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a b s t r a c t

This study presents a methodology to evaluate the performance of different models used in predicting
the fracture toughness of polymeric particles nanocomposites. Three analytical models are considered:
the model of Huang and Kinloch, the model of Williams, and the model of Quaresimin et al. The purpose
behind this study is not to recommend which of the three models to be adopted, but to evaluate their
performance with respect to experimental data. The Bayesian method is exploited for this purpose based
on different reference measurements gained from the literature. The models' performance is compared
and evaluated comprehensively accounting for the parameter and model uncertainties. Based on the
approximated optimal parameter sets, the coefficients of variation of the model predictions to the
measurements are compared for the three models. Finally, the model selection probability is obtained
with respect to the different reference data.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Polymeric nanocomposites (PNCs) are commonly formed by an
epoxy matrix reinforced with a nanosized filler. Due to its inherent
characteristic of high crosslink density, an epoxy polymer is known
to be a relatively brittle material [1]. Nanofillers have shown great
improvements in the physical and mechanical properties of epoxy-
reinforced PNCs. Specifically, they have increased the fracture
toughness compared to pristine epoxy. PNCs have numerous ap-
plications in nanotechnology such as: nano-biotechnology, nano-
systems, nanoelectronics, and nano-structured materials. Gener-
ally, there are three categories of fillers: nanoparticles, nanoplatelet
(layered), and nanofibrous materials. For this scale, the surface area
- to - volume ratio is significantly large. Therefore, the composite
properties are highly modified due to the extreme interfacial area
between the nanofiller and the matrix [2]. Several experiments
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have been carried out in order to study the fracture behavior of
polymer/particle nanocomposites ([3e12] among others). On the
other hand, researchers developed numerical and analytical
methods to get a better understanding of nanocomposite material
behavior. A close form formula of energy dissipation due to the
interfacial debonding between the particles and matrix was given
by Chen et al. [13] considering the effect of particle sizes. Although,
the increased fracture energy of rubber-toughened epoxy polymers
was calculated by Huang and Kinloch [14], the model has been
modified for PNCs by Refs. [7,8,10]. The improvement in the fracture
toughness was attributed to two major mechanisms: localized
plastic shear banding and debonding of silica nanoparticles. Further
experimental studies also have implied this supposition [15e17].
According to the assumption of Williams [18], the energy dissipa-
tion is induced by the growth of plastic voids around debonded
particles. The author concluded a large toughness increase for
nanosize particles. Later, his work has been extended to cylindrical
rods and fibres [19,20]. Quaresimin et al. [21] proposed a multiscale
approach to predict the overall increase in the fracture toughness
taking into account three different damage mechanisms: particle
debonding, plastic yielding of nanovoids, and shear banding of the
polymer. Based on experimental data gathered from the literature,
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a stochastic approach has been presented to predict the fracture
energy of PNCs by Ref. [22].

In general, all models inherently underlie an amount of un-
certainties which can be related to the model itself and/or its input
parameters. The former might be caused by the simplifications of
the physical behavior, while the latter can be related to the number
and the stochastic variance of the input parameters. Better pre-
dictions and the subsequent decrease in the model uncertainty are
expected by introducing more factors in the model (increasing the
model complexity). However, the parameters uncertainties become
more dominant in this case. In light of this, the model with mini-
mum total uncertainty is the most appropriate model, see Fig. 1
[23].

In recent years, Bayesian method has been introduced as an
effective tool for evaluating models considering the model and
parameters uncertainties based onmeasurements as reference data
[24e27].

This paper is the first attempt to consider the model and pa-
rameters uncertainties in the assessment of themodels used for the
prediction of the fracture energy of PNCs. It aims at presenting a
methodology to evaluate three different analytical models by using
the Bayesian method. In particular, Huang and Kinloch model [14],
Williams model [18], and the model according Quaresimin et al.
[21] are examined. The purpose of the study is not to give a general
recommendation which of the three model to use, but to evaluate
their performance with respect to experimentally tested data se-
ries. The assessment is carried out based on different reference data
(experimental measurements) gathered from the literature [3e12].
Nevertheless, the samemethodology can be applied to evaluate the
three models based on other measurements. The prior probabilities
are first estimated considering the uncertainties in the parameters.
Thenwe find the optimum parameter set which results in best fit of
models prognoses and in consequence the coefficient of variation of
the models predictions to the measurements are estimated. Even-
tually, the model selection probability is calculated.

The remainder of this paper is organized as follows. In Section 2,
the considered models are briefly described. Section 3 presents the
method for evaluating the models. Finally, the conclusion of this
research is presented in Section 4.

2. Models for predicting the fracture properties of PNCs

Three existing models were chosen to be evaluated; the model
of Huang and Kinloch [14], the model of Williams [18], and the
model of Quaresimin et al. [21]. Hereafter, they are abbreviated by
M1, M2, and M3, respectively. These models have been selected due
Fig. 1. Variation in model, parameter, and total uncertainties with respect to the
number of parameters according to [23].
to their popularity and their applicability to different experimental
studies. Moreover, they produce explicit predictions of the
enhanced fracture energy of PNCs. Regarding the different theory
and mechanism assumed, each of them has its own input param-
eters in addition to the joint parameters. Table 1 includes the def-
initions of the parameters and their stochastic variation. The
uniform distribution was assumed for the parameters uncertainty.
The upper and the lower limits of distributions were mostly pro-
posed according to our previous studies [22,28].

