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Abstract: Development of affective Brain–Computer Interfaces (BCIs) via 
Electroencephalogram (EEG) has emerged as a cynosure of research in early 
diagnosis and effective management of depression. However, conventional 
BCIs are still lacking in terms of high computational complexity, less accuracy 
due to Fourier phase suppression and lack of substantial conclusion for 
depression diagnosis. An automated, EEG-based depression diagnostic and 
management tool is proposed to overcome these limitations. Channel event-
related potentials, cross-coherence and power spectra plots in MATLAB are 
quantified and studied as an outcome to map real-time, emotion-specific 
multichannel EEG data set into distinct emotional states. A fast and stable 
fourth-order statistics-based independent component analysis is incorporated to 
reject temporal/spatial artefacts. Increases in frontal alpha (8–13 Hz) and delta 
(0.5–4 Hz) power/coherence are during depressed and normal/relaxed states, 
respectively. Devotional music (relaxed state) is found to facilitate depression 
elimination. Results are found to be statistically significant across all subjects 
with minimal p-values. Hence, it has been inferred that the proposed model has 
the potential to aid early and accurate depression diagnostic and management 
process. 
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1 Introduction 

Psychophysiological analysis of human neural responses via EEG has a significant 
progressive role in the field of cognitive/affective computing to develop more intuitive 
and advanced Brain–Computer Interface (BCI) applications such as human emotion 
measurement and stress and depressive disorder recognition in real time. A 
psychophysiological procedure triggered by conscious and/or unconscious observation of 
an object or circumstances, which is often associated with mood, character, personality 
and disposition, and inspiration, is known as emotion (Picard et al., 2001). By expressing 
non-verbal cues such as modulation of voice, facial expressions, text and body gestures 
or orally through emotional vocabulary, emotions can be expressed (Rafael and Sidney, 
2010). However, these can be consciously faked. There are certain vital but non-invasive 
physiological modalities being adopted for human emotion appraisal such as 
Electromyogram (EMG), human heart electrical activity in terms of Electrocardiogram 
(ECG), Skin Conductive Resistance (SCR), Blood Volume Pressure (BVP), Heart Rate 
Variability (HRV), Electrodermal Activity (EDA) and human brain electrical activity 
(Hosseini, 2011). As retrieving emotional states from correlated neural responses is an 
effective way of implementing affective BCIs (Schaaff and Schultz, 2009), focus has 
been on exploring the brain activity correlations with emotions. Neural-driven BCIs 
involve the use of Electroencephalograph (EEG), Electrocorticography (ECoG), 
Magnetic Resonance Imaging (MRI) or Functional Magnetic Resonance Imaging (fMRI) 
to capture brain signals from central nervous system. However, EEG is a preferred 
clinical research as well as functional tool to monitor emotion-specific brain functionality 
because of its high temporal resolution, lower cost, non-invasiveness and significant 
suitability to patients without any exposure to high-intensity magnetic fields/radiations 
(Sakkalis, 2011; Li et al., 2009; Petrantonakis and Hadjileontiadis, 2011). EEG is 
effectively employed in the assessment of brain syndromes or disorders, coma, brain 
tumour as well as long-term hitches with thinking or memory (Kim et al., 2004; Chanel 
et al., 2006; Chanel et al., 2007) as EEG possesses the potential to map correlated neural 
activation in terms of its strength and region across distinct scalp regions (Teplan, 2002). 
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Early and accurate diagnosis of depression is crucial as neural/psychiatric/depressive 
disorders are posing a serious threat and consequently a negative impact on human 
health. Depression is a neurological syndrome characterised by certain affective, 
expressive, behavioural and cognitive reactions such as loss of interest, pessimism, 
helplessness, feeling of worthlessness, fear, frustration, self-damaging behaviour, etc. 
Repeated exposure to such depressive feelings can eventually lead towards serious 
abnormalities in humans such as weak immune system, irregular sleep patterns, 
muscular/cardiac/weight and hormonal disorders and the most dangerously suicidal 
thoughts or tendency (Andreassi, 2000; Sorgi, 2002; Luneski et al., 2010). The central 
nervous system is the very first entity in the biological path that becomes activated 
during visual/auditory stress from the external world and further acts as a mediator to 
different body organs (Sherwood, 2010). Therefore, there is a need to develop efficient 
biomarkers for depression diagnosis from human neural responses via EEG. 

