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Column generation based approaches for a tour scheduling problem

with a multi-skill heterogeneous workforce
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To solve this problem, we developed four methods: a compact Mixed Integer Linear Programming

model, a branch-and-price like approach with a nested dynamic program to solve heuristically the sub-

problems, a diving heuristic and a greedy heuristic based on our subproblem solver. The computational

results, based on both real cases and instances derived from real cases, demonstrate that our methods

are able to provide good quality solutions in a short computing time. Our algorithms are now embedded

in a commercial software, which is already in use in a mini-mart company.
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In this paper, we address a multi-activity tour scheduling problem with time varying demand. The objec-

tive is to compute a team schedule for a fixed roster of employees in order to minimize the over-coverage

and the under-coverage of different parallel activity demands along a planning horizon of one week. Nu-

merous complicating constraints are present in our problem: all employees are different and can perform

several different activities during the same day-shift, lunch breaks and pauses are flexible, demand is

given for 15 minutes periods. Employees have feasibility and legality rules to be satisfied, but the objec-

tive function does not account for any quality measure associated with each individual’s schedule. More

precisely, the problem mixes simultaneously days-off scheduling, shift scheduling, shift assignment, ac-

tivity assignment, pause and lunch break assignment.
. Introduction

uantity of research papers have developed models and meth-

ds to assist managers and planners in their employee scheduling

asks (more than 300 papers published between 2004 and 2012

or a large part of their operational costs. This problem raises con-

iderable computational difficulties, especially when certain factors

re considered, such as employee availability, fairness, strict la-

or rules, highly variable work demand, mixed full and part-time

Employee scheduling is an important issue in retail

as personnel wages account

contracts, etc. Since the seminal work of Dantzig , a large
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estrepo, Gendron, &

ousseau, 2015) to combine days-off scheduling, shift scheduling,

hift assignment, activity assignment, pause and lunch break

ssignment.

Several features of our problem are still considered as ma-

ndividual constraints and flexibility of employees, integrated

In this paper, we study a real-life multi-activity tour schedul-

ng problem with highly heterogeneous employees and flexible

orking hours. Given a fixed set of employees, the objective

s to construct their work schedule or planning that minimizes

he distance to the ideal coverage of the demand. Numerous

omplicating factors described in the literature are taken into

ccount and, to the best of our knowledge, this paper is one

ere surveyed in Van Den Bergh, Beliën, De Bruecker, Demeule-

eester, & De Boeck ). For a comprehensive literature review

f classical studies on this problem, we refer to.

f the first attempts (in parallel with R

or issues in the recent literature :

ays-off, shift scheduling and assignment and multi-activity
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the lunch break assignment between two timeslots is taken into

account in most research papers, pause assignment during activ-

family of problems, they cannot be used directly to solve large

propose heuristics based on those ILP models to reduce their com-

putational burden. Heuristic methods can be obtained by applying

good shifts are computed, and then employees are assigned to the

shifts in a second phase. Unfortunately, this technique cannot be

applied directly to our problem, where each employee can change

as availabilities, skills and pre-assignments. When the time hori-

zon is large, and the problem can be solved for a smaller time

horizon (typically one week) without risking infeasibilities for the

smaller time horizons are solved in an iterative manner. In our

problem, the total number of worked hours for each employee is

fixed, which may lead such method to unfeasible schedules.

Many algorithms for solving such employee scheduling prob-

grammar. Another recent work on the subject was realized by

method to solve a tour scheduling problem. The main ingredients

of their approach are the use of variables related to day-shifts,

which are recombined in the master problem, and stabilization

strategies to reduce the number of column generation iterations.

in the context of employee-scheduling. They use a nested dynamic

programming approach, which is well-suited to the structure of

their problem.

Our approach is also based on a branch-and-price algorithm.

However, the problem settings do not allow us to use directly the

shifts. This leads to a prohibitively large pricing problem solution

time. Since our aim is to handle real-life instances, we had to use a

heuristic version of the branch-and-price, where some constraints

are treated heuristically in the subproblem. The hierarchical struc-

ture of our shifts called for an ad-hoc specific nested dynamic pro-

efficient than a straightforward dynamic programming approach.