 

2.1. Huang and Kinloch

The model according to Huang and Kinloch [14] was first
developed for the toughening mechanisms of rubber-modified
epoxy polymers and more recently it has been modified for PNCs
[7,8,10]. The localized plastic shear banding and debonding of
nanoparticles which enable plastic void growth of the epoxymatrix
are the two terms that taking part in the overall enhancement in
the fracture toughness of PNCs, while rubber-bridging mechanism
was disregarded. These two mechanisms are demonstrated in
Fig. 2.

The improved fracture energy of PNCs, GIc, is expressed as

GIc ¼ GIm þ DGs þ DGv (1)

where GIm is the fracture energy of the matrix, and DGs and DGv are
the contribution from the localized shear banding and the plastic
void growth, respectively.

The term DGs is given by

DGs ¼ 1
2
Vf sycgf F

0�ry� (2)

where Vf is the volume fraction of the nano-filler, gfm is the matrix
shear fracture strain, and syc is the yield stress of the epoxy matrix
under compression, which related to the tensile yield stress, sym, by
Ref. [5].
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mm is a material constant (pressure coefficient).
The parameter F'(ry) is a geometric term given by Ref. [15].
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where rn (¼dn/2) is the radius of nanoparticles and ry is the radius of
the plastic zone at the crack tip at fracture in the PNCs

ry ¼
�
1þ mmffiffiffi

3
p
�2

rymK2
vm (5)

In Eq. (5), rym is radius of the plastic zone of the unmodified
epoxy matrix estimated by Irwin's model [29] and Kvm is the
maximum stress concentration factor of the von Mises stress in the
matrix.

The term DGv is calculated by  



Table 1
The definitions of models' parameters.

Parameter Symbol Unit Limits [lower,upper] Modelsa

The volume fraction of the nano-filler Vf % [0.5,10] All
The average diameter of the nano-particles dn nm [10,80] All
The elastic modulus (The Young's modulus) of the matrix Em GPa [2.4,3.6] All
The fracture energy of the matrix GIm J/m2 [40,500] All
The yield strength of the matrix sym MPa [70,120] All
The Poisson's ratio of the matrix nm e [0.33,0.37] All
The shear fracture strain of the matrix gfm e [0.70,0.75] M1,M3

The pressure dependency material constant (pressure coefficient) mm e [0.175,0.225] M1,M3

The matrix maximum stress concentration factor of the von Mises stress Kvm e [2.10,2.25] M1

The average diameter of voids around nanoparticles dv nm [25,120] M1

The percentage of the debonded particles Vdp % [10,18] M1

The interfacial debonding energy Ga J/m2 [0.01,1.5] M2,M3

The shear yielding stress of the matrix tym MPa [40,70] M3

The thickness of the interphase t nm [1,4] M3

The ratio of the shear elastic modulus of the interphase to the shear elastic modulus of the matrix Х e [0.1,2.0] M3

a M1, M2, and M3 refer to Huang and Kinloch model, Williams model, and Quaresimin et al. model, respectively.

Fig. 2. Representative diagram for the toughening mechanisms of PNCs according to
Huang and Kinloch [14].
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where Vfv and Vfp are the volume fraction of voids and the volume
fraction of debonded particles. An expression for (Vfv�Vfp) consid-
ering the average volume of the voids (vv) and the average volume
of nanoparticles (vp) has been proposed by Refs. [8,10] as

�
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�
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�
vv
vp

� 1
�
Vfp (7)

As reported in the studies of [7,17], not all of the nanoparticles
have been observed to be debonded. Finite element simulations
suggest that around 14% of the particles are debonded [17]. On this
basis, we include a new factor to quantify the percentage of
debonded particles (Vdp). It has been assumed to vary from 10% to
18%. The volume fraction of debonded particles, Vfp in Eq. (7), is
substituted by (Vdp)(Vf)
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2.2. Williams

The analysis of Williams [18] has referred the energy dissipation
to one basic mechanism; the debonding of nanoparticles which
initiate the plastic void growth. At the first stage the rigid spherical
nanoparticles is bonded to the surrounding matrix, and under
tensile stress, the interfacial stress increases until debonding occur.
This initiates the void growth in the matrix. The critical interfacial
stress (debonding stress), scr, is approximated by

scr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
1þ nm

EmGa

rn

s
(9)

where Ga is the interfacial debonding energy, and nm is the Poisson's
ratio of the matrix. If the number of the particles participating in
the process is considered to be more than one, then the fracture
energy of the PNCs is

GIc ¼ GIm

�
XtVf � 1:21V2=3

f þ 1
�

(10)

where Xt is toughening factor that is characterized by a critical
stress ratio factor, x [18].

Both factors are given by

x ¼ scr

sym
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2.3. Quaresimin et al.

