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a b s t r a c t

Grid users always expect to meet some challenges to employ Grid resources, such as customized comput-
ing environment and QoS support. In this paper, we propose a new methodology for Grid computing – to
use virtual machines as computing resources and provide Virtual Distributed Environments (VDE) for
Grid users. It is declared that employing virtual environment for Grid computing can bring various advan-
tages, for instance, computing environment customization, QoS guarantee and easy management. A light
weight Grid middleware, Grid Virtualization Engine, is developed accordingly to provide functions of
building virtual environment for Grids. We also present a typical use case, on-demand build a virtual
e-Science infrastructure to justify the methodology.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Identify current issues of Grid computing

Current Grid users employ Grid resources by submitting jobs to
remote computers. Grid middleware, operating systems, and soft-
ware packages and libraries compose together the computing envi-
ronments for Grid users. It is can be concluded that user computing
environments are directly plugged into the Grid resources. Great
burdens are afforded to Grid resource providers and Grid
middleware:

� Every time a job is submitted, user authentication and authori-
zation has to be carried out. To reach single sign-on, Grid mid-
dleware has to provide complex policies and schemes for
security control and user delegation.

� Resource management becomes a bottleneck for the Grid mid-
dleware. Huge efforts have been to put into manage various
types of resources to fulfill different kinds of application
domains.

A lot of work on security control and resource management,
which is application specific, has to be mapped to heterogeneous
Grid resources. For example, a workflow application [3] for sure re-
quires different resource management functions from a parameter
sweep application [14]. An community-centric Grid application [9]
certainly has a security control scheme distinct with a data-centric
ll rights reserved.
application [10]. These functions, although should be decided and
deployed in the user level, are implemented however inside Grid
middleware.

Grid users can expect various disadvantages with the above
methodology:

� Users expect customized computing environments with special
software and hardware configuration or the abilities to config-
ure such environments. However, multiple Grid users share
the same resources, it is therefore hard to balance different
users’ requirements. Even a Grid user monopolize the resource,
it is generally impossible to offer the user with administrative
privileges to configure the resource.

� Grid users normally require performance guarantees for execut-
ing their applications, e.g., CPU bandwidth, memory allocation.
In the traditional multi-programmed computing model, multi-
ple users share the same resource with local users of Grid site.
Grid users have to suffer from the performance fluctuation when
executing jobs on Grid resources.

We therefore identify the reasons that bring above
embarrassments:

� Grid middleware provides too many functionalities, most of
which should be moved to and implemented in the Grid user
level. We recognize that Grid middleware is only responsible
of providing basic functionalities of resource provision, informa-
tion provision and security control.

� The user computing environments are directly interposed into
the operating system of Grid resources. Therefore, a number of
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mailto:lizhe.wang@gmail.com
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


214 L. Wang et al. / Advances in Engineering Software 41 (2010) 213–219
interfaces between Grid resources and users’ environments give
into birth. As the user computing environment is attached to the
operating system of Grid resource, customization and perfor-
mance isolation demand more work.

� Users harness Grid resources with a fine granularity: ‘‘job” or
‘‘process”. Therefore, every operation on this fine granularity
would invoke a set of functions of Grid middleware. Further-
more, it is hard to provide customized environment and guaran-
tee performance with fine granularity.

1.2. Virtual machine as computing resource for Grids

In general, Grid users can benefit from the virtual machines in
the following aspects [7]:

� Performance isolation: Virtual machines can guarantee the per-
formance for users and applications. Applications executed in
virtual machines will not find the performance perturbation,
which is invoked by competition of concurrent processes on tra-
ditional multi-programmed machines.

� On-demand creation and customization: Users can create and cus-
tomize a virtual machine, which can provide desired resource
allocation for users, e.g., operating system, memory, storage, etc.

� Legacy system support: As virtual machine can be on-demand
created, virtual machine thus can support entire legacy environ-
ments, such as hardware, operating system, and software
libraries.

� Administration privileges: Users of virtual machines can gain the
‘‘root” privilege because each user of the hosting resources are
allocated with a virtual machine. This alleviates the task of sys-
tem administrator and gives the flexibility of application users.

� Resource control: One virtual machine can be allocated to one
user or one application, it is thus easy to account and control
the resource usage.

