
Contents lists available at ScienceDirect
Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor
Lower bounds for large traveling umpire instances: New valid
inequalities and a branch-and-cut algorithm$
Keywords:
Sports scheduling
Traveling umpire problem
Integer programming
Branch-and-cut
OR in sports
a b s t r a c t

Given a double round-robin tournament, the Traveling Umpire Problem (TUP) seeks to assign umpires to
the games of the tournament while minimizing the total distance traveled by the umpires. The assign-
ment must satisfy constraints that prevent umpires from seeing teams and venues too often, while
making sure all games have umpires in every round, and all umpires visit all venues. We propose a new
integer programming model for the TUP that generalizes the two best existing models, introduce new
families of strong valid inequalities, and implement a branch-and-cut algorithm to solve instances from
the TUP benchmark. When compared against published state-of-the-art methods, our algorithm sig-
nificantly improves all best known lower bounds for large TUP instances (with 20 or more teams).

& 2016 Elsevier Ltd. All rights reserved.
(

1. Introduction

The TUP receives as input a double round-robin tournament
with 2n teams and 4n�2 rounds, the distances between the home
venues of each pair of teams, and two integers 0rd1on and

The field of sports scheduling is rich with interesting and dif-
ficult problems that arise from the design of fair competitions. The
assignment of officials (judges, referees, umpires, etc.) to the
games of a competition is a well-known and challenging problem
in this field. Typically, a myriad of conditions have to be imposed
to guarantee the fairness of refereeing over the entire event, while
minimizing some measure of cost. Several studies have been
published dealing with specific details of different sports, such as:
baseball , cricket , football , and tennis . A variety of other sports
scheduling problems can be found in .

We focus on the Traveling Umpire Problem (TUP), which is an
abstraction that incorporates the main issues behind the assign-
ment of umpire crews (umpires, henceforth for short) to the
games of Major League Baseball (MLB). This problem was first
introduced in and recently proved to be NP-Complete (under
certain conditions) in .
0rd2o⌊n2c. A feasible solution to the TUP is an assignment of n
umpires to the games of the tournament that satisfies the fol-
lowing constraints:

(i) Each game is refereed by exactly one umpire.
(ii) Each umpire is assigned to exactly one game per round.
iii) Each umpire visits the home venue of each team at least once.
(iv) Each umpire visits any given venue at most once during any

q1 ¼ n�d1 consecutive rounds.
(v) Each umpire sees any given team at most once during any q2

¼ ⌊n2c�d2 consecutive rounds.

The TUP's objective function is to minimize the total distance
traveled by the umpires throughout the entire tournament.

Our main contributions are: (a) we present an integer pro-
gramming model for the TUP that generalizes the two best models
in literature; (b) we introduce new families of strong valid
inequalities for this model; and (c) we improve the best known
lower bounds for all large instances in the TUP benchmark [18,19]
with 20 or more teams by solving our optimization model with a
branch-and-cut algorithm.

The remainder of this paper is organized as follows. The next
section presents a literature review of the TUP, while Section 3
describes our optimization model and the new valid inequalities.
Section 4 details the separation routines used in our branch-and-
cut algorithm, and Section 5 analyzes our computational results.
Finally, we conclude and discuss ideas for future work in Section 6.

2. Previous work

It is evident from several years of computational experience
with the TUP that it is a very difficult problem to solve. Even
finding feasible solutions without regard to quality can be quite a
challenging task. In this section we summarize some of the most
successful approaches from the TUP literature.

price (BP) algorithmwas developed to solve this model since it has
an exponential number of variables. Its pricing routine uses
branch-and-bound to solve a constrained shortest path problem.
Following a best-first search strategy, this BP improved several
lower bounds for instances with 14 and 16 teams and, using a
depth-first search strategy, it obtained some new best solutions to
instances with 14 and 16 teams.

In , the authors introduce a set of benchmark instances
having between 4 and 32 teams. These instances are available for
download at , and have become the standard benchmark set
for all published research on the TUP. Both an integer pro-
gramming (IP) and a constraint programming (CP) model for the
TUP were proposed in . Exact solvers were able to solve these
models to optimality for instances with up to 10 teams, but had
difficulty finding feasible solutions to larger problems. Therefore,
also in , the authors proposed a greedy matching heuristic to
generate good solutions. When this heuristic gets stuck with an
infeasible partial solution, a large neighborhood search guided by
Benders cuts takes place to fix it, allowing the heuristic to resume
execution. This approach successfully found many solutions that
were better than those found by exact methods for instances with
14, 16, and 30 teams.

The real-life MLB umpire scheduling problem (MLB-USP) is
described in , but the IP model proposed therein cannot be
solved due to its large number of variables and constraints. Hence,
the TUP is highlighted as an abstraction of MLB-USP that captures
its most important features and ignores minor details. A simulated
annealing (SA) algorithm was proposed in to obtain good
solutions for both MLB-USP and TUP, finding better schedules than
those adopted by MLB. The solutions found by the SA for the TUP,
however, were inferior to those obtained by the heuristic proposed
in . Continuing on the heuristic front, a genetic algorithm (GA)
was proposed in employing a sophisticated crossover operator
tailored to recombine two solutions in a way that the offspring is
locally optimized by solving a matching problem. Several new best
solutions were found by this GA for instances with 14, 16, and 30
teams. Later on, a stronger IP model based on the one proposed in
was presented in . This new model was more compact with
respect to the number of variables and constraints and also
included new constraints. It led to improvements in all known
lower bounds for the benchmark instances and, for the first time,
provided lower bounds for instances with more than 16 teams.
Additionally, introduced a relax-and-fix heuristic based on their
IP model that managed to improve the quality of almost all
solutions known at the time.

An iterative deepening search (IDS) and an iterative local search
(ILS) were proposed in . These methods are complementary in

variables represent an umpire's complete schedule, visiting a game
in each one of the 4n�2 rounds of the tournament. A branch-and-

the sense that IDS found many improved solutions to medium-sized
instances (with 14 and 16 teams), whereas ILS obtained new better
solutions to larger instances (with 26 or more teams). A decom-
position approach to derive strong lower bounds for the TUP is also
proposed in .This approach subdivides the tournament into
smaller pieces, solving each one with a modified version of the IP
model from that corresponds to a relaxed version of TUP. This
method improved all of the best lower bounds known at the time.