A multiscale methodology has been adopted by Quaresimin
et al. [21] to describe the toughening mechanism of PNCs. The
authors have considered the interphase zone surrounding the
nanoparticle to account for the interactions between the nano-
particles and the matrix. The adjacent polymer chains are disor-
dered due the addition of the nanofiller, leading to the formation of
interphase zones surrounding the nanoparticles with properties
different from that of the bulk matrix. The extent of the impact of
particle/polymer interface is principally influenced by the
manufacturing techniques and the curing processes. The influence
of the interphase was studied experimentally by Refs. [30e33] and
numerically by Refs. [34e37]. Other advanced computational
multiscale methods for crack propagation andmaterial failurewere 
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proposed for instance in Refs. [46-50].
Through its thickness, the interphase layer was assumed to be

homogeneous and isotropic [38]. Fig. 3 displays the system
considered at the nanosized scale.

By studying the energy dissipation at the nanoscale, Quaresimin
and co-workers indicated that the overall fracture toughness of the
nanocomposite is composed of three damaging mechanisms: (i)
particle debonding, (ii) plastic yielding of nanovoids, and (iii) shear
banding of the polymer [38e40].

The term of toughness improvement due to the debonding of
nanoparticle is expressed by

Jdp ¼ 2Ga

3prn

�
1þ nc
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� 
Ec

s2crC
2
h

!
(12)

nc and Ec being the Poisson's ratio and the elastic modulus of the
nanocomposite, respectively. In this study, nc was set equal to the
matrix Poisson's ratio, nm, while Ec was calculated by the Hashin-
Shtrikman solution developed in Ref. [41]. The debonding stress,
scr, and the reciprocal of the hydrostatic part of the global stress
concentration tensor, Ch, depend on the nanoparticle radius, the
interphase thickness, and the matrix and interphase elastic prop-
erties [38].

The part of the fracture toughness enhancement caused by the
plastic yielding of nanovoids is [39].
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where sya is the yield stress of the interphase, and a is the external
interphase radius (see Fig. 3).

The third part, the improvement due to the formation of local-
ised plastic shear bands, is

JSB ¼ ISB

4ps2yca
�
1� mm

. ffiffiffi
3

p �2 Ec
1� n2c

G (14)

ISB is referring to the stress concentration around the nano-
particles, syca being the interphase yielding stress under compres-
sion, and G is quantifying the energy produced at the nanoscale.
The shear yielding stress of the matrix, tym, in addition to Vf, gfm, a,
and rn are required to calculate G, while ISB is a function of nc, mm, Ch,
and HvM (the deviatoric component of the global stress concen-
tration tensor) [40].

Eventually, the total fracture energy of PNCs is calculated by
Fig. 3. 2D representation of the nanoscale system considered according to Quaresimin
et al. [21].
GIc ¼
GIm

1� Vf

�
Jdp þJpy þJSB

� (15)

The condition: Vf ðJdp þJpy þJSBÞ<1, is essential for the
applicability of the model in Eq. (15). Other values will produce
meaningless results. This limits the applicability of the model in
determining the fracture energy of PNCs reinforced by small frac-
tions of nanofiller.

 

2.4. Discussion

Although, the model of Huang and Kinloch [14] accounts for the
main damaging mechanisms, it is based on some simplifying as-
sumptions. The knowledge of the increased volume fraction of
voids (Vfv�Vfp) is required to evaluate the energy contribution from
void-growth mechanism, DGv (see Eq. (6)). The values for the vol-
ume fraction of voids, Vfv, and the volume fraction of debonded
particles, Vfp, can be measured experimentally using for instance
electron micrographs. Instead, based on the expression proposed in
Refs. [8,10], we introduced a new uncertain parameter to quantify
the percentage of debonded particles (Vdp). The proposed formula
for (Vfv�Vfp) is shown in Eq. (8).

On the other hand, the model of Williams [18] assumes that the
void growth around debonded particles is the only dominant en-
ergy dissipation mechanism. His analysis was based on the energy
balance concept around a single nanoparticle and assuming the
absence of particle-to-particle interaction. In turn, the effect of
aggregation was ignored. A similar assumption, i.e. the absence of
particle-to-particle interaction, was considered in the model of
Quaresimin et al. [21]. However, three damaging mechanisms
through multiscale modelling and the effect of the interphase zone
were taken into account.

It is widely acknowledged that the nanofillers intend to
agglomerate in nanocomposites. This may limit the applicability of
the models of Williams [18] and Quaresimin et al. [21] to PNCs with
a low volume fraction of fillers. However, since the most important
merit of the PNCs is substantial improvements in the fracture
toughness at low filler content, this is not a short-coming of the
above mentioned models.
3. Assessment of PNCs fracture models using Bayesian
method

The Model selection refers to the problem of selecting one
model from a list of candidate models based on available data. The
Bayes' rule of statistics has motivated [42] to develop the Bayesian
approach for model selection by incorporating the different sources
of uncertainties based on response measurements (reference data),
D. Themodel selection probability is represented by the conditional
probability of the model Mi given the reference data D. It can be
calculated by

PðMijDÞ ¼
PðDjMiÞPðMiÞP
iPðDjMiÞPðMiÞ

(16)

where P(Mi) is the prior probability of Mi which is based on the
user's judgment on the initial plausibility of the models. The data-
dependent term P(DjMi) is the evidence of Mi. It defines the prob-
ability that the measurements of reference data D being repre-
sented by the predictions of the model Mi. Making use of the
theorem of total probability, the evidence can be calculated by Ref.
[42].  
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PðDjMiÞ ¼
Z

PðDjXi;MiÞPðXijMiÞdXi (17)

where PðDjXi;MiÞ is the likelihood function and PðXijMiÞ is the prior
probability of the input parameters.