Grid computing research community recently shows interests
in virtual machines and virtual computing environments. Some re-
search work focuses on deploying computing systems or testbeds
with virtual machines, for example, virtualization in a batch sys-
tem [2], GridBuilder [4], virtual machine based Grid gateway [5],
Xen Grid Engine [6], and OpenNebula [19]. Above systems are
implemented in a cluster scale or a LAN scale, while our work of
Grid Virtualization Engine is implemented in large scale distrib-
uted Grids.

Globus virtual workspace and Nimbus [20,8] provide a set of
Globus Toolkit services for virtual machine provision and manage-
ment. The implementation is based on Globus Toolkit version 4
and it only supports Xen VMM. We build our virtual workflow sys-
tem with standard Web service technologies, such as XML, SOAP
and HTTP, and it can support both Xen and VMware virtual ma-
chine. Therefore the virtual workflow system can enjoy various
advantages of Web services framework, for example, scalability,
interoperability, legacy application support, and underlying plat-
form independence.

Amazon Elastic Compute Cloud (Amazon EC2) [15] is a Web ser-
vice that provides resizable compute capacity with virtual ma-
chines. It is designed to make web-scale computing easier for
developers. Eucalyptus [16] from UCSB is an open-source software
infrastructure for implementing ‘‘cloud computing” on clusters.
Amazon EC2 and Eucalyptus employ Web service technologies
and provide virtual machine operations in a large scale distributed
environments. However, they do not aim to work on existing Grid
infrastructures and application level systems, such as Grid work-
flow. Furthermore, There are still no report of successful large scale
scientific applications, e.g., high energy physics, deployed on these
systems. Our implementation of Grid Virtualization works on
existing Grid infrastructures and adopts current Grid computing
model.

In this paper, we present a paradigm which employs virtual ma-
chines as computing resources for Grid workflow applications. Fur-
thermore, we propose building Virtual Distributed Environments
(VDE) with multiple virtual machines, thus provide users a desired
user computing environments. The rest of this paper is organized
as follows. Section 2 proposes the philosophy of virtual environ-
ment for Grid computing. Section 3 presents a middleware which
enables virtual environments for Grid computing and Section 4 dis-
cusses our experiments for testing the GVE performance. It follows
Section 5, which discusses a sample Virtual Distributed Environ-
ment – the virtual e-Science infrastructure. Section 6 concludes
the paper.
2. Philosophy of virtual environment for Grid computing

2.1. Build multiple VDEs on shared Grid infrastructures

We firstly define the term Virtual Distributed Environment
(VDE) (see also Fig. 1) as follows:

� a VDE contains multiple virtual machines, which can be linked
by normal networking or virtual networking;

� a VDE is installed with some network protocols or middleware
for distributed system, which manage the distributed virtual
machines in the user level;

� the administrator, who creates the VDE, is responsible of manag-
ing the VDE, such as job scheduling, user authentication, and
data movement.

This section therefore proposes a new philosophy for Grid usage
based on the VDE concept:

� Virtual machines are used as computing resources for Grid
applications. Users can on-demand build and operate virtual
machines, then a Virtual Distributed Environment (VDE), which
contains multiple virtual machines.

� Users submit jobs to VMs or VDEs, which are provided by
remote Grid resources. Users can furthermore submit pre-con-
figured VMs or VDEs to remote Grid resources for execution.

� The VMs and VDEs on Grid infrastructures should be managed
by a light weight middleware, which only offers basic function-
alities such as resource supply, information provision and secu-
rity control. We implement a prototype of the lightweight
middleware: Grid Virtualization Engine (GVE).

The new methodology of Grid usage can help solve the issues
faced by Grid communities:

� Resource management now is in the coarse granularity: ‘‘virtual
machine” instead of the fine granularity: ‘‘Grid job”. Resource
management becomes easier with coarser granularity. Users
develop application specific or user community specific resource
management system inside the VDE.

� Security control is based per VDE, or Virtual Organization (VO).
The VO administrator authenticates itself and builds its VDE.
Users thus use the VDE with the security policies defined by
the VO, and they do not need to contact with GVE and Grid
resources.

� Virtual machines as computing resources can offer performance
guarantee and provide customized computing environments for
users.



Fig. 1. Provide multiple VDEs on a shared Grid infrastructure.
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2.2. How does the virtualization occur?