Extensive research in the field of affective brain mapping has been published on 
characterising EEG variations during distinct emotion elicitations using Power Spectral 
Density (PSD) (Kawasaki et al., 2009; Chanel et al., 2011; Gandhi et al., 2011; Wang  
et al., 2011; Jatupaiboon et al., 2013), Common Spatial Patterns (CSP) (Li and Lu, 2009; 
Fattahi et al., 2013), Fast Fourier Transform (FFT) analysis (Yoon and Chung, 2013), 
entropy analysis (Hosseini, 2011; Khalilzadeh et al., 2010; Srinivasan et al., 2007), 
Higher Order Crossing (HOC) analysis (Petrantonakis and Hadjileontiadis, 2010a; 
Petrantonakis and Hadjileontiadis, 2010b), third-order spectral analysis (Hosseini et al., 
2010; Hosseini, 2012) and statistical analysis (Takahashi and Tsukaguchi, 2004; Yuen et al., 
2013) techniques. Current research findings reveal that PSD is an established technique 
for EEG signal analysis in the frequency domain (Dressler et al., 2004). A group of 
researchers’ classified emotions elicited by pictures and music stimuli into happy and 
unhappy states by extracting power spectral features from a single pair of temporal 
channel EEG (Jatupaiboon et al., 2013). Further, a set of algorithms was implemented 
using Discrete Wavelet Transform (DWT) to extract correlated EEG sub-band power for 
emotion classification (Murugappan et al., 2009a; Murugappan et al., 2010; Ubeyli, 
2009). The excitement level variations of depressed subjects were captured by analysing 
their respective conventional Event-Related Potentials (ERP) in the time domain (Dai 
and Feng, 2012). This was followed by implementation of multi-domain ERP analysis 
related to states of depression. It was revealed to possess more emotion discriminating 
ability from human neural responses using negative facial expressions as compared to 
only temporal or spectral domain ERP analysis (Cong et al., 2012; Zhao et al., 2013). It 
had also been reported that EEG Spectral Asymmetry (SA), channel ERPs and EEG 
cortical activity can be used for characterisation of EEG in depression (Fingelkurts et al., 
2006; Hinrikus et al., 2010; Olbrich and Arns, 2013). 

A comprehensive amount of affective brain mapping techniques has been developed 
by extracting and correlating individual set of features. Still prior works exhibit few 
limitations including less accuracy due to Fourier phase suppression, high computational 
cost and complexity, inconsistent findings and lack of substantial conclusion in the case 
of depressive disorder detection and management. Also less attention has been paid 
towards fusion of different sets of features of EEG to retrieve correlated emotional states, 
particularly depressive disorders from human neural responses. In all, there is a need to 
further explore and develop an efficient multi-domain feature extraction technique 
involving robust signal processing and significant statistical analysis to provide a 
concrete conclusion about recognition of major depressive disorders from human neural 
responses via EEG. 
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An attempt has been made in this research to develop an accurate and robust 
computer-aided depression diagnostic and management tool by analysing multichannel 
EEG data using fusion of time domain (ERP), frequency domain [PSD, Amplitude 
Spectral Density (ASD)] and EEG coherence features. The discriminating ability and 
significance of the extracted depression-related feature set has been tested by applying 
the F-test in one-way Analysis of Variance (ANOVA). High statistical significance 
indicates the ability of frontal alpha and delta peak power coherence to be developed as a 
diagnostic tool for depressive disorder via EEG. An algorithm is further proposed in 
MATLAB to translate an identified ‘depressed state’ output into operative control signals 
for automated depression management application using devotional music. 

The rest of the paper is organised as follows. Section 2 contains the block diagram of 
the analysis carried out and describes the experiment design, EEG acquisition, stimuli 
used, feature extraction, statistical analysis of features and depression diagnostic model 
design. Section 3 provides the results obtained from the experiments carried out, 
followed by their discussion in Section 4 and conclusion of the work in Section 5. 

2 Materials and methods 

Block diagram of the proposed computer-aided and portable set-up for depression 
recognition using EEG-based affective brain mapping in real time is shown in Figure 1. It 
broadly consists of multichannel EEG signal acquisition module to acquire emotion-
related brain activities, followed by a signal processing module to analyse acquired 
emotion-specific EEG data set for extraction of the most discriminating feature set to 
further develop an algorithm for depression management application. A very preliminary 
work discussing the detailed design considerations for development of the proposed real-
time and portable set-up for emotion recognition using EEG-based affective brain 
mapping has been reported earlier (Mahajan et al., 2014). 

2.1 Participants and stimuli 

Six healthy, right-handed subjects (male/female: 3/3, age: 40±10 years) with no 
consumption of any medicine or drug prior to the test and without any reported 
neurological disorder who gave written consent prior to conducting the experiment, 
voluntarily participated in the experiment. All the participants equipped with Emotiv 
EEG headset were seated in a quiet and electromagnetic interference-free laboratory 
environment. The EEG signals from each subject were acquired by externally evoking 
them with diverse emotions of interest. Different emotional stimuli modalities used in the 
literature are audio, visual, a combination of both and self-recalling of a related incident 
(Mahajan et al., 2014). Auditory/music or audiovisual stimuli have been extensively used 
as an efficient emotion elicitor to detect emotions from resulting physiological activity 
(EEG) as both outperform the visual stimuli (Bos, 2006; Koelsch, 2011; Lin et al., 2010; 
Murugappan et al., 2009b; Scherer and Zentner, 2001; Zhou et al., 2014). Therefore, in 
this study, emotions were triggered using external music stimuli as well as self-recalling 
of a common depressive incident. 
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Figure 1 Block diagram of the proposed computer-aided and portable set-up for depression 
recognition using EEG-based affective brain mapping in real time (see online version 
for colours) 

 

2.2 Experiment design 

Emotion-related human EEG data set was constructed by following the experimental 
protocol depicted in Figure 2. The EEG signals for each subject were recorded under 
three states, namely normal (baseline), depressed (stimulated with depressed music/ 
recalling a depressed incident) and relaxed (stimulated with devotional music). Each 
recording lasted for approximately 25 s with half a minute intrastate (inter-trials) and 
1 minute interstate rest period in between. Two markers ‘start’ and ‘stop’ were set and 
sent manually at 5 and 25 s, respectively, so as to enable the extraction of distinct epochs 
from the recorded data set. The six subjects were divided into two groups, with each 
having three subjects. Initially, a baseline EEG was recorded corresponding to the normal 
state of each subject. After that, three subjects were made to listen to the selected 
depressive music, while the other three were asked to recall a common depressive 
incident related to their life to evoke depressive emotions. The corresponding human 
neural responses of each subject were recorded under depressed state category. Further, 
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the third set of EEG recordings belonged to relaxed state while subjects were stimulated 
using devotional music. The whole data set consists of more than 100 EEG records as 
each subject performed six experimental runs/trials per emotional state with an average 
duration of 25 s per record. At the end of the experiment, each participant was asked to 
rate the evoked emotion on a self-assessment criterion. 