The likelihood is the joint conditional probability of the refer-
ence data, D, given the input parameters, Xi. It measures how the
model fit the data. A higher likelihood factor corresponds to better
fit of Mi to D. The prior probability of the input parameters char-
acterizes what is known about the parameters before any actual
observation or modelling being considered. In the presence of
measurements and model predictions, the prior probability is
updated to posterior probability [43].

Assuming that the posterior probability of the parameters is
approximated by a Gaussian distribution, the Laplace's method for
asymptotic approximation can be applied to estimate the evidence
as [44].

P DjMið Þ ¼ P D
��X̂i ;Mi

� �
P X̂i

��Mi

� �h��H�X̂i
��

2p
��i�1

2 (18)

where bXi is the optimal parameter set that maximize the posterior
probability and Hð bXiÞ is the Hessian matrix of
�ln½PðDjXi;MiÞPðXijMiÞ� with respect to Xi calculated at bXi . The
models are compared according to their model selection proba-
bility calculated in Eq. (16). The model with the largest probability
is the optimum one.

In the present work, the models of predicting the fracture en-
ergy of PNCs were evaluated. We considered the model of Huang
and Kinloch [14] (M1), the model of Williams [18] (M2), and the
model of Quaresimin et al. [21] (M3), which were described in
Section 2. The prior probabilities of these models were assumed to
be equal, i.e. P(M1) ¼ P(M2) ¼ P(M3) ¼ 1/3.

Thanks to the uniform distribution assumed for the input pa-
rameters, the prior probabilities of the model parameters, PðXijMiÞ,
are constant disregarding the value of the parameter. The input
parameters Vf ; dn; Em; and GIm were fixed as deterministic param-
eters, while we calculated the most probable value (optimal
parameter value), which realized the best fit of the model pre-
dictions to the measurements, for the remaining parameters.
Different experimental measurements gathered from the literature
Table 2
The values of the input parameters used in the assessment of the models.

Reference All
modelsa

M1
b M2

Data dn Em sym nm gfm mm Kvm dv Vdp sym

nm GPa MPa e e e e nm % MP

D1 [3] 20 3.20 71.6 0.35 0.732 0.194 2.227 37.7 14.1 72.
D2 [3] 20 3.20 115.8 0.36 0.740 0.203 2.216 43.5 11.4 80.
D3 [4] 12 3.53 80.5 0.33 0.728 0.206 2.236 25.5 10.4 76.
D4 [4] 20 3.53 107.1 0.34 0.730 0.192 2.180 25.5 10.3 86.
D5 [4] 40 3.53 118.4 0.34 0.704 0.177 2.108 45.0 13.2 82.
D6 [5] 23 3.50 71.6 0.34 0.715 0.210 2.244 25.1 10.8 75.
D7 [5] 74 3.50 71.6 0.37 0.745 0.222 2.236 91.2 15.2 75.
D8 [6] 20 2.86 118.6 0.34 0.704 0.191 2.110 47.4 16.4 81.
D9 [7] 20 2.96 70.5 0.36 0.737 0.205 2.190 25.7 12.5 80.
D10 [8] 20 2.41 70.3 0.35 0.747 0.208 2.224 42.2 14.1 73.
D11 [8] 80 2.41 70.7 0.36 0.730 0.223 2.239 118.8 17.9 71.
D12 [9] 25 3.02 118.4 0.34 0.704 0.177 2.108 29.8 13.3 81.
D13 [9] 25 2.78 116.7 0.36 0.704 0.181 2.112 56.6 16.7 72.
D14 [10] 20 2.96 71.5 0.37 0.741 0.222 2.229 42.0 13.7 77.
D15 [11] 13 2.60 80.6 0.36 0.705 0.181 2.221 35.3 11.1 71.
D16 [12] 25 3.27 117.1 0.33 0.708 0.185 2.204 36.4 14.9 83.

a The values of dn and Em are obtained from the corresponding references.
b These are the optimal values approximated in the current study.
[3e12] have been utilized as reference data. For each, Table 2 shows
the values of the calculated optimal parameter set.

Interestingly, the incorporation of the parameter Vdp in M1 has
enhanced the model predictions to fit the measurements. By the
finite-element analysis of [45], the value of the maximum stress
concentration for the von Mises stresses around a void, Kvm, was
estimated to be 2.22 for a matrix of elastic modulus equal 3.2 GPa
which agrees well with the optimal values obtained in this study.
The interfacial debonding energy, Ga increases as the diameter of
the nanofiller increases. Its optimal values were in the range of
[0.184,1.360] and [0.010,0.046] for M2 and M3, respectively. Similar
values of Ga for M2 were reported in Refs. [18] and [20]. The high
value of these results may be explained by assuming that the
optimal values of Ga were reduplicated since the total energy
dissipation in M2 was attributed only to one mechanism. Based on
this, the probability distribution of Ga can be updated to a uniform
distribution in the range of [0.1,1.5] forM2 and [0.01,0.1] forM3. The
elastic property of the interphase was softer than that of the matrix
in themeasurements; D10 andD11 (c¼1.162 and 1.231, respectively),
whereas the matrix showed stiffer elasticity in the remaining
measurements.