Common underlying ideas of resource virtualization fall into
two categories:

� Resource multiplexing: A middleware is posed between resources
and users, and it produces an illusion for each user that he
monopolizes the resource without awareness of the existence
of other users. Normally a translator is needed to map user level
logics to resource level stuffs. Examples can be found in Virtual
Private Network (VPN), Virtual Machine (VM), and hierarchical
memory management in modern operating systems. It can be
summarized as ‘‘mapping multiple users to one resource: M
users ? 1 resource”.

� Resource consolidation: Resource consolidation is generally used
for discrete resource management, to hide low level technical
details and provide an easy-used, uniformed interface to users.
Various instances can be enumerated in modern parallel/distrib-
uted computing systems, e.g. a cluster operating system. It can
be summarized as ‘‘mapping one user to multiple resources: 1
user ? M resources”.

The methodology of building multiple VDEs on a shared Grid
infrastructure paves a further step and combines the ideas of re-
source multiplexing and resource consolidation together. Access dis-
tributed Grid resources via Grid middleware can be deemed as
resource consolidation. To build multiple VDEs on shared Grid infra-
structure via Grid Virtualization can be considered as resource mul-
tiplexing. Therefore a novel usage methodology of Grid computing
is proposed: resource consolidation + resource multiplexing, in short:
‘‘M users ? M resources”.

3. Grid Virtualization Engine: a light weight Grid middleware

3.1. Overview

To build multiple VDEs on Grid infrastructures, a light weight
middleware, Grid Virtualization Engine (GVE) is designed and
implemented in the is this work. The GVE aims to provide users
with following functions:

� users can remotely create, operate and configure virtual
machines;

� users can create and customize a VDE with multiple virtual
machines on wide area networking.

In detail, the GVE offers following functions:
� VM requirement
� Create a new VM, and
� Require an existing VM.

� VM operation
� Start/shutdown/suspend a VM,
� Clone a VM,
� Run a script in a VM,
� Copy files from/to a VM, and
� VM configuration by run scripts inside VMs.

� VDE construction by on-demand creation of multiple pre-config-
ured VMs.

The GVE implements standard Web service interface that pro-
vides various functionalities.
3.2. Target system model

This section defines the Grid system model, which contains dis-
tributed sites interconnected by networking.

Each site consists following levels logically:

� The computer site provides an access service which allows
remote users to access resources of the computer center. The
access service can be offered by existing Grid middleware, a por-
tal, Web services, or any functionalities that support remote
steering. Grid Virtualization Engine is developed and integrated
in this level.

� In the middle level exist virtual machines that are backed by host
resources. These virtual machines form VDEs. Grid Virtualiza-
tion Engine operates virtual machines in this level.

� The fabric level contains various host resources or servers, which
are installed with virtual machine hypervisors. Host resources
offer multiple virtual machines. Operations of Grid Virtualiza-
tion Engine is implemented in this level with aids of VMM APIs
and SDKs.
3.3. Implementation

The GVE is a software layer on distributed host resources and it
offers on-demand provision of virtual machines, virtual networks,
and VDEs. Virtualization Service is implemented in distributed
and hierarchical favors with standard Web service. Current imple-
mentation of the Virtualization Service can work on popular
VMMs, Xen center and VMware ESX server. The GVE (see also



Fig. 3. Site Service.

216 L. Wang et al. / Advances in Engineering Software 41 (2010) 213–219
Fig. 2) contains following components: Site Service and the Virtu-
alization Agent (VA).

3.3.1. Site Service
The Site Service resides on the access point of a computer center

and supports the functions of VM or VDE provision from the host
resources inside the computer center. A Site Service controls multi-
ple underlying host resources by communicating with the Virtual-
ization Agents (see Fig. 3).

The Site Service consists two components:

� Front-end Site Service: The Front-end Site Service is responsible
of the business logic of the Site Service. It accepts requirements
from users and contacts the underlying Virtualization Agents for
virtual machine operation.

� Back-end Site Service: The Back-end Site Service needs to access
the Management Information Database for virtual machines
manipulation. The Back-end Service thus is built to help the
Front-end Site Service to access the Management Information
Database.

The Management Information (MI) Database stores the follow-
ing information:

� management policies for users to access the virtual machines
inside the computer center,

� current virtual machine allocation for users, e.g., virtual machine
ID and duration,

� virtual machine information, such as virtual machine profiles
and states,

� the underlying Virtualization Agents which have registered
themselves on the Front-end Service.
3.3.2. Virtualization agent
On each host resource exists a Virtualization Agent (VA), which

gets commands from the Site Service and operates on virtual ma-
chines (see Fig. 4).