Figure 2 Schematic illustration of the experimental protocol followed to acquire emotion-
specific EEG data set 

 

2.3 EEG signal acquisition and recording 

The real-time multichannel EEG recordings were acquired from subject’s scalp using a 
high-resolution, cost-effective, portable and high-fidelity Emotiv EEG neuro-headset 
(Emotiv, 2014). It is capable of acquiring human brain activity via EEG using its 14 scalp 
electrodes (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4, with two 
reference electrodes CMS and DRL) placed over the frontal, temporal, parietal and 
occipital regions of the cerebral cortex (Mahajan et al., 2014). The acquired EEG data 
were filtered using a 0.16 Hz first-order high pass filter to remove the floating DC offset 
and background interferences, digitised with a 14-bit ADC, and were sampled at 
sampling frequency of 128 Hz. This 14-bit output was transmitted to a receiver laptop 
through a Bluetooth dongle and saved as a .edf (European data format) file. The data 
pack suite in Emotiv EEG test bench was analysed to ensure that there were no wireless 
dropouts during EEG data transmission. 

2.4 Signal analysis and feature extraction 

The multi-domain analysis of acquired EEG data set was done in Affectiv suite of Emotiv 
control panel, standalone EEGLAB v 13.2.2b application software toolbox in MATLAB 
workspace and EDF Browser application software platforms. Initially, real-time emotion 



   

 

   

   
 

   

   

 

   

    Depression diagnosis and management 121    
 

    
 
 

   

   
 

   

   

 

   

       
 

elicited variations in EEG were analysed using Affectiv suite of Emotiv control panel. It 
returns output emotional scores in terms of intensity level and consists of two graphs 
which can be customised to display different combinations of detections such as 
engagement, boredom, frustration, excitement and meditation in real time during 
different timescales. 

Further, a multi-domain feature set constituting time domain (ERP), frequency 
domain (PSD, ASD) and channel coherence features of EEG was extracted and 
quantified to map the attained neural responses into consequent emotional states (normal, 
depressed and relaxed). Most of the shape-related information of a signal is indicated by 
its Fourier phase. Linear and second-order statistical measures fail to preserve the Fourier 
phase relationships and ignore certain random but important variations in non-linear, 
non-stationary and non-Gaussian EEG signals. On the other side, higher order statistics 
of order greater than two being a complex valued function possesses a property to 
preserve both magnitude and phase information of EEG signals (Chua et al., 2010). 
Therefore, by pre-processing EEG signals using fourth-order statistics-based Independent 
Component Analysis (ICA) techniques, a robust feature extraction methodology is 
presented here. 

2.4.1 EEG pre-processing and data reduction 

The emotion-specific recorded EEG data sets were imported to the EEGLAB to locate all 
14 channels on the subject’s scalp. Each record was band pass filtered using a 1691-point 
zero phase Finite Impulse Response (FIR) filter with transition bandwidth of 0.25 Hz and 
pass band edge as 0.25–50 Hz. The applied FIR Band Pass Filter (BPF) characteristics 
are plotted in Figure 3. This bandwidth allows characterisation of sub-band frequency 
variations to extract the different EEG band powers (delta, δ: 0.5–4 Hz; theta, θ: 4–8 Hz; 
alpha, α: 8–13 Hz and beta, β: 13–30 Hz). The phase delays introduced by the FIR BPF 
filter were nullified by applying filtering in reverse using MATLAB function filtfilt(). A 
fast and stable non-linear ICA decomposition algorithm ‘JADE’ (Delorme and Makeig, 
2004) was implemented in the present study to automatically reject eye blink and 
movement-related temporal/spatial artefacts and spurious epochs from imported neural 
signals. It utilises fourth-order statistics which is a measure of kurtosis (peakedness) of a 
signal and is thus more efficient in characterising unusual peaked distributions in attained 
EEG. The kurtosis is defined as (Delorme et al., 2007) 

  

2
2

1

4 3

and
n

n

K m m

m E x m

 

 

 (1) 

where mn represents fourth-order moment about the mean and E an average function. The 
strong positive and negative kurtosis values represent highly peaked artefacts, while near 
zero values are indicative of high Gaussianity (Delorme et al., 2007). The input EEG data 
sets were decomposed into maximally temporally and statistically independent 
components by measuring their non-Gaussianity and Fourier phase relations that get 
suppressed in Principal Component Analysis (PCA) decomposition based on second-
order statistical measures (Joyce et al., 2004). Artefact-free clean EEG data were 
obtained by rejecting bad components possessing relatively high kurtosis values. 
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Figure 3 Finite impulse response band pass filter characteristics with pass band range  
0.25–50 Hz (see online version for colours) 
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2.4.2 Channel ERPs and spectral analysis 