Exploiting the optimal parameter sets, the models predictions
versus the nanofiller volume fraction are depicted in Fig. 4. Obvi-
ously, M2 and M3 mostly have a similar ascending trend but it dif-
fers slightly from M1.

The model uncertainty can be demonstrated by the differences
between the predictions and themeasurements. This uncertainty is
measured by the coefficient of variation (CV).

CVij ¼
1
Dj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nj � 1

XNj

m¼1

ðDm � YimÞ2
vuut (19)

where Dj and Nj are the mean value and the number of the indi-
vidual experiments of the j reference data, Dm is the measured
value, and Yim is the corresponding predicted value of the modelMi.

The CV values for M1, M2, and M3 are shown in Fig. 5. Except of
the measurements: D8, D11, D12, and D13, M1 shows better perfor-
mance compared to M2 and M3, where its CV values are the least.
The predictions of M2 have the lowest discrepancies from the
measurements of D11, D12, and D13. M3 produces the best fit

 

b M3
b

nm Ga sym nm Ga gfm mm tym t c

a e J/m2 MPa e J/m2 e e MPa nm e

3 0.36 0.287 85.1 0.36 0.015 0.722 0.184 66.0 3.00 0.882
0 0.36 0.309 77.6 0.35 0.011 0.746 0.197 52.9 2.26 0.788
9 0.36 0.184 81.4 0.34 0.013 0.730 0.204 67.3 2.24 0.644
5 0.36 0.289 110.4 0.34 0.016 0.747 0.184 69.6 1.95 0.670
7 0.36 0.473 97.0 0.36 0.015 0.727 0.214 59.0 2.90 0.375
8 0.36 0.250 117.5 0.36 0.010 0.727 0.189 65.1 2.7 0.742
8 0.35 0.914 110.1 0.34 0.046 0.727 0.188 63.4 2.18 0.447
7 0.35 0.374 87.2 0.33 0.018 0.713 0.184 68.5 2.97 0.710
2 0.35 0.310 112.5 0.36 0.011 0.745 0.192 62.6 1.08 0.758
5 0.36 0.363 94.8 0.35 0.011 0.710 0.187 67.3 1.32 1.162
5 0.37 1.360 88.5 0.34 0.046 0.716 0.184 63.8 1.20 1.231
8 0.34 0.340 109.6 0.34 0.012 0.734 0.203 48.3 3.91 0.676
7 0.34 0.383 87.2 0.34 0.010 0.709 0.220 60.2 3.78 0.656
4 0.33 0.385 79.0 0.36 0.011 0.708 0.185 50.8 3.43 0.649
1 0.35 0.224 97.1 0.36 0.010 0.749 0.176 67.4 2.83 0.770
5 0.36 0.322 110.0 0.36 0.011 0.731 0.215 46.4 3.89 0.830

 



Fig. 4. Predictions of the models using the optimal parameter set for the different reference data.

Fig. 5. The coefficient of variation for the different references data.
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predictions in the measurements of D8 only.
When considering both themodel and parameters uncertainties

in the evaluation, M1 outperforms M2 and M3 for all the different
measurements. It has significantly higher model selection proba-
bility, PðMijDÞ (See Table 3). It can be concluded that the parameters
of M2 and M3 have steeper posterior probabilities. Significant
changes in their prognoses are expected due to slight variations in
the parameters values. One possible explanation is that the natural
exponential relation in M2 and in M3 results in high values of the
determinant of their Hessian matrices.
 



Table 3
The models selection probability values for the different reference data.

Reference P(MijD)a

Data M1 M2 M3

D1 [3] 0.988 0.000 0.012
D2 [3] 1.000 0.000 0.000
D3 [4] 1.000 0.000 0.000
D4 [4] 1.000 0.000 0.000
D5 [4] 0.805 0.000 0.195
D6 [5] 0.999 0.000 0.001
D7 [5] 0.998 0.000 0.002
D8 [6] 0.998 0.000 0.002
D9 [7] 1.000 0.000 0.000
D10 [8] 0.995 0.000 0.005
D11 [8] 0.744 0.001 0.255
D12 [9] 1.000 0.000 0.000
D13 [9] 1.000 0.000 0.000
D14 [10] 1.000 0.000 0.000
D15 [11] 1.000 0.000 0.000
D16 [12] 0.997 0.000 0.003

a The probability of selecting the model Mi given the different reference data
calculated by Eq. (16).