In , the authors introduce a set partitioning model whose

A network flow model and a set partitioning model that is
equivalent to the one in were presented in . The network flow
model is optimized via a branch-and-bound (BB) algorithm
which solves a Lagrangian relaxation at every node of the search
tree. This BB algorithm improved several lower bounds for
instances with more than 18 teams. Their set partitioning model is
strengthened by the addition of cutting planes and solved with a
branch-and-price-and-cut (BPC) algorithm. The BPC improved
many lower bounds for instances with up to 18 teams, and was the
first method to solve instances with 14 teams to optimality.

A branch-and-bound algorithm combined with a parallel rou-
tine to generate strong lower bounds was recently proposed in
. The branch-and-bound rapidly enumerates the nodes in the
search tree and uses the lower bounds calculated concurrently to
prune as many nodes as possible. The lower bound calculation
comprises a bottom-up algorithm inspired by the decomposition
scheme presented in . This method solved to optimality all 14-
team benchmark instances within a few minutes and was the first
to obtain provably optimal solutions for 16-team instances. Addi-
tionally, lower and upper bounds were improved for the 16-team
instances. Despite these remarkable results, this method does not
appear to scale well for instances with 18 or more teams.
3. Optimization model

tournament, while satisfying constraints (iii)–(v). Although SPM's
linear relaxation produces significantly stronger lower bounds
than NFM's linear relaxation, the time required to solve it
increases quickly as the number of teams increases, which makes
it impractical to use SPM with more than 18 teams.

Here is how our model generalizes the previous ones. While NFM's
and SPM's variables represent umpires' trip sequences with lengths of
2 and 4n�2 rounds, respectively, the length of the trip sequences
represented by the variables of our model is a parameter that can fall
anywhere between 2 and 4n�2. This flexibility allows us to empiri-
cally study the trade-off between relaxation solution speed (an
advantage of NFM) and lower bound strength (an advantage of SPM).

Let 2rwr4n�2 be the sequence-length parameter men-
tioned above. For a fixed value of w, we create variables by
dividing the input tournament T into sections indexed by S¼
1;2;…; ⌈4n�3

w�1⌉
� �

as follows. For any sAS, the s-th section of T,
denoted Ts, consists of consecutive rounds ðs�1Þðw�1Þþ1
through minfsðw�1Þþ1;4n�2g. Note that all sections have

For each section sAS, our model contains variables to represent
every trip sequence that visits all of the rounds in Ts and satisfies
TUP constraints (iv) and (v). Because only one section exists when
w¼ 4n�2, trip sequences are also required to satisfy constraint
(iii) in this particular case. When 2rwo4n�2, we cannot impose

exactly w rounds, except for the last one, which could be shorter.
Fig. 1 illustrates a tournament with four teams and six rounds
being subdivided into sections for w¼2, 3, 4, and 6.

constraint (iii). Note, however, that consecutive sections have one
round in common , which allows us to connect their trip
sequences to create a longer sequence. In the next section we
introduce our mathematical model and detail the constraints that
ensure trip sequences get properly combined to create feasible
travel schedules for the n umpires.

umpire's entire sequence of trips through all 4n�2 rounds of the

We now present an integer programming (IP) model for the
TUP that generalizes two existing models. In , the authors
describe a network-flow model (NFM) whose variables represent
trips made by umpires between consecutive rounds in the tour-
nament. Its linear relaxation can be solved quickly and produces

good lower bounds. Still in , and also in , a stronger set-
partitioning model (SPM) is used whose variables represent an

Fig. 1. Sections of a 4-team, 6-round tournament for w¼2, 3, 4, and 6.

3.1. Initial integer programming formulation

For a fixed w and any sAS, let Ps be the set of trip sequences in
Ts that visit all of its rounds and satisfy constraints (iv) and (v).
(When w¼ 4n�2, we have only P1 and require that its sequences
satisfy constraint (iii).) For each pAP ¼⋃sA SPs, let xp be a binary
variable equal to one when p is part of the solution, and equal to
zero otherwise. We denote the distance traveled by the trips in p
by dp. Let Gs be the set of games in Ts's rounds, and let Psg be the set
of all trip sequences in Ps that contain a given game gAGs. From
now on, we will use the term simple route to refer to any trip
sequence in P, and the term route to refer to an ordered sequence
of simple routes r1;…; rm such that ri and riþ1 come from con-
secutive sections, and the last game of ri is the same as the first
game of riþ1, for any i¼ 1;…;m�1. Given a route Q, we denote by
P(Q) the set of all simple routes in Q. A complete route is a route
that visits every round of the tournament, that is, it contains one
simple route from each section of T. A route is said to be infeasible
when it contains two or more games that violate constraints (iv) or
(v), or when it is a complete route and violates constraint (iii).
Finally, we denote the set of all infeasible routes by U. We are now
ready to present our mathematical model.

constituent simple routes. From now on, let T denote the

The objective function (1) minimizes the total distance traveled
by the umpires, and (2) ensures that all games in each section are
visited by a simple route. Note that a game in a round shared by
two consecutive sections is visited by two simple routes; one
ending and one starting at that game. Constraints (2) and (4)
together guarantee that a feasible solution consists of n complete
routes satisfying TUP constraints (i) and (ii). TUP constraints (iii)–
(v) are respected because of (3), which prevents infeasible routes
from being part of the solution by excluding at least one of their
TUP polytope, that is, the convex hull of the feasible solutions to
(2)–(4).

3.2. Strong valid inequalities

1;u2;…Þ be an infea-
sible route, and let Hþ

1;u2;…;ui; pÞ be an
infeasible route for some i¼ 1;…; jPðUÞj �1g. Then, (5) is a

The validity of (5) stems from the fact that, by construction, any
jPðUÞj simple routes in Hþ ðUÞ that satisfy (2) contain an infeasible

To obtain additional valid inequalities for T , we exploit some of
the TUP's inherent symmetry. As we reverse the order of rounds in
a tournament, turning round r into round 4n�1�r, for all
1rrr4n�2, we obtain a modified instance of the problem that is
equivalent to the original instance. The fundamental difference is
that the umpires travel routes in the reverse direction. The sec-
tions of the tournament are also reversed, that is section s0 ¼ jSj
�sþ1 of the modified instance contains round r0 ¼ 4n�1�r if,
and only if, section s of the original instance contains round r.
Therefore, P0

s0 , the set of simple routes in section s0 of the modified
instance, contains the reversed simple routes that belong to Ps in
the original instance. As a consequence, variables in the formula-
tion of the modified instance are equivalent to the variables for the
corresponding reversed route in the formulation of the original
instance. Applying this equivalence to the version of (5) for the
modified instance, we obtain (6), which is valid for T in the ori-

where H� ðUÞ ¼ PðUÞ [fpAP j ðp;ui;uiþ1;…;uj PðUÞj Þ is an infea-
sible route for i¼ 2;…; jPðUÞj g. Inequalities (5) and (6) are linearly
independent, and hence not redundant together. In fact, the
computational results in Section 5 indicate that the addition of (6)
significantly strengthens the linear relaxation of (1)–(4).

stronger version of (3)

route. Alternatively, validity proofs for similar inequalities for the
vehicle routing problem with time windows shown in canalso
be applied to (5).