An important practical requirement is to find a good solution

in a short amount of time (a few seconds for 100 employees). To

respect this time limit, we designed a greedy algorithm based on

our dynamic program. Also, a diving heuristic is proposed for cases

when we have several minutes of computational time. Our algo-

rithms have been implemented and are now embedded in a com-

mercial software. They are able to find feasible solutions with good

quality in a small or reasonable time for all test cases that were

provided by our industrial partner. Our algorithms are now in use

in a mini-mart company.

assignment.
Although

ities themselves remains a gap in the academic literature

Although integer linear programming (ILP) models exist for this

a hierarchical decomposition. First,

activity during his shift and has his very specific features such

scale problems with many constraints. Therefore, several works

To our knowledge, only deals with both types of breaks at the same time.

planning, an interesting approach is
to use a rolling horizon heuristic, where the problems related to

. Recent papers address shift or
lems are based on the column-generation approach.

tour scheduling problems with branch-and-price methods. Boyer,

proaches rely on the description of shifts using a context-free

Restrepo et al. use branch-and-price to solve 
very general multi-activity shift scheduling problems. Their ap-

Brunner and Stolletz . They use an ad-hoc branch-and-price

Another recent work uses branch-and-price

algorithms from

In our problem, each employee is different, the time

horizon is much larger than the ones in Boyer et al.

, and many constraints restrict the construction of the

gram , which proves to be much more
In Section 2, we describe formally our problem. Our column

eneration framework is presented in Section 3, followed by the

ested dynamic program used to solve the pricing problem in

ection 4. Our heuristic algorithms based on column generation

re presented in Section 5, while computational experiments on

eal and generated instances are reported in Section 6.

. Problem description

The problem consists in scheduling a fixed workforce to max-

mize the fit to a given time-varying demand. The planning hori-

on consists of D consecutive days. Each day is divided into the

ame number of successive time periods of equal length (15 min-

tes in this paper). Set T represents the different time periods in

he discrete planning horizon. The set of heterogeneous employees

s denoted by E .

The whole set of activities that employees can carry out is di-

ided into two distinct groups: production activities A, related to

ork demands, and pause activities P, related to non-productive

ctivities. In our retail context, a production activity can repre-

ent, for example, the welcome desk, a cash desks line or a meat

ounter. Each employee e ∈ E has a set of production activities

(e, t) that he/she can perform at time period t. Set P(e, t) con-

ains a pause if employee can take it at time period t; this set

s empty otherwise. The beginning and the length of a pause are

trictly constrained by the personalized pause policy of the com-

any agreement. An employee e is unavailable at time period t if

f an em-

loyee is unavailable the entire day, then a day-off has to be sched-

led. Some employees may be pre-assigned to activities for certain

ime periods. In this case, finding a schedule that respects this pre-

ssigned tasks is a part of the problem.

The work demand DEa, t represents the ideal number of em-

loyees needed to realize production activity a in the best possible

onditions during time period t (see the representation given in

ig. 1). Satisfying exactly the demand is not mandatory : in most

ases it is not possible. In this case, either an under-coverage, or an

ver-coverage is produced. Furthermore, if over-coverage (respec-

ively under-coverage) exceeds the given threshold OVa, t (respec-

ively UNa, t), then it becomes critical and indicates that too many

respectively too few) employees have been assigned to activity a

uring time period t.

Our objective is to construct a feasible team schedule that min-

mizes the sum of the over-coverage and under-coverage costs for

he whole planning horizon and all production activities.

.1. A hierarchical structure of a team schedule

A feasible solution follows a hierarchical structure (see Fig. 2).

or each level of the hierarchy, there is an associated set of con-

traints. This flexible structure does not rely on the use of a pre-

omputed day-shift or individual planning library, since the num-

er of possibilities is far too large.

• A team schedule consists of a set of |E| valid employee plan-

nings.
• An individual planning for employee e is a set of successive day-

shifts and days-off over a week. Two consecutive day-shifts are

separated by a rest break.
• A day-off represents a special day when employee e does not

participate in any activity. Deciding whether or not an em-

ployee takes a day-off is part of the optimization process (but

some days-off are mandatory if the employee is unavailable). 