The EEG potential and power distribution during distinct emotion elicitations were 
identified by extracting channel ERPs, channel spectral and channel activity plots, 
respectively. Event-related brain potentials are significant voltage variations resulting 
from brain activity triggered using external or internal stimuli. Distinct non-overlapped 
epochs of 500 ms prior to stimulus onset and 2000 ms after onset were extracted from 
each 25 s recording of EEG data set locked to emotions of interest. The extracted epochs 
were averaged in a digital domain with respect to repeated occurrences of distinct 
emotional events in a time-locked way. The high-resolution temporal patterns of neural 
responses (averaged ERP) with ERP scalp maps were computed at latencies 
corresponding to maximum ERP data variance to identify potential distribution across 
cerebral cortex. The associated ERP variations are plotted and quantified. The valence 
and arousal level (high and low) of evoked emotion were estimated from ERP image 
plots and distinct emotional labels were interpreted in context with Russell’s (2010) 2D 
model of emotion. The ERP variations in the first half period of latencies are indicative 
of a subject’s valence content while those in the later half reflect a subject’s arousal level 
in response to triggered emotion (Picton, 1988; Kim et al., 2013). 

The channel spectra and activity power spectrum of attained EEG data set with 2D 
topographic maps were plotted to locate emotion-activated scalp regions and determine 
associated EEG power distribution in four frequency sub-bands (δ, θ, α and β) during 
normal, depressed and relaxed states of mind. The sub-band with the maximum power 
concentration was identified as the dominant EEG frequency band. PSD (µV2/Hz) and 
ASD (µV/Hz) of input EEG were computed (EDF Browser) at activated scalp regions to 
further quantify the emotion-induced spectral variations using FFT periodogram method. 
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A tapered Hanning windowing function with no phase shift was applied to attained EEG 
records before implementing FFT. This was done to eliminate the possibility of wrapping 
effects that are generally introduced as noise across the power spectrum. PSD is a  
measure of respective power strength at each frequency and is expressed as energy per 
frequency (Sanei and Chambers, 2007). Peak spectral power values (µV2/Hz) were 
computed in the delta (PPδ), theta (PPθ), alpha (PPα) and beta (PPβ) sub-bands. The Peak 
Frequency (PF) possessing the highest power in all sub-bands was identified to determine 
the dominant EEG frequency sub-band (δ, θ, α, β) during distinct emotional states. 

2.4.3 EEG cross-coherence 

EEG cross-coherence was estimated to measure the degree of synchronisation between 
neighbouring neuronal activities by plotting their FFT spectrograms. EEG channel cross-
coherence is defined as the correlation between two signals at different scalp electrodes 
at different frequencies. It is a function of individual power spectral densities of two 
selected channels and cross-PSD of both channels (Mathewson et al., 2012). The 
coherence between two EEG channels is given as 

   
    

2

ab

ab
aa bb

P f
C

P f P f
  (2) 

where Paa and Pbb are the PSD of channels ‘a’ and ‘b’, respectively, at frequency f, while 
Pab represents cross-PSD of channels ‘a’ and ‘b’ at frequency f. Lower coherence values 
reflect independent neural activity at each scalp location (little synchronisation), whereas 
higher values suggest more temporal coordination between the neuronal activity at two 
locations (Mathewson et al., 2012). Channel cross-coherence was retrieved between 
neural responses at spatially distinct pairs of electrodes placed over emotion-activated 
scalp regions to determine the EEG frequency sub-band possessing the maximum 
temporal, functional and phase connectivity during distinct emotional states. 

2.4.4 Statistical data analyses 

The discriminating ability and significance of extracted depression-related spectral 
feature set was tested using the F-distribution test in ANOVA. Group differences in peak 
EEG spectral power were examined during normal, depressive and relaxed states of mind 
in their respective identified dominant frequency sub-bands. Three groups 
(corresponding to three emotional states), each containing six entries (from six subjects) 
of respective peak spectral powers, were made and put to rigorous statistical analysis 
using the F-distribution test to analyse the statistical significance of the EEG inference 
data by estimating their p-value. 

2.5 Algorithm development for depressive disorder diagnosis and management 

As an outcome of the present study, an algorithm is designed in MATLAB to identify a 
‘depressed state’ output by characterising EEG spectral power variations related to 
distinct emotion elicitations. The identified state may be used as an operative control 
output for automated depression management application. The recorded multichannel 
EEG data set is imported to MATLAB workspace using MATLAB function 
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edfread(filename). It returns all waveforms/data associated with imported file. The 
Emotiv electrode data from emotion-activated scalp regions are selected, baseline  
corrected and compressed using frequency transformation-based FFT technique. The 
compression is done to remove redundancy (to save signal storage space and 
transmission bandwidth), if any, while retaining the important diagnostic information in 
the reconstructed signal. The sub-band frequencies are set for δ (0.5–4 Hz), θ (4–8 Hz), α 
(8–13 Hz) and β (13–30 Hz) bands. The FIR BPF is configured at 128 Hz sampling 
frequency with slope roll-off rate at 6 dB per octave to compute PSD using FFT. The 
peak EEG sub-band power values are extracted and dominant EEG frequency sub-band 
is identified. The performance of applied compression technique is evaluated using 
compression ratio and Percent Root-Mean-Square Difference (PRD) (Velasco et al., 
2007). The Compression Ratio (CR) is defined as the ratio of the number of bits 
representing input EEG to the number of bits representing compressed EEG. The 
distortion between the original and the corresponding reconstructed EEG signals is 
evaluated in terms of PRD error index and is calculated as 

    
 
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where x[n] and x [n] represent the original and the reconstructed signals, respectively, 
and N the number of samples. The higher the value of CR, the higher the degree of 
compression, and low PRD indicates efficient reconstruction of the EEG signal. 