K.M. Hamdia et al. / Composites Science and Technology 126 (2016) 122e129128  
4. Conclusion

Three existing models used for the prediction of the fracture
toughness of PNCs were evaluated. The Bayesian method was
employed to quantify the model selection probabilities of Huang
and Kinloch [14] model, Williams [18] model, and Quaresimin et al.
[21] model. The model and parameters uncertainties were
considered in the assessment based on the experimental mea-
surements of [3e12]. The optimal models predictions with respect
to these measurements were obtained using the optimal parameter
sets. In contradiction to the references data of D8, D11, D12, and D13,
the optimal predictions of Huang and Kinloch model showed better
performance compared the other two models. However, for all the
reference measurements, the model of Huang and Kinloch showed
a distinctly higher model selection probability. On this base, we can
conclude that it is themost robust model with regard to the applied
reference measurements.

Acknowledgement

The authors gratefully acknowledge the support for this
research provided by the IRSES-MULTIFRAC and the Alexander von
Humboldt Foundation in the framework of the Sofja Kovalevskaja
Award endowed by the Federal Ministry of Education and Research,
Germany. Dr. Xiaoying Zhuang thanks the National High-end
Foreign Experts by State Administration of Foreign Experts Af-
fairs, PRC of Tongji University.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.compscitech.2016.02.012.

References

[1] A. Argon, R. Cohen, Toughenability of polymers, Polymer 44 (19) (2003)
6013e6032.

[2] E.T. Thostenson, C. Li, T.W. Chou, Nanocomposites in context, Compos. Sci.
Technol. 65 (3) (2005) 491e516, http://dx.doi.org/10.1016/
j.compscitech.2004.11.003.

[3] M. Zappalorto, A. Pontefisso, A. Fabrizi, M. Quaresimin, Mechanical behaviour
of epoxy/silica nanocomposites: experiments and modelling, Compos. Part A
Appl. Sci. Manuf. 72 (2015) 58e64.

[4] M. Zamanian, M. Mortezaei, B. Salehnia, J. Jam, Fracture toughness of epoxy
polymer modified with nanosilica particles: particle size effect, Eng. Fract.
Mech. 97 (2013) 193e206.
[5] P. Dittanet, R.A. Pearson, Effect of silica nanoparticle size on toughening

mechanisms of filled epoxy, Polymer 53 (9) (2012) 1890e1905.
[6] H.Y. Liu, G.T. Wang, Y.W. Mai, Y. Zeng, On fracture toughness of nano-particle

modified epoxy, Compos. Part B Eng. 42 (8) (2011) 2170e2175.
[7] T. Hsieh, A. Kinloch, K. Masania, J.S. Lee, A. Taylor, S. Sprenger, The toughness

of epoxy polymers and fibre composites modified with rubber microparticles
and silica nanoparticles, J. Mater. Sci. 45 (5) (2010a) 1193e1210.

[8] Y. Liang, R. Pearson, Toughening mechanisms in epoxyesilica nanocomposites
(ESNs), Polymer 50 (20) (2009) 4895e4905.

[9] H. Zhang, L.C. Tang, Z. Zhang, K. Friedrich, S. Sprenger, Fracture behaviours of
in situ silica nanoparticle-filled epoxy at different temperatures, Polymer 49
(17) (2008) 3816e3825.

[10] B. Johnsen, A. Kinloch, R. Mohammed, A. Taylor, S. Sprenger, Toughening
mechanisms of nanoparticle-modified epoxy polymers, Polymer 48 (2) (2007)
530e541.

[11] B. Wetzel, P. Rosso, F. Haupert, K. Friedrich, Epoxy nanocompositesefracture
and toughening mechanisms, Eng. Fract. Mech. 73 (16) (2006) 2375e2398.

[12] H. Zhang, Z. Zhang, K. Friedrich, C. Eger, Property improvements of in situ
epoxy nanocomposites with reduced interparticle distance at high nanosilica
content, Acta Mater. 54 (7) (2006) 1833e1842.

[13] J.k. Chen, Z.P. Huang, J. Zhu, Size effect of particles on the damage dissipation
in nanocomposites, Compos. Sci. Technol. 67 (14) (2007) 2990e2996.

[14] Y. Huang, A. Kinloch, Modelling of the toughening mechanisms in rubber-
modified epoxy polymers. part ii a quantitative description of the
microstructure-fracture property relationships, J. Mater. Sci. 27 (10) (1992a)
2763e2769.

[15] T. Hsieh, A. Kinloch, K. Masania, A. Taylor, S. Sprenger, The mechanisms and
mechanics of the toughening of epoxy polymers modified with silica nano-
particles, Polymer 51 (26) (2010b) 6284e6294.

[16] P. Dittanet, R.A. Pearson, Effect of bimodal particle size distributions on the
toughening mechanisms in silica nanoparticle filled epoxy resin, Polymer 54
(7) (2013) 1832e1845.

[17] D.J. Bray, P. Dittanet, F.J. Guild, A.J. Kinloch, K. Masania, R.A. Pearson,
A.C. Taylor, The modelling of the toughening of epoxy polymers via silica
nanoparticles: the effects of volume fraction and particle size, Polymer 54 (26)
(2013) 7022e7032.

[18] J. Williams, Particle toughening of polymers by plastic void growth, Compos.
Sci. Technol. 70 (6) (2010) 885e891.

[19] J. Williams, B. Blackman, H. Steininger, K. Zuo, Toughening by plastic cavita-
tion around cylindrical particles and fibres, Compos. Sci. Technol. 103 (2014)
119e126.