The linear relaxation of (1)–(4) does not provide strong lower
bounds, mostly because (3) turns out to be a weak constraint. In
[9], the authors propose to strengthen (3) via a lifting procedure
from [21], which we explain next. Let U ¼ ðu

uðUÞ ¼ PUÞ [fpAP j ð

ginal instance.

Next, we obtain two additional families of valid inequalities for
T derived from cliques in conflict graphs. Let sAS, sa jSj ,
gAGs \ Gsþ1, and define Asg as the graph whose vertices corre-
spond to the simple routes in Ps that end with game g, as well as
the simple routes in Psþ1 that start with g. We denote the vertex of
Asg that corresponds to a given simple route p by vAsgðpÞ. Two ver-
tices of Asg, vAsgðp1Þ and vAsgðp2Þ are adjacent if, and only if, p1 and p2
either belong to the same section, or constitute an infeasible route
when put together. If we denote the set of cliques in Asg by Asg , (7)

Similarly, let Bs be a graph whose vertices correspond to the simple
routes in Ps for a given sAS. We denote the vertex of Bs that corre-
sponds to a given simple route p by vBs ðpÞ. Two vertices in Bs, vBs ðp1Þ and
vBs ðp2Þ, are adjacent if, and only if, p1 and p2 have a game in common. If
we denote the set of cliques in Bs by Bs, (8) is valid for T because of (2).

X
pj vBs ðpÞAC

xpr1; 8sAS;CABs: ð8Þ

Constraints (5) and (6) are called path inequalities, whereas (7) and (8)
are referred to as clique inequalities.

is clearly valid for T .
4. Separation routines for path and clique inequalities

Because the number of path and clique inequalities grows
exponentially with n, it is impractical to add them all to the model.
Instead, we develop separation routines to detect the violation of
these inequalities and use them as cutting planes. We start with a
few auxiliary results that improve the separation of path
inequalities, and describe the two separation routines afterward.

4.1. Auxiliary results for path inequalities

We call an infeasible route right-minimal (left-minimal) if it
becomes feasible once its rightmost (leftmost) simple route is
removed. An infeasible route is called minimal if it is both left- and
right-minimal.

Proposition 1. If U is not a right-minimal (left-minimal) infeasible
route, its corresponding inequality (5) (respectively, (6)) is redundant.

Proof. Let U be an infeasible route that is not right-minimal, and
let Z be the minimal set of simple routes in U whose removal
would make it into a right-minimal route U0. If we sum together,
for each pAZ, equalities (2) with s being p's section and g being p's
first game, and add the result to the inequality (5) corresponding
to U0, we end up with the inequality (5) corresponding to U. The
proof for the left-minimal case is analogous.□

Note that inequalities (5) corresponding to two right-minimal
infeasible routes that differ only in their last (rightmost) simple
route, are identical. Likewise, two left-minimal infeasible routes that
differ only in their first (leftmost) simple route give rise to the same
inequality (6). Therefore, we now present modified versions of (5) and
(6) that prevent our separation algorithm from generating repeated
inequalities. Let F be the set of feasible routes. Let F0 ¼ f
F ¼ ðf 1; f 2;…ÞAFj f j PðFÞj aP j Sj g and F″ ¼ fðf 1; f 2;…Þ AFj f 1aP1g be
the sets of feasible routes that exclude simple routes from the last and
first sections of T, respectively. Consider F 0 ¼ ðf 01; f 02;…Þ AF0,
F″ ¼ ðf ″1; f ″2;…ÞAF″, and define K þ ðF 0Þ ¼ PðF 0Þ [fpAP j ðf 01; f 02;…; f 0i;
pÞ is an infeasible route for some i¼ 1;…; jPðF 0Þj g and K � ðF″Þ ¼ Pð
F″Þ [fpAP j ðp; f ″i ; f ″iþ1;…; f ″j PðF″Þj Þ is an infeasible route for some
i¼ 1;…; jPðF″Þj g. Instead of using (5) and (6), we use (9) and (10),
Notice that (9) and (10) are respectively equivalent to (5) and (6), but
the former are defined in terms of feasible routes, whereas the latter
are defined in terms of infeasible routes. For instance, given a right-
minimal (resp. left-minimal) infeasible route U, inequality (5) (resp.
(6)) for U is equal to (9) (resp. (10)) for the feasible route obtained by
removing the last (resp. first) game in U. In addition, inequality (9)
(resp. (10)) for a given F eliminates only right-minimal (resp. left-
minimal) infeasible routes (see Proposition 1) and there is a one-to-
one correspondence between an inequality (9) or (10) and a feasible
route F from F0 or F″ because K þ ðFÞ and K � ðFÞ are uniquely deter-
mined from F.

Although our separation routines look for violations of (9) and

(10), these cuts can be dense, potentially leading to decreased
computational performance. Therefore, we add equivalent, sparser
versions of (9) and (10) to the formulation, which are given by (11)
and (12), respectively.

where ~K
þ ðF 0Þ ¼ fpAðP⧹PðF 0ÞÞj ðf 01; f 02;…; f 0i; pÞ is a feasible route for

some i¼ 1;…; jPðF 0Þj g, and ~K
� ðF″Þ ¼ fpAðP⧹PðF″ÞÞj ðp; f ″i ; f ″iþ1;…;

f ″j PðF″Þj Þ is a feasible route for some i¼ 1;…; jPðF″Þj g. Intuitively, (11)–
(12) are sparser than (9)–(10) because the ~K

þ
and ~K

�
sets used in the

former contain simple routes that yield feasibility, which tend to be
less numerous than the infeasibility-inducing simple routes of the K þ

and K � sets used in the latter. Given F 0, we obtain (11) by multiplying
(9) by �1 and adding to the result, for all i¼ 1;…; jPðF 0Þj , equalities
(2) with s¼ iþ1 and g equal to the last game in f 0i. Analogously, we
can combine the negation of (10) with (2) to obtain (12).