3 Results 

This section presents the results of the experimentation. The proposed approach for 
depressive disorder diagnosis and management was developed and implemented in 
MATLAB 7.12 (R2013a), on an Intel core i5 processor with 3.20 GHz speed, 4 GB 
RAM and Microsoft Wnidow7 Professional operating system. In this experiment, 
emotions of six human subjects were elicited using external music and the resulting 
neural responses via EEG were analysed. The ERP, channel spectral and channel 
coherence results of one subject are presented and discussed here, as a high incidence of 
similar results is found from other subjects as well. However, detailed comparative and 
statistical analysis of results of all the subjects is performed. 

Primary online analysis of emotion-related variations in real-time EEG was done in 
Affectiv suite of Emotiv control panel as shown in Figure 4. The top graph was 
configured to plot 300 s of data for meditation detection (while stimulating the subject 
with external devotional music) and the bottom chart was customised to display 300 s of 
data for frustration detection (while stimulating the subject with external depressed 
music/recalling a depressed incident). Initially, the intensity level of frustration was 
found to be very high when the subject was stimulated with depressive music. As soon as 
the devotional music stimulus was triggered, a rise in intensity level of meditation was 
found as the intensity level of frustration decreased considerably (top chart). The results 
obtained are twofold: first, depression may ultimately lead to frustration and, secondly, it 
provides the basis that devotional music/meditation may be used as a subsequent 
therapeutic tool for depression management. 
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Figure 4 Online analysis of frustration vs. meditation results of Subject 1 captured in affective 
suite of emotive EEG control panel. Intensity level of frustration was found to be very 
high initially during depressive music stimulation (bottom chart). A rise in intensity 
level of meditation was observed during devotional music stimulation (top chart)  
(see online version for colours) 

 

3.1 Channel ERPs and spectral analysis 

Detailed offline analysis of acquired emotion-specific multichannel EEG data set was 
performed in EEGLAB. The emotion-related clean EEG epochs were extracted by 
rejecting highly peaked artefacts using fourth-order statistics (kurtosis) based ICA 
decomposition. The average ERPs were extracted during normal (baseline), depressed 
and relaxed states, and are shown in Figures 5(a), 5(b) and 5(c), respectively. Each trace 
in the resulting ERP plot indicates the average of the respective ERPs at a single channel. 
The 2D ERP scalp map’s above traces show topographic distribution of average potential 
across the regions of cerebral cortex at maximum ERP data variance. The ERP data 
variance is found maximum at latency 945 ms during normal (Figure 5a), at 1570 ms 
during depressed (Figure 5b) and at 1695 ms during relaxed (Figure 5c) states of mind. 
The ERP scalp map in Figure 5(b) shows that frontal scalp regions possess maximum 
potential concentration (brighter red colour) during depressed state. It reflects that neural 
activity correlated to the emotion of depression can be captured prominently at the frontal 
channels, i.e. AF3 and AF4 of the Emotiv unit. Thus, EEG data epoch traces at AF3 and 
AF4 channel were extracted during normal, depressed and relaxed states. The maximum 
and minimum ERP, range, mean and standard deviation of ERP variations were 
identified and quantified in MATLAB, as depicted in Table 1. The amplitude and range 
of frontal ERPs are found to be more during depressed state in all subjects. Also, ERP 
variations were found to be highly correlated at channels AF3 and AF4 (Table 1) and 
thus may contain redundant information. This led to the selection of EEG records 
captured at AF3 channel (or AF4) for further analysis, thus minimising the total number 
of analyses. Figures 5(d)–5(f) show the EEG signal epoch trace captured at frontal 
channel AF3 during normal, depressed and relaxed states of Subject 1. 
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Figure 5 Average ERP with 2D scalp map of Subject 1 during (a) normal, (b) depressed and  
(c) relaxed states. ERP scalp map in (b) shows that frontal scalp regions (AF3 and AF4 
channels) possess maximum potential concentration (brighter red colour) during 
depression elicitation. EEG signal epoch trace of Subject 1 at frontal channel AF3 
during (d) normal, (e) depressed and (f) relaxed states showing maximum ERP 
amplitude and range during depressed state  

 

Table 1 ERP parameters at channels AF3 and AF4 during distinct emotional states of Subject 1 

Sr. 
no. ERP parameters 

Normal state Depressed state Relaxed state 

AF3 AF4 AF3 AF4 AF3 AF4 

1 Maximum ERP (µV) 23.07 24.01 32.86 33.23 28.26 28.75 

2 Minimum ERP (µV) –20.78 –20.10 –35.34 –36.17 –27.38 –26.97 

3 Mean of variations (µV) 0.3572 0.4144 –3.616 –2.981 0.8246 0.7813 

4 Standard deviation (µV) 7.435 7.618 12.08 12.91 9.386 8.734 

5 Range (µV) 43.85 44.11 68.21 69.40 55.64 55.72 
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The spectral variations in acquired multichannel EEG during normal, depressed and 
relaxed states were captured along with their 2D topographic activation maps in Figures 
6(a)–(c). Here, each different coloured trace represents the spectrum of neural activity 
captured at different channels. The 2D scalp maps above show EEG power distribution in 
four frequency sub-bands (δ, θ, α and β). The leftmost scalp map in Figure 6(a) indicates 
that frontal scalp regions (identified as the maximum emotion-activated regions) are 
found to possess maximum delta power (at 2 Hz) concentration (red colour) during 
normal state of mind. However, these show maximum alpha power concentration (at 
10 Hz, third scalp map, Figure 6b) during depressed state and delta power concentration 
(at 2 Hz, leftmost scalp map, Figure 6c) during relaxed state. 