The Virtualization Agent is a Web service which runs on host re-
sources. It receives operation commands from the Site Service and
Fig. 2. Overview of Grid Virtualization Engine.

Fig. 4. Virtualization Agent.
talks with the specific VMM, e.g., VMware ESX server, and Xen ser-
ver, which are installed on host resources. The Virtualization Agent
is VMM dependent. In other words, for each type of VMM, a corre-
spondent Virtualization Agent should be implemented. In the the-
sis, two types of Virtualization Agents are implemented for
VMware ESX server and Xen server respectively. Software Stack
(SS) database is required when Virtualization Agent demands the
VMM to create new virtual machines. The database of Software
Stack contains following information:

� virtual machine disk images used when virtual machine is cre-
ated, and
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� various of software packages to build a pre-configured virtual
machines.
3.4. Discussion

The GVE distinguishes itself from related work [1,11,12] in that:

� The GVE is designed and implemented in modularity. System
components are wrapped with standard Web service interfaces.
The modular design philosophy brings advantages such as scala-
bility, availability and interoperability to the system.

� The GVE is designed and implemented in the hierarchical flavor.
The higher level service provides general interface, which is VM
technology independent; the low level service handles VM spe-
cific implementations. The hierarchical design pattern makes
the system more scalable to incorporate new VM technologies.
4. Experiments and discussion

This section introduces our test experiment to test the Grid Vir-
tualization Engine. The first experiment is to test how much over-
head that the GVE introduces for a virtual machine operation, for
example, start a virtual machine. We measure the time form when
a user issues a command to start a virtual machine to the time
when the virtual machine instance is available for use.

We use the Condor virtual machine images from NSF funded
Grid Appliance (http://www.grid-appliance.org/). The experi-
mented virtual machine image is configured with 100 GB hard disk
and 512 MB RAM. Fig. 5 shows the time for virtual machine in-
stance startup at various scenarios: start one instance of virtual
machine both locally and with the GVE, simultaneously start 2, 4
and 8 instances of virtual machine with GVE respectively.

We can see that the GVE does not introduce much overhead in
term of virtual machine startup. In Fig. 5 when 8 tiny Linux virtual
machine instances are started simultaneously, the max overhead of
starting time is around 17%.

Another experiment measures the communication overhead
between virtual machines. The GVE does not provide virtual net-
work solutions. The virtual machine that is managed by GVE uses
native virtual network solutions provided by Xen server or
VMware ESX server. Normally a virtual machine uses a virtual net-
work interface and is assigned with an IP address. We run a MPI
ping-pong program between virtual machines to test the network
performance. To make a comparison, MPI ping-pong program is
executed on real machines. The VMM used in this experiment is
VMware ESX server 3.5. In Fig. 6, we can see that the throughputs
between virtual machines can reach around 90% of those between
real machines when message sizes are big enough.
Fig. 5. GVE instance start overhead.
5. Build a virtual e-Science infrastructure at runtime: a sample
use scenario

GridSAM [13] is a standard Job Submission and Monitoring
Web Service that provides a common interface to a variety of
DRMs (Distributed Resource Managements), which is developed
with widely accepted and standardized Web Service specifica-
tions and related technologies. ActiveBPEL engine [18] is a mod-
eling, monitoring and execution environment for scientific
workflows based on the Business Process Execution Language
(BPEL) [17]. A typical e-Science infrastructure [18] that involves
BPEL (both the BPEL script and BPEL runtime) and GridSAM
[13] is as this:

� use BPEL Designer to design a BPEL process that interacts with
GridSAM’s job submission service port and job monitoring ser-
vice port; produce the deployment archive by BPEL Designer
at the end of the modeling;

� deploy the process onto ActiveBPEL, which is hosted in OMII Ser-
ver container; from the BPEL Designer construct the request
message that triggers the BPEL process;

� once got started, ActiveBPEL submits a pre-defined job in JSDL to
GridSAM; GridSAM translates the JSDL script to whatever works
for the underneath resource manager and sends the job to the
underlying Grid computers;

� ActiveBPEL polls the job status through GridSAM’s monitoring
interface until the job is completed eventually.
5.1. System integration with grid virtualization service

Virtual machines are employed as computing resources for
workflow execution. The ActiveBPEL engine dynamically invokes
the Grid Virtualization Service to request virtual machines with
GridSAM pre-installation, then organize the application in work-
flow and submit the workflow to virtual machines via GridSAM.
The integrated workflow system includes following components:

� Workflow service: The workflow service contains a Web service
as interface, which can be invoked by workflow client. The
ActiveBPEL acts as workflow engine. It invokes Grid Virtualiza-
tion Service to request virtual machines with GridSAM installa-
tion, then executes workflow jobs on virtual machines via
GridSAM interface.