4.2. Separation routine for path inequalities

Algorithm 1 describes the separation routine for (9) for routes
that violate TUP constraints (iv) or (v). Given a solution xn (e.g. from
the linear relaxation of the current branch-and-bound node), we
enumerate the routes in F0 looking for violations of (9) by calling the
procedure SEP-FRWD-FREQ-REC for each section sAS, except for the last
one. SEP-FRWD-FREQ-REC recursively checks inequalities (9) for routes
that start in s, which could take exponential time. Hence, we stra-
tegically skip some routes, as described next.

Typically, most x variables are either zero or very close to zero
in the input solution xn, contributing very little to a potential
violation of (9). Hence, we disregard routes whose variables have
values below 0.001 by using the following sets inside SEP-FRWD-
FREQ-REC: Pþ ¼ fpAP jxnpZ0:001g, Pþ

s ¼ Ps \ Pþ , and Pþ
sg ¼ Psg\

Pþ
s . The steps in lines 8–16 of Algorithm 1 enumerate all feasible

routes obtained by adding simple routes from Pþ
sg (or Pþ

s when F is
empty) to the end of F (creating F 0). If F 0 violates (9) (line 17) by at
least 0.009 (to promote reasonable progress in the lower bound
value), the corresponding inequality (11) is added to the for-
mulation (line 18). In lines 20 and 21, routes derived from F 0 are
enumerated in a recursive fashion only when the next section is
not the last ðsþ1o jSj Þ and when

P
p0 AK þ ðF 0 Þ \P þ xnp0 4 jPðF 0Þj

�1þ0:009. If the previous inequality is not satisfied, routes that
extend F 0 cannot satisfy the condition in line 17. To see why,
consider a route F″ obtained by adding ℓ simple routes at the end

respectively.

of F 0. The inequality in line 17 for F″ will have a right-hand side
equal to jPðF 0Þj þℓþ0:009, and its left-hand side will have vari-
ables from the routes in K þ ðF 0Þ \ Pþ plus additional variables
whose values in xn add up to no more than ℓþ1, which results in
the inequality of line 20 after canceling ℓ on both sides. This check
prevents the unnecessary enumeration of a large number of
routes. Summations calculated in lines 17 and 20 are available to
subsequent recursive calls to allow for incremental updates, saving
additional computation time.

Algorithm 1. Separation routine for (9) for routes that violate TUP
constraints (iv) or (v).
We separate (10) for routes that violate TUP constraints (iv) or
(v) with simple modifications to SEP-FRWD-FREQ and SEP-FRWD-FREQ-REC,
creating their respective counterparts SEP-BCWD-FREQ and SEP-BCWD-
FREQ-REC. SEP-BCWD-FREQ calls SEP-BCWD-FREQ-REC for each section sAS,
except for the first. SEP-BCWD-FREQ-REC also enumerates routes, but
considering sections in reverse order, with the following modifications
to the steps in Algorithm 1. Game g becomes the first game of F in line
11. Route p gets inserted at the beginning of F in line 15. Inequalities in
lines 17, 18, and 20 are modified to be consistent with (10) and (12).
The first condition in line 20 becomes s�141. Finally, the third
parameter of the recursive call in line 21 becomes s�1.

Empirically, inequalities (9) and (10) that eliminate long
infeasible routes are not worth separating, when it comes to vio-
lations of (iv) or (v), unless they are minimal (i.e. both left-minimal
and right-minimal). Let ~U ¼ ð ~u1; ~u2;…Þ be an infeasible route that
only violates either (iv) or (v). If its internal route ð ~u2;…; ~u j Pð ~U Þj �1Þ
traverses at least qmax�1 rounds, ~U cannot be minimal, where
qmax ¼maxfq1; q2g. Therefore, we define subsets of F0 and F″ for
(9) and (10), respectively, which exclude inequalities that only
eliminate non-minimal routes violating (iv) or (v). Given a route
Q ¼ ðq1; q2;…Þ, let I0ðQ Þ and I″ðQ Þ be the number of rounds visited
by routes ðq2; q3;…; qj PðQ Þj Þ and ðq1; q2;…; qj PðQ Þj �1Þ, respectively.
We define ~F

0 ¼ fFAF0 j I0ðFÞoqmax�1g and ~F
″ ¼ fFAF″ j I″ðFÞo

qmax�1g, and implement separation routines SEP-FRWD-FREQ-MNL

and SEP-FRWD-FREQ-MNL-REC (resp. SEP-BCWD-FREQ-MNL and SEP-BCWD-
FREQ-MNL-REC) to separate inequalities (9) (resp. (10)) for routes in
~F
0
(resp. ~F

″
). Routine SEP-FRWD-FREQ-MNL-REC is obtained by mod-

ifying SEP-FRWD-FREQ-REC, as follows. The extra condition I0ðF 0Þþw
oqmax�1 is added to the “if” in line 20 and, of course, the
recursive call in line 21 becomes SEP-FRWD-FREQ-MNL-REC. Routine
SEP-BCWD-FREQ-MNL-REC is similarly obtained from SEP-BCWD-FREQ-REC

by adding the condition I″ðF 0Þþwoqmax�1 before its recursive
call. Routines SEP-FRWD-FREQ-MNL and SEP-BCWD-FREQ-MNL are similar
to SEP-FRWD-FREQ andSEP-BCWD-FREQ, but call SEP-FRWD-FREQ-MNL-REC

and SEP-BCWD-FREQ-MNL-REC, respectively.
We now turn our attention to violations of TUP constraint (iii).