[20] K. Zuo, B. Blackman, J. Williams, H. Steininger, The mechanical behaviour of
ZnO nano-particle modified styrene acrylonitrile copolymers, Compos. Sci.
Technol. 113 (2015) 9e18.

[21] M. Quaresimin, M. Salviato, M. Zappalorto, A multi-scale and multi-
mechanism approach for the fracture toughness assessment of polymer
nanocomposites, Compos. Sci. Technol. 91 (2014) 16e21.

[22] K.M. Hamdia, T. Lahmer, T. Nguyen-Thoi, T. Rabczuk, Predicting the fracture
toughness of pncs: a stochastic approach based on ANN and ANFIS, Comput.
Mater. Sci. 102 (2015a) 304e313.

[23] B. Fisher, M. Ireland, D. Boyland, S. Critten, Why use one model? an approach
for encompassing model uncertainty and improving best practice, Environ.
Model. Assess. 7 (4) (2002) 291e299.

[24] T. Most, Assessment of structural simulation models by estimating un-
certainties due to model selection and model simplification, Comput. Struct.
89 (17) (2011) 1664e1672.

[25] H. Keitel, A. Dimmig-Osburg, L. Vandewalle, L. Schueremans, Selecting creep
models using bayesian methods, Mater. Struct. 45 (10) (2012) 1513e1533.

[26] K. Farrell, J.T. Oden, Calibration and validation of coarse-grained models of
atomic systems: application to semiconductor manufacturing, Comput. Mech.
54 (1) (2014) 3e19.

[27] E. Prudencio, P. Bauman, D. Faghihi, K. Ravi-Chandar, J. Oden, A computational
framework for dynamic data-driven material damage control, based on
bayesian inference and model selection, Int. J. Numer. Methods Eng. 102 (3e4)
(2015) 379e403.

[28] K.M. Hamdia, M.A. Msekh, M. Silani, N. Vu-Bac, X. Zhuang, T. Nguyen-Thoi,
T. Rabczuk, Uncertainty quantification of the fracture properties of polymeric
nanocomposites based on phase field modeling, Compos. Struct. 133 (2015b)
1177e1190.

[29] G. Irwin, Analysis of stresses and strains near the end of a crack traversing a
plate, J. Appl. Mech. 24 (1957) 361e364.

[30] J. Berriot, F. Lequeux, L. Monnerie, H. Montes, D. Long, P. Sotta, Filler-
eelastomer interaction in model filled rubbers, a 1 h nmr study, J. Non Cryst.
Solids 307 (2002) 719e724.

[31] J. Berriot, F. Martin, H. Montes, L. Monnerie, P. Sotta, Reinforcement of model
filled elastomers: characterization of the cross-linking density at the filler-
eelastomer interface by 1 h nmr measurements, Polymer 44 (5) (2003)
1437e1447.

[32] A. Bansal, H. Yang, C. Li, K. Cho, B.C. Benicewicz, S.K. Kumar, L.S. Schadler,
Quantitative equivalence between polymer nanocomposites and thin polymer
films, Nat. Mater. 4 (9) (2005) 693e698.

[33] S. Watcharotone, C.D. Wood, R. Friedrich, X. Chen, R. Qiao, K. Putz, L.C. Brinson,
Interfacial and substrate effects on local elastic properties of polymers using
coupled experiments and modeling of nanoindentation, Adv. Eng. Mater. 13 

 

http://dx.doi.org/10.1016/j.compscitech.2016.02.012
http://dx.doi.org/10.1016/j.compscitech.2016.02.012
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref1
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref1
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref1
http://dx.doi.org/10.1016/j.compscitech.2004.11.003
http://dx.doi.org/10.1016/j.compscitech.2004.11.003
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref3
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref3
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref3
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref3
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref4
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref4
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref4
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref4
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref5
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref5
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref5
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref6
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref6
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref6
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref7
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref7
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref7
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref7
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref8
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref8
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref8
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref8
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref9
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref9
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref9
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref9
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref10
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref10
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref10
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref10
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref11
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref11
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref11
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref11
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref12
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref12
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref12
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref12
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref13
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref13
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref13
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref14
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref14
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref14
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref14
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref14
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref15
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref15
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref15
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref15
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref16
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref16
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref16
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref16
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref17
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref17
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref17
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref17
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref17
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref18
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref18
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref18
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref19
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref19
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref19
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref19
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref20
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref20
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref20
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref20
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref21
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref21
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref21
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref21
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref22
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref22
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref22
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref22
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref23
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref23
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref23
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref23
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref24
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref24
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref24
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref24
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref25
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref25
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref25
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref26
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref26
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref26
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref26
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref27
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref27
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref27
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref27
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref27
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref27
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref28
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref28
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref28
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref28
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref28
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref29
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref29
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref29
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref30
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref30
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref30
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref30
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref31
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref31
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref31
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref31
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref31
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref32
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref32
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref32
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref32
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref33
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref33
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref33