 

(e, t) ∪ P(e, t) = ∅. In this case, the planning computed for em-

loyee e cannot contain any activity at time t. Note that i

http://dx.doi.org/10.1016/j.ejor.2016.01.036
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Fig. 2. Hierarchical structure of a team schedule.
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Table 1

Planning constraints over an horizon of one week.

−

A timeslot of employee e ∈ E beginning at time b

Rest (lunch) duration

Minimum working time of

A weekly individual planning of employee e ∈ E

Number of consecutive

Rest duration between

c

p

t

A

d

s

k

e

b

b
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A task of employee e ∈ E performing activity a ∈ A
Duration

Finishing time

Number of tasks

Beginning time b

Beginning time

A day-shift of employee e ∈ E on day d

Finishing time

Working time

Duration

Number of timeslots

Between timeslots

At least one timeslot

Target working time

Number of day-shifts

day-shifts

Consecutive day-shifts

c

Fig. 1. Representation of the workload for a production activity : the ideal number of employees required to cover the demand is in gray, the thresholds of critical under-

coverage and overcoverage are given respectively in black and white.
• A day-shift consists of one timeslot or two timeslots separated

by a lunch break.
• A timeslot is a non-empty sequence of tasks where different ac-

tivities are carried out successively and continuously. Two con-

secutive tasks cannot be related to the same activity. The set of

possible beginning times of all timeslots of employee e is de-

noted as Be. This set contains disjoint intervals, some of them

are for the first timeslot of a day, others are for the second.
•

xample 1. For a given day, an employee works from 8.00 AM

o 12.30 AM during his first timeslot, then takes a one-hour

unch break, and finally does his second timeslot from 2.00 PM to

.00 PM. During the first timeslot, three tasks are performed : from

.00 to 9.00 in activity a, then from 9.00 to 11.00 in activity b, and

nally from 11.00 to 12.30 in activity c. His second timeslot is de-

oted to the single task with activity b. According to the pause pol-

cy, a single pause is assigned from 9:00 AM to 9.15 AM during the

rst timeslot.

.2. Planning constraints

In this paper, we take into account constraints that we have

ncountered in real-life customer contexts. Each employee has his

wn set of planning constraints and each constraint has its own

arameters.

At each level of the team schedule hierarchy, duration and nu-

erical constraints have to be satisfied. In Table 1, we list these

onstraints grouped by levels of the hierarchy. Note that duration

f entities possibly include breaks (pauses and lunches), whereas

orking time equals to the “net duration” that excludes the breaks.

urthermore, an important feature in this problem is that each em-

loyee has a target of weekly working time LEe that must be met

xactly.

We stress the fact that each employee is different: he/she has

is own skills, potential pre-assignment and availability for each

ime period, etc. A day-shift designed for an employee e is not

ikely to be valid for another employee e′.

.3. Pause assignment policy

There are numerous pause assignment policies in practice. In

his work, we use the following rules. First, pauses are not in-

A task is a time interval where a single activity a is performed

over contiguous time periods. Activity a can be either a produc-

tion activity or a pause.
luded in the working time. There is at most one pause assigned

er timeslot. The pause is assigned if and only if the duration of

he timeslot is at least four hours (including the pause duration).

pause must be located in the second third of its timeslot, and its

uration is exactly one time period. Some pauses can be initially

et at some time periods as pre-assignment constraints.

In our settings, each pause is positioned inside an existing task

. The two parts of task k before and after the pause are consid-

red as a unique task, i.e. the two constitute a single task with one

eginning and one end. Note that pauses are different from lunch

reaks in our models: a lunch break separates the day-shift into

wo timeslots.

. Our column generation approach

ell adapted to our scheduling problem, since it consists of dis-

oint subproblems (one per employee) that are linked by demand

consists in designing a valid individual planning respecting the 

The Dantzig–Wolfe decomposition is

onstraints. Similar to Dantzig , the subproblem for employee

http://dx.doi.org/10.1016/j.ejor.2016.01.036
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Fig. 3. Piecewise-linear objective function for a given production activity and time period.
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specific set of constraints of employee e, but disregarding the re-

quirements dealing with the others plannings. The master problem

combines the employee plannings (columns) to minimize the total

cost of over-coverage and under-coverage.