The feasible routes in F0 (resp. F″) corresponding to inequalities (9)
(resp. (10)) that eliminate routes violating (iii) are those that miss
the home venue of at least one team and include simple routes
from each of the sections 1;2;…; jSj �1 (resp. 2;3;…; j Sj). These
inequalities can be separated by defining routine SEP-FRWD-VISIT-REC

(resp. SEP-BCWD-VISIT-REC) as a variation of SEP-FRWD-FREQ-REC (resp.
Sep-Bcwd-Freq-Rec). Essentially, the violated inequality should
only be added to the model when s¼ jSj �1 (resp. s¼2) and F 0

excludes the home venue of at least one team. Empirically, how-
ever, the amount of improvement to the lower bound obtained by
separating (9) and (10) for routes that violate (iii) was not worth
the extra time required by the separation routines. Therefore, we
decided to separate (13), instead:

where K 0ðF 0Þ ¼ PðF 0Þ [fpAP j ðf 01; f 02;…; f 0j PðF 0 Þj ; pÞ is an infeasible
routeg. Despite being weaker than (9)–(10) (since K 0ðF 0Þ � K þ ðF 0Þ
when j F 0 jZ2), (13) can be separated by enumerating a lot fewer
routes, which reduces computational effort considerably. Algo-
rithm 2 describes the separation routine for (13). It is similar to
SEP-FRWD-VISIT-REC, differing with respect to the summations cal-
culated in lines 12 and 16 of Algorithm 2. Even though it looks for
violations of (13), SEP-FRWD-VISIT-WEAK-REC adds to the formulation
the stronger inequality (11), as is done in Algorithm 1.

Algorithm 2. Separation routine for (13) for routes that violate
TUP constraint (iii).

Although the separation routines described so far are recursive,
which makes them easier to understand, they are implemented as
non-recursive procedures to improve their running time.

4.3. Separation routine for clique inequalities

weight xnp
A
sgðpÞ and vBs ðpÞ, we look for a maximum-

pZ0:01. The subgraphs of Asg and Bs
obtained this way are denoted by ~Asg and ~Bs. Additionally, as Cli-
quer only works with integer weights, the weight of vertices v ~A

sgðpÞ
and v ~B

s ðpÞ is converted to ⌊100xnpc, and since finding the maximum-
weight clique can be very time-consuming, we stop running Cli-
quer as soon as a clique of weight greater than or equal to 101 is
found. The strongest inequalities (7) and (8) are those associated
with maximal cliques in Asg and Bs, respectively. Therefore, once a
clique C is found in one of the subgraphs, we scan the corre-
sponding original graph looking for vertices not in C that happen
to be adjacent to all vertices of C. If such a vertex exists, it is
included in C and the procedure continues for the remaining
unverified vertices and the updated C. After scanning all vertices,
the violated inequality is added to the formulation. (See lines 8–12
in Algorithm 3, and lines 7–11 in Algorithm 4.)

Algorithm 3. Separation routine for (7).

to each vertex v
weight clique in either graph. A violated inequality exists if, and
only if, the maximum-weight clique found has total weight greater
than 1. Algorithms 3 and 4 describe the separation routines for

maximum-weight cliques. Because this is an NP-hard problem

tices for simple routes pwith xn

We separate (7) and (8) as follows. Given a solution xn, we start
by building graphs Asg and Bs . After assigning

(7) and (8), respectively. We use the Cliquer solver to look for

, we reduce the sizes of our two graphs by only creating ver-
Algorithm 4. Separation routine for (8).
5. Computational results

We perform computational experiments to show the relevance
of the cuts from Section 3.2, to assess the impact of parameter w
(the length of umpire trip sequences) on the lower bounds pro-
duced by the relaxation of our IP model, and to compare the
performance of our branch-and-cut algorithm with other methods
in the literature.

Our implementation is done in Cþþ using ILOG CPLEX's Callable
Library version 12.6.1, with GCC 4.6.3 as the compiler. All experiments
are carried out on a machine equipped with an Intel Xeon X3430
2.40 GHz processor and 8 GB of RAM, running Linux Ubuntu 12.04.3.

The problem instances we use come from the TUP benchmark

do not consider instances with fewer than 14 teams because they
are easily solved by the current state-of-the-art methods. Instance
names start with the number of teams in the tournament,
optionally followed by a letter. The presence of a letter indicates a
variation of the original instance (without the letter), keeping the
same tournament but changing the distance matrix. We consider
the usual values of q1 and q2 adopted in the TUP literature and, in
addition, include q1 ¼ q2 ¼ 5 for the instances with 26, 28, 30, and

Before we proceed, two aspects are worth emphasizing. First,
although the number of variables in our formulation grows
exponentially in w, we enumerate all of them a priori and add

for the number of variables in our test instances). The time spent
with this enumeration is already included in the solution times
reported in this section and never exceeds 15 s.

Algorithm 5. Enumeration of the model's variables.

, also present in the recently created automated benchmark
, which includes tournaments ranging from 4 to 32 teams. We

32 teams, which are also studied in .

them to the model from the beginning , rather
than resorting to on-the-fly variable generation

Table

Lowe
A second relevant aspect refers to the way we compare our
running times against those in [7–9], as their experiments were
conducted in computational environments different from ours.
Rather than trying to establish a reliable speed ratio between two
distinct CPUs (a very difficult task), for the purpose of assessing
our results it suffices to know that the machine we used is slower
than all of the others, as can be verified, for example, on the fol-
lowing web site: www.cpubenchmark.net (accessed in July, 2015).
Therefore, when we say that “we found a better lower bound, and
X times faster, than the one in [citation]”, it actually means that the
true speed-up is even greater than X. If the exact CPU speed ratio
was used in our comparisons, the conclusions could only become
more favorable to our method. With these observations in mind,
we continue with the analysis of the results.

5.1. The impact of our valid inequalities

We start by evaluating different combinations of the valid
inequalities presented in Section 3.2 to assess their impact on
solution times and lower bound strength. We solve the linear
relaxation of our IP model six times for each instance, each time
using a procedure consisting of distinct ordered subsets of the
1

r bounds and solution times for the linear relaxations MRi
w for iA ½1;6� (best lowe
separation routines from Section 4, chosen empirically, as follows:

The above procedures (combinations of separation routines)
are used in a cutting plane algorithm as follows. We start by sol-
ving the linear programming (LP) relaxation of a model that only
includes (1) and (2). Then, given iA ½1;6�, procedure Sepi is applied
to the optimal solution found, with its separation routines exe-
cuted in the order in which they appear above. When a routine
inside Sepi finishes its execution, the next routine is executed only
if the previous one did not add any violated inequalities to the
model. Otherwise, Sepi terminates, the model is re-optimized
(with the dual Simplex method), and Sepi is called again. This
process is repeated until no more violated inequalities are found.
Because SEP-FB-FREQ, SEP-FB-FREQ-MNL, and SEP-FB-VISIT-REC consist of
two routines each, they receive special treatment: their second

r bounds in bold).

Table 2
Lower bounds obtained with MR6

w for wA ½2;10� (best values in bold), and with the best models from literature (RNFM, RSPM, and RSPCM).

routine is always executed, even when their first routine adds
inequalities to the model.