Further evidence to these results came from AF3 channel activity plots consisting of 
ERP image plot along with activity power spectrum in Figures 6(d)–6(f). The valence 
(ERP variations in the first half of period of latencies) and arousal (ERP variations in the 
later half of period of latencies) content in attained neural activity was encoded from 
different colour-coded values obtained in a rectangular ERP image plot. Here, a red 
coloured bar represents the moment of subject’s maximum response to stimulus, whereas 
a blue bar indicates the moment of minimum response. The high valence content (more 
red coloured bars in the first half of period of latencies, –1000 to 250 ms) and gradually 
increasing arousal content (red bars in the later half period, 250–1500 ms) are found 
during normal state (Figure 6d). This, in turn, reflects a satisfactory/pleasant mind in 
accordance with Russell’s 2D model of emotion. Further, low valence content can be 
inferred from few red bars in the first half, indicating towards unpleasant/stressed mind 
of subject while being stimulated with depressed music (Figure 6e). A gradually 
increased valence content (towards the end of the first half period) and a very high 
arousal level (dense red bars in the later half period) represents a happy/pleasant mind 
with gradual disappearance of unpleasantness while being stimulated with devotional 
music (Figure 6f). The trace below the ERP image shows the ERP average of the 
epoched data set and the red dot in the scalp plot locates the position of the AF3 channel 
(Channel 3 of Emotiv unit) selected to observe emotion-elicited neural activity response. 
The activity power spectrum below shows spectral variations in terms of log transformed 
(µV2/Hz) power. A peak log transformed delta band power of approximately 18 µV2/Hz 
(highlighted with green box in Figure 6d) is found during normal, peak alpha band power 
of 20 µV2/Hz (Figure 6e) during depressed state of mind and peak delta band power of 
19 µV2/Hz (Figure 6f) is found during relaxed state of mind. It can also be noted that 
normal (baseline) and relaxed states (elicited using devotional music) show high 
correlation as delta band power is found to be high in both states at frontal scalp regions, 
strengthening our primary hypothesis that devotional music can be developed as a 
subsequent therapeutic tool for depressive disorder management. 

3.2 EEG cross-coherence 

The FFT-based spectrograms in Figures 7(a)–7(c) show cross-coherence between neural 
activations captured at frontal channels (AF3 and AF4) during three emotional states. 
The upper panel depicts the event-related functional and phase synchronisation, whereas 
the lower panel indicates phase difference between them. Clusters of high delta  
(0.5–4 Hz) coherence (highlighted area with red circle in Figures 7a and 7c) are observed 
in resulting spectrograms (red spots) during normal and relaxed emotional states. 
However, greater alpha (8–13 Hz) coherence is found during depressed state (Figure 7b). 
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Instances of high coherence (red spots in upper spectrogram) are found to possess 
minimum phase difference (characterised with green colour in lower spectrogram) 
between frontal scalp neural activities. A substantial synchronisation between neuronal 
activities at the frontal brain regions (delta coherence during normal and relaxed; alpha 
coherence during depressed state) are found during emotion analysis. 

Figure 6 Channel spectra and corresponding scalp maps of epoched data set of Subject 1 during 
(a) normal, (b) depressed and (c) relaxed states showing EEG power distribution in four 
frequency sub-bands (δ, θ, α, β). Channel activity results containing ERP-image plot 
and activity power spectrum captured at left frontal channel AF3 of Subject 1 during 
(d) normal, (e) depressed and (f) relaxed states reflecting maximum alpha power  
(8–13 Hz) concentration during depressed state and delta power (0.5–4 Hz) 
concentration during normal and relaxed states (highlighted with green box)  
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Figure 7 Channel cross-coherence between neural activity captured at frontal channels AF3 and 
AF4 during (a) normal state, (b) depressed state and (c) relaxed state of Subject 1, 
indicating clusters of high alpha coherence (8–13 Hz) during depressed state and high 
delta coherence (0.5–4 Hz) during normal and relaxed states (highlighted with red 
circle in upper left panel)  

 

 



   

 

   

   
 

   

   

 

   