Another version of the set-covering model for the tour schedul-

representing plannings, the author uses (day-)shift variables that

are combined in the master problem to form valid plannings. Our

employees are different and therefore each planning is associated

to exactly one employee, and the total number of working periods

in a planning is a fixed parameter. In our model, we keep the orig-

3.1. Master problem

Let X (e) denote the set of individual plannings (or columns) for

employee e and C(e) its column index set: X (e) = {Xc}c∈C(e). Each

column Xc is represented by a vector [xc,a,t ] where:

xc,a,t =
{

1 if employee is assigned to activity a at time
period t in planning c,

0 otherwise.

A binary variable qc, c ∈ C(e), e ∈ E, determines whether indi-

vidual planning Xc is chosen for employee e. Continuous variables

ova,t , una, t, ovcrit
a,t , and uncrit

a,t , t ∈ T , a ∈ A, represent, respectively,

over-coverage, under-coverage, critical over-coverage, and critical

under-coverage of the demand of activity a at time period t.

The cost function is piecewise linear and its structure is rep-

resented in Fig. 3. It depends on slack variables related to de-

mand constraints. For a given solution {qc

given production activity a and a time period t, the coverage of

the demand can be computed as DEa,t − ∑
c xc,a,t qc. We distin-

guish over-coverage ova,t (resp. under-coverage una, t) from criti-

cal over-coverage ovcrit
a,t (resp. critical under-coverage uncrit

a,t ) that oc-

curs when the over-coverage (resp. under-coverage) is greater than

OVa, t (resp. UNa, t). When critical over/under-coverage is reached,

a larger unit cost has to be paid.

The master problem can be formulated as follows:

problem settings do not allow easy recombinations of shifts: all

ing was proposed by Stolletz. Instead of using variables

inal planning variables, similar to what is done in Dantzig .

t∈T ,a∈A

: c ∈ C(e), e ∈ E}, for a
The piecewise objective function (1) minimizes the total cost of

ver-coverage and under-coverage over the planning horizon and

a ∈ R+ and CUa ∈ R+ rep-

esent, respectively, the unitary costs of over-coverage and under-

overage for production activity a. Constant values COcrit
a ∈ R+ and

Ucrit
a ∈ R+

a < CUcrit
a and

Oa < COcrit
a .

Constraints (2) link the decision variables and calculate the gap
etween the produced work and the work demand DEa, t for each

ime period and each production activity. Constraints (3) assign ex-

ctly one individual planning to each employee e.

.2. Pricing subproblems

The pricing problem decomposes into |E| independent subprob-

ems (one for each employee). Let [πa,t ]t∈T ,a∈A be the dual values

elated to master problem constraints (2) and [πe]e∈E be the dual

alues related to master problem constraints (3). The subprob-

em for employee e consists in finding a feasible individual plan-

ing (denoted by vector X = [xa,t ]t∈T ,a∈A) with the minimum re-

uced cost. We use variables xa, t, which will be used to construct

he constant column descriptors xc, a, t in the master problem. Re-

all that X (e) denotes the set of individual planning (or columns)

or employee e. The subproblem for employee e can be stated as

ollows.

roduction activities. Constant values CO

represent respectively the costs of critical over-coverage

nd under-coverage for production activity a. Critical over-coverage

nd critical under-coverage have larger costs: CU

http://dx.doi.org/10.1016/j.ejor.2016.01.036
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.3. Acceleration strategies

Acceleration techniques are key elements for the efficiency of

ur column generation approach. Several papers list strategies for

pecifically for employee scheduling problems in Brunner and Stol-

owing strategies.

1. Instead of adding one column with the best reduced cost, we

add to the restricted master problem several negative reduced

cost columns at each iteration. Practically speaking, at each it-

eration of the column generation method, we add the best col-

umn found for each employee if it has a negative reduced cost.