K.M. Hamdia et al. / Composites Science and Technology 126 (2016) 122e129 129 
(5) (2011) 400e404.
[34] G. Odegard, T. Clancy, T. Gates, Modeling of the mechanical properties of

nanoparticle/polymer composites, Polymer 46 (2) (2005) 553e562.
[35] R. Qiao, L.C. Brinson, Simulation of interphase percolation and gradients in

polymer nanocomposites, Compos. Sci. Technol. 69 (3) (2009) 491e499.
[36] S. Yu, S. Yang, M. Cho, Multi-scale modeling of cross-linked epoxy nano-

composites, Polymer 50 (3) (2009) 945e952.
[37] A. Pontefisso, M. Zappalorto, M. Quaresimin, An efficient RVE formulation for

the analysis of the elastic properties of spherical nanoparticle reinforced
polymers, Comput. Mater. Sci. 96 (2015) 319e326.

[38] M. Zappalorto, M. Salviato, M. Quaresimin, Influence of the interphase zone on
the nanoparticle debonding stress, Compos. Sci. Technol. 72 (1) (2011) 49e55.

[39] M. Zappalorto, M. Salviato, M. Quaresimin, A multiscale model to describe
nanocomposite fracture toughness enhancement by the plastic yielding of
nanovoids, Compos. Sci. Technol. 72 (14) (2012) 1683e1691.

[40] M. Salviato, M. Zappalorto, M. Quaresimin, Plastic shear bands and fracture
toughness improvements of nanoparticle filled polymers: a multiscale
analytical model, Compos. Part A Appl. Sci. Manuf. 48 (2013) 144e152.

[41] A. Pontefisso, M. Zappalorto, M. Quaresimin, Influence of interphase and filler
distribution on the elastic properties of nanoparticle filled polymers, Mech.
Res. Commun. 52 (2013) 92e94.

[42] D.J. MacKay, Bayesian interpolation, Neural Comput. 4 (3) (1992) 415e447.
[43] J.T. Oden, S. Prudhomme, Control of modeling error in calibration and
validation processes for predictive stochastic models, Int. J. Numer. Methods
Eng. 87 (1e5) (2011) 262e272.

[44] J.L. Beck, K.V. Yuen, Model selection using response measurements: Bayesian
probabilistic approach, J. Eng. Mech. (2004).

[45] Y. Huang, A. Kinloch, Modelling of the toughening mechanisms in rubber-
modified epoxy polymers. part i finite element analysis studies, J. Mater.
Sci. 27 (10) (1992b) 2753e2762.

[46] H. Talebi, M. Silani, T. Rabczuk, Concurrent multiscale modelling of three
dimensional crack and dislocation propagation, Adv. Eng. Softw. 80 (2015)
82e92.

[47] H. Talebi, M. Silani, S. Bordas, P. Kerfriden, T. Rabczuk, A computational library
for multiscale modelling of material failure,, Comput. Mech. 53 (5) (2014)
1047e1071.

[48] H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, T. Rabczuk, Molecular dy-
namics/XFEM coupling by a three-dimensional extended bridging domain
with applications to dynamic brittle fracture, Int. J. Multiscale Comput. Eng. 11
(6) (2013) 527e541.

[49] P. Budarapu, R. Gracie, S. Bordas, T. Rabczuk, An adaptive multiscale method
for quasi-static crack growth, Comput. Mech. 53 (6) (2014) 1129e1148.

[50] P. Budarapu, R. Gracie, Y. Shih-Wei, X. Zhuang, T. Rabczuk, Efficient coarse
graining in multiscale modeling of fracture, Theor. Appl. Fract. Mech. 69
(2014) 126e143.

 

 

http://refhub.elsevier.com/S0266-3538(16)30046-X/sref33
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref33
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref34
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref34
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref34
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref35
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref35
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref35
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref36
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref36
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref36
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref37
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref37
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref37
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref37
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref38
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref38
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref38
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref39
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref39
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref39
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref39
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref40
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref40
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref40
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref40
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref41
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref41
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref41
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref41
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref42
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref42
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref43
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref43
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref43
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref43
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref43
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref44
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref44
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref45
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref45
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref45
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref45
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref46
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref46
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref46
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref46
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref47
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref47
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref47
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref47
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref48
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref48
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref48
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref48
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref48
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref49
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref49
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref49
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref50
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref50
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref50
http://refhub.elsevier.com/S0266-3538(16)30046-X/sref50

	Fracture toughness of polymeric particle nanocomposites: Evaluation of models performance using Bayesian method
	1. Introduction
	2. Models for predicting the fracture properties of PNCs
	2.1. Huang and Kinloch
	2.2. Williams
	2.3. Quaresimin et al.
	2.4. Discussion

	3. Assessment of PNCs fracture models using Bayesian method
	4. Conclusion
	Acknowledgement
	Appendix A. Supplementary data
	References