Given a w, for each iA ½1;6� we denote by Mi
w the IP model

comprising (1), (2), (4), and all the inequalities separated by Sepi.
The linear relaxation of Mi

w, obtained by dropping (4), is denoted
by MRi

w . We solve each linear relaxation MRi
w with our cutting

plane algorithm and report the lower bounds and solution times
(limited to 3 h) in Table 1. In these experiments we use the same

We now compare the different linear relaxations based on the
results in Table 1. MR1

w comprises (1), (2) and (9), whereas MR2
w is

equal to MR1
w plus (10). Including (10) significantly improves the

lower bounds, increasing them by about 1300–5900 miles (0.9 to
3.2%) on instances with up to 16 teams, and by about 5100–
12 600 miles (1.8 to 3%) on instances with more than 16 teams. On
the other hand, solution time increases up to 6.23 times on all but
one 16-team instance, and up to 3.6 times on the remaining
instances. Instance 16 with q1 ¼ 8 and q2 ¼ 2 ends up taking 13.7
times longer to solve once (10) is included. MR3

w differs from MR2
w

only with respect to (9) and (10). In MR3
w , we disregard some

inequalities in (9) and (10) that eliminate non-minimal paths
violating (iv) or (v), as described in Section 4. MR3

w solves up to
twice as fast as MR2

w (1.37 times faster on average), whereas the
lower bounds given by the former are at most 174 miles less than
those of the latter, which is negligible. Because our heuristic
separation routine disregards variables with a value less than

values for w adopted in the branch-and-cut experiments
0.001, MR3
w actually yields greater lower bounds than MR2

w on
some instances (e.g. 16C with q1 ¼ 8 and q2 ¼ 2, and instance 18).
MR4

w includes all the constraints in MR3
w , except for those

inequalities in (9) and (10) that eliminate paths violating (iii),
which are replaced by the inequalities in (11) that induce the
satisfaction of (13).MR4

w solves slightly faster than MR3
w (1.05 times

on average), while the lower bounds produced by the former are at
most 105 miles shorter than those by the latter, which is negli-
gible. MR5

w is equal to MR4
w plus (7). Adding (7) leads to significant

improvements to the lower bounds, increasing them by about 800
to 5500 miles (0.6 to 3.5%) on the instances with at most 16 teams,
and by about 3700 to 13 000 miles (1.8 to 3%) on the instances
with more than 16 teams, with some exceptions: instances with
20 or more teams and q1 ¼ n, whose lower bounds remain the
same because no inequalities (7) are found to be violated within
the 3-h time limit. In terms of solution time, however, MR5

w solves
up to 4.2 times slower than MR4

w on 14-team instances, from 11 to
42.6 times slower on 16-team instances with q1 ¼ 8 and q2 ¼ 2,
and 13.7 times slower on the remaining instances. MR6

w includes
all the inequalities in MR5

w plus (8). Almost all of our best lower
bounds come from MR6

w , except when its execution reaches the
time limit, where it performs as well as MR4

w or MR5
w , or slightly

better/worse than MR2
w or MR3

w , since the latter include different
sets of inequalities from (9) and (10). Compared with MR5

w , MR6
w 's

lower bounds are up to 1600 miles (0.9%) greater on 16-team
instances with q1 ¼ 8 and q2 ¼ 4, and up to 490 miles (0.3%)
greater on the remaining instances. At first sight, since MR6

w solves

up to 3.32 times slower than MR5
w and yields small lower-bound

improvements, there seems to be no reason to advocate using (8).
Nevertheless, preliminary experiments with the branch-and-cut
presented in Section 5.3 indicate that (8) contributes to a sig-
nificant reduction in the size of the search tree. As a consequence,
we decide to focus on MR6

w in our subsequent experiments.

5.2. The impact of parameter w

Tables 2 and 3 present, respectively, the lower bounds and
solution times for MR6

w as w varies between 2 and 10. We only
solve LP models with up to 5 million variables and set a time limit
of 3 h. (The number of variables in the model for each instance and
value of w tested can be found in Appendix A.) Tables 2 and 3 also
include, on the right-hand side, the lower bounds and solution
times for the relaxations of the best IP models published at the

Lagrangian relaxation of a network flow model (RNFM), the col-

a set partitioning model (RSPM), and the column generation

with additional cutting planes (RSPCM). Although the lower

sponding solution times are different and appear, respectively, in

Tables 2 and 3 show that, although the solution time for MR6
w

increases considerably as w increases, the lower bound does not
always improve significantly and, sometimes, can evenworsen. For
example, consider instance 14 with q1 ¼ 7 and q2 ¼ 3. The lower

time of this writing: the dual ascent method in that solves a

umn generation method in that solves the linear relaxation of

method in that solves the same set partitioning relaxation, but

bounds reported in for the RSPM are the same, the corre-

columns RSPM [9] and RSPM of Table 3.
Table 3
Solution times (in seconds) for linear relaxations M R6

w with wA ½2;10�, and for the relax
bound with w¼6 takes 24.54 s to calculate but is never more than
155 miles below those obtained with w46, which take between
43.15 and 630.87 s to calculate. In addition, the lower bound found
for this instance with w¼8 is greater than those found with w48.
A possible cause for the deterioration of the MR6

w lower bounds as
w increases is the increase in model size. Because the linear
relaxations of larger models take longer to solve and our running
time is limited, fewer iterations of the cutting-plane algorithm are
executed. With fewer cuts, the dual bounds are expected to
decrease in quality. This behavior indicates that we must be careful
when choosing the value of w to use in our branch-and-cut
algorithm.

We now compare MR6
w against RNFM, RSPM, and RSPCM. Recall

that the variables of RNFM are equivalent to those of MR6
2 , but the

latter includes additional valid inequalities. On the 28 instances
with at most 16 teams, the lower bounds produced by MR6

2 are
between 1100 and 5478 miles greater than those produced by
RNFM. Moreover, 25 out of these 28 improved bounds require less
time to calculate with MR6

2 than with RNFM. On instances with 18
or more teams, even though MR6

2 can be up to 5.6 times slower
than RNFM, the lower bounds produced by MR6

2 are between 5701
and 11 972 miles greater than those produced by RNFM. The
variables of RSPM and RSPCM represent all complete routes that
satisfy (iii)–(iv), which are equivalent to the variables of MR6

4n�2,
i.e. a much larger value of w than the largest one we consider.
Note, however, that the lower bounds obtained by MR6

6 on 16-
team instances with q1 ¼ 7 and on all 14-team instances are
already better than those obtained by RSPM. Furthermore, on
these instances, MR6

6 solves between 3.9 and 35.8 times faster

ations of the best models from literature.