This means that at most |E| columns are added at each itera-

tion. This method dramatically decreases the number of column

generation iterations.

2. After solving a restricted master problem, if the number of vari-

ables exceeds a given threshold (more than 5000 columns in

practice), then we delete all variables with a reduced cost ex-

ceeding 10−12.

3. The lagrangian lower bound is computed at each iteration

to stop the algorithm earlier if this bound and the solution

value of the restricted master are equal. The lagrangian lower

bound is computed as follows. Let OPT(RMP) be the optimum

of the current reduced master problem and RC(SPe) be the

best reduced cost of a variable generated by subproblem e at

the current iteration. The lagrangian lower bound is equal to

OPT (RMP) − ∑
e∈E RC(SPe).

We have also tried to apply dual price smoothing stabilization

ver, it did not have a clear positive impact on the solution time.

rom stabilized column generation in a branch-and-price algorithm

or a similar shift scheduling problem. We conjecture that the ex-

lanation for this different stabilization impact comes from the

resence of the total working time constraint in our variant of

he problem. Preliminary experiments showed that the dual price

moothing stabilization improves a lot the column generation so-

ution time once this constraint is removed.

We also tried to solve only one pricing subproblem at each step

by considering only one employee), or to add only the column

f best reduced cost among all subproblems. In both cases, the

ethod was less efficient. This can be explained by the fact that

olving the master problem takes a large amount of time. More-

ver, several subproblems are solved in parallel, which helps re-

ucing the time spent to solve all subproblems.

. A nested dynamic program for the pricing subproblem

A pricing subproblem corresponds to finding the best individ-

al planning for one employee according to his set of constraints.

n this section, we discuss two possible ways from the literature

o formulate this problem. Then we present our nested dynamic

rogramming algorithm.

.1. Limits of the resource constrained shortest path formulation

The pricing subproblem can be formulated as a resource-

onstrained shortest path problem (RCSPP) in a directed acyclic

raph (DAG). In this DAG, each arc is characterized by a cost to

se it and a set of resource consumptions while each node is

haracterized by a position in time and an amount of resource

onsumption already used for each resource. The objective is to

nd a path from a source node to a sink node that minimizes

he overall cost and satisfies the resource consumption bounds. In

his purpose, and more

etz . We used the fol-

in order to accelerate column generation. How-

ote that reports very good speed-ups
n exact dynamic programming algorithm based on relaxations

nd alternated forward and backward searches to solve shortest

ath problems involving a huge number of local resource con-

traints. This algorithm is much more efficient when only upper

ounds are considered. When both lower and upper bounds co-

xist, the dominance relations, used to reduce enumeration, are

n exact method capable of handling large-scale networks in a rea-

onable amount of time.

In our problem, we have a large number of lower and upper

ounds for the resource consumption, and some arc costs are neg-

tive. This weakens considerably the dominance rules used in the

olution methods for the resource-constraint shortest path prob-

em. Preliminary experiments confirmed that this approach was

ot efficient for our problem.

.2. Limits of the grammar-based formulation

The structure of individual plannings makes the subproblem

uitable for a solution method that uses context-free grammars,

cheduling problem (horizon with a single day) and in Restrepo

amely, for each employee e ∈ E we can define a grammar which

escribes the set of all valid plannings for e. Based on this gram-

ar, a directed acyclic hyper-graph (called graph with or-nodes

We have performed preliminary experiments with this ap-

roach and obtained the following results. A considerable num-

orizon result in a huge hyper-graph. Therefore, the construction

f this hyper-graph takes a large amount of time, making it im-

ossible to embed the grammar-based dynamic program in a fast

euristic. Moreover, even if the graph is constructed, this algorithm

akes too much time to be called at every column generation iter-

tion to solve the subproblem.

Therefore, we designed a nested dynamic programming algo-

ithm. In order to reduce its running time, we heuristically remove

ome states, as it is explained below.

.3. A nested dynamic programming algorithm

The specific structure of our problem leads to the following ob-

ervations.