� Proxy service: A proxy service is implemented as an interface
between ActiveBPEL engine and GridSAM service.

� GridSAM service: GridSAM job submission and monitoring ser-
vices are installed in the virtual machines, via which ActiveBPEL
engine submits jobs to virtual machines (see Fig. 7).
Fig. 6. GVE network performance.

http://www.grid-appliance.org/


Fig. 7. Service composition of workflow system.
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5.2. How ActiveBPEL dynamically invokes GVE service

The ActiveBPEL engine invokes the GVE Service to get virtual
machines. In order to invoke a Web service (GVE Service), the
ActiveBPEL engine proceeds following steps:

� Define partnerLinkType: The GVE service should firstly be
declared in the BPEL workflow by defining a partnerLinkType in
the workflow Web service description file. The declaration of
partnerLinkType describes the GVE Service to be invoked, e.g.,
name, namespace, and portType.

� Define PartnerLink: PartnerLinks describe the roles that a process
or a Web service plays and the data it manipulates.

� Invoke the GVE Service operations: The ActiveBPEL engine can
therefore parse the document in other to discover all the opera-
tion provided by the GVE Service Web service with partnerLink-
Type and PartnerLink declarations. The input and output
variables called requestVirtualMachine and requestVirtualMachi-
neResponse are declared in the part hbpel : variablei of the BPEL
document. The operation of requestVirtualMachine is invoked
by using a hbpel : invokei activity; the partnerLink attribute indi-
cates which Web service is addressed. The portType attribute
specifies the portType that contains the operation invoked. The
operation attribute contains de name of the invoked operation.
5.3. GridSAM proxy service: proxy for ActiveBPEL to call GridSAM
service

The ActiveBPEL engine cannot dynamically invoke GridSAM
Web service in that:

� As virtual machines are requested dynamically, GridSAM Web
services that are installed on virtual machines only can be iden-
tified at runtime. When the ActiveBPEL engine organizes a work-
flow, the endpoints of Web services are not yet returned because
GVE Service is not yet invoked by the ActiveBPEL engine.

� The GridSAM Web service is secured using WS-Security, which
is unfortunately not supported by current release of the ActiveB-
PEL engine.
A proxy service is developed in the this work to overcome the
above challenges as follows:
� The access to GridSAM proxy Web service is not secured using
WS-security, therefore allowing non-security interaction with
the ActiveBPEL engine.

� The ActiveBPEL engine does not directly invoke the GridSAM
Web service. The ActiveBPEL engine invokes Grid Virtualization
service then gets a set of endpoints of GridSAM Web services at
runtime. It then invokes the proxy service and passes the end-
point of GridSAM Web services to be invoked as parameters.
The proxy service thereafter invokes the GridSAM Web service.
6. Conclusion

Grid community currently faces some challenges like, custom-
ized and guaranteed computing environment provision, and bur-
densome tasks of resource management. The reasons are
identified, for example, overloaded functionalities of Grid concepts
and Grid middleware, and current Grid use methodology.

This paper presents the methodology of building virtual envi-
ronments for Grid computing. Instead of direct providing Grid re-
sources for Grid jobs, computational Grids provide customized
virtual computing environments for Grid job execution. We reifier
this methodology by developing a light weight Grid middleware,
Grid Virtualization Engine, which supports virtual environments
for Grid users. A typical use case: dynamically build a virtual e-Sci-
ence infrastructure is discussed in the paper to justify the
methodology.

During the period of project development, the concept of ‘‘Infra-
structure as a Service (IaaS)” for Cloud computing is proposed. The
idea of IaaS can implemented by providing virtual machines as
computing resources, thereafter building customized computing
environments for Cloud computing. Our work can be integrated
into the Cloud computing context and on-demand provides com-
puting infrastructures for users.
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