   130 R. Mahajan and D. Bansal    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.3 Quantified EEG sub-band power 

Peak delta power (PPδ), peak theta power (PPθ), peak alpha power (PPα) and peak  
beta power (PPβ) were determined at the frontal AF3 electrode by computing PSD 
(Figures 8a–8c) and ASD (Figures 8d–8f) during three emotional states. The detailed 
comparative analysis of peak power scores of all subjects is performed in Figures 9(a) 
(peak delta power), 9(b) (peak theta power), 9(c) (peak alpha power) and 9(d) (peak beta 
power). The peak power frequencies (PF) and respective peak power value results 
captured from all subjects are tabulated in Table 2. No significant increasing/decreasing 
diagnostic trend/consistent pattern is observed in theta and gamma band powers (Figures 
9b and 9d) during the selected three emotional states, while alpha and delta band powers 
show large variations (Figures 9a and 9c). The normal and relaxed states of mind are 
found to be correlated with elevated delta power values (Figure 9a), whereas peak alpha 
power values are found to be more during depressed state (Figure 9c). Depressive state 
was triggered in the first three subjects by asking them to recall a common depressive 
incident of their life, whereas depressive music was used to stimulate the other three. 
Though results of the first three subjects show high elevation of alpha band power as 
compared to the other three, a similar increasing trend in alpha band power can be 
observed as a whole (Figure 9c) in all six participants during depressed state of mind 
while delta band power is simultaneously decreasing (Figure 9a). 

3.4 Statistical data analyses 

One-way ANOVA was performed on maximum delta and alpha band power  
values individually captured from six subjects during six trials per emotional state. The 
F-distribution score-based statistical method was adapted to evaluate significant 
differences between emotion-related neural activation, which is defined as the between-
group variance divided by the within-group variance. The larger the F-distribution  
score, the greater the discrimination power (Lin et al., 2010). At first, three groups 
containing six entries of peak delta power values corresponding to each subject’s six 
trials during normal, depressed and relaxed states were defined. This was followed by 
defining similar three groups containing peak alpha power values. Group differences in 
peak delta and alpha power values were determined during normal, depressed and 
relaxed states of mind. Table 3 provides a list of significant statistical parameters 
obtained using one-way ANOVA for specified EEG features to examine the variations 
among three emotional states. Significant differences were observed in EEG delta 
spectral power (F(3,18) = 11.3820, p = 0.00098310 (<0.001)) and alpha spectral power 
(F(3,18) = 7.0143, p = 0.00707 (<0.001)) among three emotional conditions, thus 
indicating statistically significant discriminating ability of delta and alpha spectral power 
in depression detection. 
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Figure 8 Power spectrum of EEG signal acquired at left frontal channel AF3 of Subject 1 during 
(a) normal state, (b) depressed state and (c) relaxed state; and respective amplitude 
spectrum during (d) normal state, (e) depressed state and (f) relaxed state. It shows 
dominant alpha wave component during depressed and dominant delta wave 
component during normal and relaxed state with their respective peak sub-band power 
and amplitude magnitudes 
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Figure 9 Bar charts showing the comparison of (a) peak delta power, (b) peak theta power,  
(c) peak alpha power and (d) peak gamma power; captured at the left frontal channel 
AF3 of six subjects during their normal, depressed and relaxed states of mind  
(see online version for colours) 

 

Table 2 Peak power and respective Peak Frequencies (PF) captured at frontal channel AF3 

Subjects 
Normal state Depressed state Relaxed state 

Peak power 
(μV2/Hz) 

PF 
(Hz) 

Peak power 
(μV2/Hz) PF (Hz) 

Peak power 
(μV2/Hz) PF (Hz) 

Sub 1 116.624 1.024 314.128 10.496 112.483 1.536 
Sub 2 212.105 1.280 393.361 10.752 163.246 1.280 
Sub 3 121.413 1.072 260.354 9.472 105.231 1.048 
Sub 4 107.536 1.640 49.00 9.0880 109.308 1.640 
Sub 5 88.311 1.792 64.243 10.752 73.172 1.024 
Sub 6 95.815 1.048 60.117 10.325 70.519 1.920 

Dominant EEG 
band (δ, θ, α, β) 

δ (0.5–4 Hz) α (8–13 Hz) δ (0.5–4 Hz) 

Table 3 One-way ANOVA (F-distribution test) parameters 

Sr. no. Statistical parameters 
EEG features 

Delta spectral power Alpha spectral power 

1 Number of groups/states 03 03 

2 Number of entries per group 06 06 

3 Between group variance, MSbet 12190.5001 54521.5557 

4 Within group variance, MSwithin 1071.0333 7772.8889 

5 F-value 11.3820 7.0143 

6 p-value 0.00098310 (p < 0.001) 0.00707113 (p < 0.01) 

7 
Statistically significant/non-
significant Highly significant Significant 
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3.5 Algorithm development for depressive disorder diagnosis and management 

The twofold labelling of acquired EEG data into three emotional states has been done by 
analysing participants’ self-assessments and the corresponding Emotiv control panel’s 
Affectiv suite results in real time. A significant correlation is found between a subject’s 
subjective reporting of the emotional experiences during the session and Affectiv suite 
results. No significant difference appeared in results by either sex or age. This 
characterisation of emotion-related EEG using multi-domain feature and topographic 
analysis is further utilised to design an algorithm in MATLAB (Figure 10) to identify a 
‘depressed state’ output during dominating alpha band power at frontal channels. This 
may be used as an automated operative control signal to play an audio file 
‘devotional.wav’ (using MATLAB function wavread(filename)) in depression 
management application as shown in Figure 10. The acquired frontal scalp EEG activity 
is found to be highly correlated at AF3 and AF4 channels of Emotiv unit, thus  
showing redundant information. The FFT-based compression is applied to remove 
redundancy. High compression ratio while retaining low percentage of root-mean-square 
errors (CR = 21.2384, PRD = 0.1451%) are achieved, thereby preserving significant 
clinical information even after compression. This reflects that EEG sub-band power-
based affective brain mapping can be used to develop a diagnostic tool for automated 
depressive disorder diagnosis and management application. 