R6
6 bounds are at most

555 miles shorter than those obtained by RSPCM on the same
instances, while still taking less time to solve (between 9.9 and
88.4 times faster than RSPCM). Despite these good results, MR6

w
does not performwell on 16-team instances with q1 ¼ n¼ 8. MR6

w 's
best lower bounds on these instances are between 1442 and
3553 miles shorter, and between 1929 and 4544 miles shorter
than those obtained by RSPM and RSPCM, respectively, while
solving between 1.5 and 18.3 times more slowly than RSPM, as

perform MR6
w as q1 and q2 increase because this leads to an

increase in the number of routes that are forbidden in RSPM and
RSPCM which, otherwise, would have been part of valid fractional
solutions to MR6

w . As a consequence, MR6
w 's optimal solutions may

contain such routes, leading to weaker dual bounds. On instance

6378 miles (3.1%) and 7050 miles (3.4%) better than the best MR6
w

bound, they were obtained in 4 h and 57 min and in 6 h and 23
min, respectively.

MR6
w 's advantage becomes more pronounced as the problem

size increases, as evidenced by Tables 2 and 3. Because RSPM and
RSPCM have an exponential number of variables and the corre-
sponding pricing problem is time-consuming, these relaxations
take too long to solve for instances with more than 18 teams. In
addition to achieving good results on 16-team instances with q1
¼ 7 and on all 14-team instances, MR6

w can not only be solved
within 3 h for all instances with more than 18 teams, but also
produces the best lower bounds known to date for these instances.

5.3. Branch-and-cut results

Based on our earlier experiments, we develop a branch-and-cut
algorithm to solve M6

w due to the good performance of MR6
w .

Because (5)–(8) are exponential in number, we initialize our model
with (1), (2), and (4) only, and introduce (5)–(8) during the search
as they become violated. We invoke CPLEX callbacks at each node
in the search tree to perform the separations in procedure Sep6.

We use the following parameter settings in CPLEX's branch-
and-cut algorithm. Preliminary experiments show that CPLEX's
general primal heuristics do not find good solutions to M6

w.
Therefore, we focus on finding good lower bounds and on
optimality by setting the MIP emphasis parameter to “best bound”
and disabling primal heuristics. We also modify the MIP probing
level parameter to force the algorithm to run a moderate probing
on variables, since the time-consuming aggressive probing does
not improve the results. In particular, we noticed probing spent
too much time picking a branching variable on instances whose
linear relaxation takes a long time (over 1000 s) to solve. (See
column MR6

w in Table 1 to identify these instances.) Hence, on
these instances only, we set the MIP variable selection strategy
parameter to choose the variable whose value is farthest from
integer. This speeds up branching and increases the number of
explored nodes within the given time limit, which led to better
results. Finally, we disable the generation of all CPLEX's cuts to
better assess the impact of our own cuts.

Next, we conduct preliminary experiments to determine which
value of w to use for each instance in the benchmark based on the
speed/strength trade-offs identified in Section 5.2. Our tests indi-
cate that the branch-and-cut obtains better results by setting w¼4
for all instances with q1on and for 14-team instances with q1 ¼ n.
The MR6

4 lower bound for these instances is not too far from the
best one in Table 2 and it is calculated more quickly, allowing the
enumeration of many more nodes. For the remaining instances
with q1 ¼ n it is worth using time-consuming relaxations because
of the improved lower bounds. Therefore, these instances are

than RSPM is solved in , and between 1.5 and 67.9 times faster
than RSPM is solved in . These M

reported in . We believe that RSPM and RSPCM tend to out-

18, although RSPM's and RSPCM's bounds obtained in are
solved with the value of w that yields the best bound (bold
numbers) in Table 2.

We execute our branch-and-cut algorithm with time limits of
3 and 24 h to allow a fair comparison between our results and
existing ones in the literature. We report the best lower bounds
obtained within each time limit in Table 4. Column “Lower bound”
contains the final (best) lower bound value, “Iterations” stand for
Simplex iterations, and “Cuts” are the total number of violated
inequalities added by Sep6. Instances with lower bounds displayed
in bold and marked with an “n” were solved to optimality by our
algorithm. These are the only upper bounds found within the
given time limits.

As seen in Table 4, we solve to optimality all of the 14-team
instances with q1 ¼ 5 and q2 ¼ 3, and all but one of them within 3
h. The only previously published method capable of optimally
solving instances with more than 12 teams is the branch-and-

instances 14 and 14A with q1 ¼ 5 and q2 ¼ 3 after 34:45 h and
11:24 h, respectively, whereas we solve all 14-team instances with
q1 ¼ 5 and q2 ¼ 3 in no more than 3:10 h (14, 14A, and 14B only
require 31, 9, and 17 min, respectively). The results reveal that the
majority of the improvement in the lower bound is achieved by
the branch-and-cut within the first three hours of computation.
Extending the time limit to 24 h only produces an increase of
1368 miles in the dual bound on average, although the gain largely
varies from an instance to another, as its standard deviation is of
1413 miles.

To complement the information in Table 4, we now present the
percentage of separated cuts that come from each family of
inequalities on average (followed by 7 its standard deviation).
With execution times limited to 3 h, the averages are: 18:5%7
14:3% from (7), 12:2%712:8% from (8), 30:6%711:6% from (9),
36:3%715:5% from (10), and 2:4%78:4% from (13). With
execution times limited to 24 h, the figures are similar: 21:2%7
16:9% from (7), 11:9%79:6% from (8), 30:2%711:1% from (9),
35:4%714:5% from (10), and 1:3%77:1% from (13).

In Table 5 we compare, with matching times, the lower bounds
found by our branch-and-cut algorithm (BC) with the best lower
bounds available, which were obtained by the following methods:

reported for two time limits: up to 3 h (which we call DA3), and
over 3 h (which we call DAþ). Methods BB and BP were limited to
run for 3 h, whereas BPC and BB-DLB were limited to 48 h. Unlike
the other methods, BB-DLB found many optimal solutions and
infeasibility proofs before reaching the time limit. Therefore, for
those results, we include BB-DLB's corresponding execution times
in the last row of Table 5. We compare the lower bounds found by
BC within 3 h with those obtained by BB, BP, DA3, and BB-DLB
within 3 h, and the ones found by BC within 24 h with those
obtained by DAþ , BPC and BB-DLB in more than 3 h. As before,
lower bounds marked with an “n” are optimal. A lower bound
appears in bold if no better one was found within the time the
former one was obtained.

