 2 71.43 – 28.57

WBSL3 Project 1 0 – – – – – –
Project 2 12 9 – 3 75 – 25

WBSL4 Project 1 0 – – – – – –
Project 2 71 40 3 28 56.33 4.22 39.44

WBSL5 Project 1 0 – – – – – –
Project 2 28 4 17 7 14.29 60.71 25

WBSL6 Project 1 0 – – – – – –
Project 2 64 47 11 6 73.43 17.19 9.38

Overall model 205 123 33 49 60 16.1 23.9
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by a particular index to the total number of elements of the calculated
vector (nl) for each project. Then, the average of the three validity
percentages within all projects was calculated to obtain the overall
validity of each network. Table 4 shows the results of the average valid-
ity percentages of the model and its networks.

The validity of the model was estimated with respect to the quanti-
ties in Table 4. The valid and possible components of the calculatedWBS
percentages were found to be 60% and 16.1%, respectively. Therefore,
after entering the attributes of a tunneling project, it is expected that
76.1% of the WBS and resultant activities are certainly or possibly valid.

In addition to the relatively accurate recognition of the project WBS
elements, several important characteristics of the project WBS were
determined by the model. The correct number of WBS levels was
identified (for example, two for project 1, and six for project 2). A com-
bination of process-oriented and deliverable-oriented structure was
produced for both projects by the model. Project 1, for instance, was
decomposed to the processes in levele1, while the second level was a
deliverable-oriented decomposition. The level of details for project 1
was two, and levels were decomposed to 8–10 elements. Moreover,
the model produced 6 levels for project 2, and several levels were
composed of more than 60 elements. Furthermore, in the proposed
methodology, different management approaches can be employed to
develop the WBS of the project. For instance, the developed WBS by
the model for project 2 subdivides the tunnel bench and crown to sev-
eral parts in level 6, then decomposes the parts into the processes in
level 6 such as “Excavation” and “Shotcrete”. Alternatively, another
management approach might subdivide the processes to parts in level
6. Therefore, the proposed model was able to recognize the structure
of the projects WBSs.

6. Conclusions

A new methodology was proposed to plan the WBS of complex un-
derground projects, which assists a planer to make a more informed
choice of WBS components and structure regarding project attributes.
A hierarchical neural model with 6 BPN networks was developed;
each with a different configuration. The outputs of first 5 networks
were connected to the inputs of the others, to enable the inference of
project structure with respect to the hierarchical structure of the WBS.
The proposed methodology focused on two important requirements
of generating theWBS of a complex underground project: First, model-
ing the relationship between the attributes of a project and WBS; and
second, to minimize the complexity of the model. This was due to the
large number of components of WBS in complex underground projects
and various possible structures.

Validation of the results revealed that the proposed neural network
model presents a powerful tool for modeling the complex relationship
between the attributes of complex underground projects and their
work breakdown structures. The approach was demonstrated to be
capable of recognizing the components and structure of the WBS with
a sufficient degree of validity that are comparable to those generated
by a project planner. Neural networks learn from examples; thus, the
performance of the proposed neural model strongly depends on the
size and quality of the training data. Due the vast amount of knowledge
required for WBS planning in a complex underground project, the pro-
posed model can foster effectiveness in WBS development. In other
words, the greater the number of different underground projects that
are used to train the networks, the more extensive the data, and the
higher the quality of the data used to train the networks, the higher
the quality of the resultant overall WBS will be.

Although the neural models herein were developed for the purpose
of planning theWBS of a complex underground project during the con-
struction stage, the neural model concept can be extended, particularly
to preconstruction stages. The proposed methods for representing the
values of project attributes and theWBS can also bemodified. Examina-
tion of different neural networks structures, other than BPNs, is also a
potential topic of future research.
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