• There are a large number of resource constraints, but only a

subset of them are active at a given node.
• Many paths share identical subpaths. Due to the hierarchical

structure of the planning, the best day-shift for a given day is

likely to be used in many non-dominated partial solutions.

This led us to design an alternative approach based on a nested

ynamic program. A relevant and similar approach is described

n a nurse rostering problem by using 3 levels and 2 segmenta-

ions. We call segmentation the phase where levels k and k − 1 are

ombined. If the number of levels is z, then the number of seg-

entations should be z − 1. In the first segmentation, the method

ombines day-shifts to design the best feasible sequence, this se-

uence is completed at the end with days-off to find the best fea-

ible blocks of workdays. In the second segmentation, it combines

he block of workdays to get the best individual planning. 

 

ngineer, Nemhauser, and Savelsbergh , the authors present

eaker. Another recent work propose

ike it is done in Boyer et al. for a shift

t al. for a tour scheduling problem (horizon of 7 days).

nd and-nodes in can be constructed. Every

er of bound constraints and a long time

y Dohn and Mason to find the best individual plannings

nit flow in this hyper-graph defines a feasible individual planning

or e. So the search for an individual planning with the best re-

uced cost can be done using a dynamic programming algorithm

hat seeks a min cost unit flow in the hyper-graph.

http://dx.doi.org/10.1016/j.ejor.2016.01.036
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Fig. 4. Nested dynamic programming segmentation.
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We have adapted the nested method to the specific features

For each employee e, we build an individual planning Xc ∈ X (e)

The bottom-up presentation of the method consists in calculat-

ing the best reduced costs of the following entities: task, timeslot,

day-shift and individual planning.

4.3.1. Reduced cost of a task

For an employee e ∈ E, let αe(b, f, a) be the reduced cost of

the task in which the employee starts activity a ∈ A at period b,

and finishes it at period f. Note that this task is valid for the em-

ployee, if it respects the duration bounds and employee skills and

pre-assignments. We set the reduced cost of an invalid task to +∞.

Then, the formula for the reduced cost calculation is:

4.3.2. Reduced cost of a timeslot

For an employee e ∈ E, let ¯

We denote β̄e(b, d, n, −) the best reduced cost without impos-

ing the constraint on the first task activity:

Let now β̂e(b, f ) be the best reduced cost of a complete times-

lot, which starts at period b and finishes at period f. Note that this

timeslot is valid for the employee, if its starting time is in Be, it re-

spects the completion and duration bounds, and the bounds on the

number of tasks it contains. We set the reduced cost of an invalid

timeslot to +∞. Then, the formula for the reduced cost calculation

is:

of our problem by using 5 levels and 4 segmentations.

βe(b, f, n, a) be the best reduced cost

of a partial timeslot, which starts at period b, finishes at period f,

contains a sequence of n consecutive tasks, the first of which does

not perform activity a. The following recursion formula is used for

the reduced cost calculation:

by combining day-shifts constituted by one or several timeslots,

themselves composed of tasks. To manage easily path dominance

rules and symmetries, the dynamic programming algorithm is seg-

mented into several sub-problems according to the hierarchical

structure of the planning. At each level, the design of a given entity

consists in combining the valid entities of the level immediately

below.
Note that at this moment the pause policy may not be re-

pected, as until now pauses are not included in timeslots. After

alculating values β̂, every timeslot without a pause and lasting

ore than four hours is replaced by one timeslot with a pause.

or practical purposes, this is done in a greedy manner: we put

he pause to a period in the second third of the timeslot such

hat its reduced cost is minimized. The pause replaces the corre-

ponding work period such that the duration of timeslot is not in-

reased. Note that this greedy approach for inserting pauses makes

he whole dynamic programming procedure heuristic (sub-optimal

olutions may be generated).

If a pre-assigned pause is contained inside a timeslot, and it

s not positioned in the second third of it, such a timeslot is de-

lared invalid, and its cost is set to +∞. The same happens if the

mployee cannot take any pause (P(e, t) is empty for all time mo-

ents in the second third of the timeslot).