According to Table 5, it seems that BB-DLB is better suited for
smaller instances, whereas BC is more appropriate for larger ones.
To see this, we divide our analysis in two complementary groups
of instances. The first (SMALL) is composed of instances having up to
18 teams, while the second (LARGE) contains the remaining
instances (with 20 or more teams).

For 20 of the 29 instances in the SMALL group, the BB-DLB lower
bounds are strictly greater than those found by the other methods.
BB-DLB solves 19 instances to optimality and produces 4 proofs of

price-and-cut presented in . It found optimal solutions to

the decomposition approach (DA) in , the branch-and-price (BP)
in , the branch-and-bound (BB) and branch-and-price-and-cut
(BPC) in , and the branch-and-bound with decomposition-
based lower bounds in (BB-DLB). In , DA results are

Table 4
Lower bounds obtained with the branch-and-cut algorithm. Asterisk indicates proven optimality.

infeasibility not known before. BPC and BC only solve 2 and
4 instances to optimality, respectively.

We now focus on the 11 instances in the LARGE group, whose
sizes come closer to the actual number of teams in MLB. Not all
methods can handle instances this big and, therefore, several
results are missing for many of them. Results for BB, DA3, DAþ ,
and BB-DLB are only available for 7, 1, 4, and 7 instances in the
LARGE group, respectively. These results, as well as those for BC,
appear in the last 11 rows of Table 5. We start with the results
obtained within 3 h of computation. Under this limit, the data for
BC, BB, and DA3 are available: BC produces results for all 11
instances, BB for 7, and DA3 for just one instance. BC is clearly the
winner as it computes the best lower bound for all the instances in
LARGE. The average/max/min improvement in the lower bound
values is of 23 548.4/32 379.7/11 571.4 miles, with a standard
deviation of 6718.9 miles.

The advantage of BC over the other methods in dealing with
instances in the LARGE group is confirmed when we extend the
analysis to the results obtained with more than 3 h of computa-
tion. In this case, two other methods are considered in addition to
BC: DAþ and BB-DLB. These two methods can be viewed as
complementary with respect to LARGE in the sense that there are
results reported for exactly one of them for each instance in this
group, 7 for BB-DLB and 4 for DAþ . BC's lower bounds are the best
in all 11 cases. The average/max/min improvement in the lower
bound values is of 38 248.0/99 108.5/2644.5 miles, with a standard
deviation of 32 671.3 miles. Furthermore, note that BC lower
bounds remain the largest ones even when it is restricted to run
for no more than 3 h, while the other methods are allowed to run
for longer periods of time. One possible explanation could be that
BB-DLB seems to suffer from scalability problems, as its good
performance on SMALL instances does not carry over to LARGE. In fact,
the BB-DLB lower bounds for LARGE instances turn out to be worse
than those generated by BB in 3 h (we disregard here the 30-team
instance with q1 ¼ 15 and q2 ¼ 7 for which no BB bound is
available).

Finally, we assess whether or not it is advantageous to allow
more computation time to BC in terms of lower bound improve-
ment. Comparing the results in columns 4 and 8 for the last eleven
rows of Table 5, we see that the average/max/min increase in the
lower bound, when going from 3 to 24 h, is of 2542.6/5908.9/
366.1 miles, with a standard deviation of 1833.9 miles. These fig-
ures are roughly one order of magnitude smaller than those
coming from the comparison between BC and the other methods.
This is an indication that no substantial lower bound gains are
likely if we keep running BC for much longer.

Table 5
Comparison between branch-and-cut lower bounds and best lower bounds from the literature. The time (in seconds) spent by BB-DLB to prove optimally or infeasibility
appears between parentheses in the last column.

6. Conclusions and future work

We introduce a parametrized IP model for the TUP that gen-
eralizes the two best existing models, which are based on network
flows and set partitioning. Our parametrization determines the
length w of umpires’ trip sequences, which range from 2 to 4n�2
games and are represented as binary decision variables in the
model. This flexibility allows us to explore the trade-off between
solution speed (when trip sequences are short) and lower bound
strength (when trip sequences are long). This model is further
strengthened by new families of strong valid inequalities, which
are added to the formulation as they are found to be violated
inside a branch-and-cut (BC) algorithm.

Our computational results attest the relevance and impact of
our inequalities and confirm the speed/strength trade-off as a
function of w. BC was developed with the goal of solving instances
of realistic size. Our experiments show that it scales better than
existing alternatives because it continues to find strong lower
bounds even for instances with 20 or more teams, improving all
best known lower bounds for these instances. Although smaller
instances were not the focus of this work, it is remarkable that
only one method performed better than BC on instances having
between 14 and 18 teams. Because of its robustness in producing
high-quality bounds for both small and large instances, we believe
that BC currently ranks as one of most competitive methods for
the TUP.

As future work, we intend to study primal heuristics that can be
embedded in our BC algorithm to help prune the search tree more
quickly. In addition, instead of including all of our variables a
priori, we plan on pricing them into the formulation dynamically
(as in a branch-and-cut-and-price algorithm) to improve solution
speed. We foresee the pricing problem to be challenging because it
needs to account for our specific cutting planes, but we believe the
ability to solve smaller linear relaxations will more than com-
pensate for the extra pricing effort.
Appendix A. Number of variables in the optimization model

Table A1 shows the number of variables in the model presented
in Section 3 for all instances and values of w between 2 and 10.
Empty entries indicate that the given pair (instance, w) would
produce a model with more than 5 million variables, which we do
not consider in our experiments. Because instances with letters in
their names have the same tournament and, therefore, the same
variables as the original instances, they are omitted from Table A1.

Table A1

Number of variables in our optimization models with w varying from 2 to 10.

	Lower bounds for large traveling umpire instances: New valid inequalities and a branch-and-cut algorithm
	Introduction
	Previous work
	Optimization model
	Initial integer programming formulation
	Strong valid inequalities

	Separation routines for path and clique inequalities
	Auxiliary results for path inequalities
	Separation routine for path inequalities
	Separation routine for clique inequalities

	Computational results
	The impact of our valid inequalities
	The impact of parameter w
	Branch-and-cut results

	Conclusions and future work
	Number of variables in the optimization model
	References