Figure 10 Algorithm to use EEG sub-band spectral power as a trigger for depressive disorder 
diagnosis and management application 
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4 Discussion 

The present research investigated whether normal state EEG potential distribution (ERP 
variations), power distribution (spectral power variations) and event-related coherence in 
four frequency bands (δ, θ, α and β) are distinct from those in major depressive disorders. 
Frontal elevated alpha power and alpha coherence is observed during a depressed state of 
mind, whereas the normal and relaxed states are found to be correlated with increased 
delta power and delta coherence at frontal scalp regions. Increased alpha activity at 
frontal regions may indicate brain inactivity (Mathewson et al., 2012; Niemic, 2002), 
thus in turn a less attentive/receptive and more inhibited brain during depressed state. On 
the other hand, desynchronised alpha activity is reported in the literature to be associated 
with increased neuronal excitability (Mathewson et al., 2012). Reduced frontal alpha 
power and alpha coherence may reflect enhanced brain activity, thus more attentive and 
receptive brain during normal and relaxed state. Therefore, it can be summarised from 
reported relations that characterisation of frontal alpha and delta band power as well as 
coherence may be developed as a computer-assisted diagnostic tool for depressive 
disorder via EEG, whereas devotional music can be established as a therapeutic tool to 
assist patients with major depressive disorder. In contrast to previous reports showing 
correlation of depression with anterior/posterior cortex of the brain (Fingelkurts et al., 
2006), increased frontal theta activity and increased frontal temporal beta activity 
(Marosi et al., 2001), the present study found it to be correlated with increased frontal 
alpha activity. However, these findings appear to accord well with a previous work 
showing pre-frontal region activity during depression (Cook and Leuchter, 2001). 

Further, the proposed EEG-based affective brain mapping was implemented on EEGs 
acquired for a duration of 25 s each since the reliability of EEG measures and their 
clinical relevance is reported to be high only for epochs with marginal length not more 
than 40 s (Gudmundsson et al., 2007). Emotional states of interest were evoked using 
external music stimuli as it has been proved to be an efficient emotion elicitor in the 
literature (Bos, 2006; Koelsch, 2011; Lin et al., 2010; Murugappan et al., 2009b; Scherer 
and Zentner, 2001; Zhou et al., 2014). Fourth-order statistics-based ICA was successfully 
implemented to capture and reject eye blink and movement-related artefacts from 
acquired EEG. Being a non-linear technique, it has been proved to be a more efficient 
method to characterise non-linear temporal and morphological variations in EEG by 
measuring their Fourier phase relations and deviations from Gaussianity as compared to 
PCA (Delorme and Makeig, 2004; Delorme et al., 2007; Joyce et al., 2004). The ERP 
image plots and Affective suite results indicate that depression is found to be associated 
with decreased valence content and thus unpleasant/frustrated behaviour, whereas at the 
moment of devotional music stimulus onset, a decrease in frustration can be observed 
with increasing valence content. Therefore, the use of devotional music may also provide 
the possibility of getting rid of side effects associated with certain antidepressant drugs 
and therapies. 

Development of automated diagnostic tools based on artificial intelligence techniques 
is of utmost importance to aid clinicians as non-availability of any standard laboratory 
test for the same may cause misdiagnosis. However, the current methodology in 
distinguishing depressed subjects from healthy normal subjects is proposed using more 
than 100 EEG data sets from only six subjects. The validity on extended EEG data 
obtained from large sample of subjects shall be carried out as our future work to develop 
a more robust depression diagnostic tool based on efficient machine learning techniques 
as an outcome. 
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5 Conclusion 

An attempt has been made to develop an efficient EEG-based affective brain mapping 
tool for early and accurate diagnosis of depression using external music stimuli in real 
time. Channel ERPs, cross-coherence and spectral analysis techniques are explored along 
with their detailed topographic analysis to map the attained EEG data into consequent 
emotional states. It is observed that frequency sub-bands possessing the psychiatric 
coherence in depressive disorder diagnosis are delta (0.5–4 Hz) and alpha (8–13 Hz). The 
frontal scalp regions appear to be incorporated with increased delta power and delta 
coherence during normal (baseline) and relaxed (stimulated with devotional music) states 
of mind, whereas increased alpha power and alpha coherence can be seen during 
depressed state of mind. The results reported here with minimal p-values are suggestive 
of the consistency and statistically significant discriminating ability of EEG spectral 
power (delta and alpha) in conjunction with fourth-order statistics-based ICA towards 
depressive disorder diagnosis and management. An algorithm is designed as an outcome 
of this research, to identify and translate a ‘depressed state’ output into automated 
operative control signals to trigger devotional music-based depression management 
application. The inferences drawn from the results demonstrate the potential of the 
proposed algorithm to be developed as a promising computer-aided diagnostic and 
management tool for depressive disorder. This may further prove helpful in managing a 
variety of depression-related neurological syndromes such as stress, frustration, anxiety, 
sleeping disorders, pessimism, immune system disorders, risk of death, etc., at early 
stages with proper treatment planning. Efforts are underway to validate the current 
methodology on extended data obtained from large sample of subjects while studying the 
inter-variability between subjects. 
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