Let βe(b, f) be the best reduced cost of a timeslot, which starts

t period b, finishes at period f, and respects the pause policy.

et �(b, f) be this timeslot’s working time, which can be uniquely

etermined from its duration ( f − d + 1) according to the pause

olicy.

.3.3. Reduced cost of a day-shift

For an employee e ∈ E, let δκ
e (d, b, f, �) be the best reduced cost

f a day-shift of day d that starts at period b, completes at period

, contains κ timeslots and � working periods. A valid day-shift

hould satisfy starting, completion, working time bounds and the

aily pre-assignments. Let set �ed contain the set of valid triples

b, f, �):

The formula for the day-shift containing one timeslot is:

The formula for the day-shift containing two timeslots sepa-

ated by a lunch break is:

The best reduced cost δe(d, b, f, �) of a day-shift with one or

wo timeslots can now be computed :

.3.4. Reduced cost of an individual planning

In this step, we seek the best combination of day-shifts and

ays-off that designs a valid individual planning for employee e

iven its total working time LEe and its number of day-shifts in

NE−
e , NE+

e ]. This is also called a tour scheduling problem for a sin-

le employee.

For an employee e ∈ E, let η̄0
e (d, n, �) be the best reduced cost

f a partial employee planning for the first d days, which contains

day-shifts and � working periods, and ends with a day-off. Let

lso η̄1
e (d, f, n, �) be the best reduced cost of a partial employee

lanning for the first d days, which contains n day-shifts and �

orking periods, and ends at period f with a day-shift. These re-

duced costs are calculated using the following recursions. We set
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where η̂0
e (d, f, n, �) is the best reduced cost with the condition that

the employee had a day-off on day d − 1, and η̂1
e (d, f, f ′, n, �) is

the best reduced cost with the condition that the employee had a

day-shift of day d − 1 finishing at time f′

During this step, the algorithm deals also with the maximum

number of successive day-shifts without day-off. In recursion (15)

η̄1
e (d, f, n, �) should be written η̄1

e (d, f, n, m, �), where m is the

number of consecutive day-shifts ending at day d such that m ≤
ME+

e . However, we decided to omit the full recursion for the sake

of simplification.

The best reduced cost ηe of an individual planning for employee

e can be computed using the following formula:

4.3.5. Accelerating the algorithm heuristically

Our pricing algorithm is already a heuristic because of the sim-

plified handling of the pauses. We now introduce a slight restric-

tion of the state space, which also makes the method heuristic

As was mentioned above, the nested dynamic programming algo-

rithm takes too much time because of a large number of states

In order to accelerate the algorithm, we heuristically delete some

states. Namely, the set of states {δe(d, b, f, �)}∀d, b, f, � is reduced to

the set of states {δe(d, b, �)} in the following way:

5. Column-generation based algorithms

At the end of the column generation method, the obtained solu-

tion may be non-integer. To get a good integer solution, we use an

enumerative branch-and-price like method. By abuse of language
e will use the term branch-and-price even if the pricing subprob-

em is solved heuristically. Our branch-and-price is not always able

o terminate within the time limit. Since our algorithms are de-

igned for practical use, we also propose two different heuristics

o find good solutions in less time.

.1. Branch-and-price algorithm

Our branching scheme consists in fixing a variable xc, a, t for all

andidate columns Xc related to a given employee e. In the formu-

ation, this branching is accomplished as follows:

• xc,a,t = 0 forbids employee e to be assigned to activity a at time

period t. We delete all columns Xc, c ∈ C(e), in which activity

a is performed during period t. In the pricing subproblem for

employee e, the corresponding transition is forbidden.
• xc,a,t = 1 assigns employee e to production activity a at time

period t. We delete all columns Xc, c ∈ C(e), in which activity a

is not performed at period t. The subproblem for employee e is

modified by assigning a very large negative cost to the corre-

sponding transition.

When branching, we choose the triplet (employee e, production

ctivity a and time period t) which is the most fractional, i.e. for

hich |0.5 − ∑
c∈C(e) xc,a,t qc| is minimum (where qc is determines

hether individual planning Xc is chosen for employee e, as de-

ned above). We use a depth-first strategy to explore the search

ree. We tried different strategies (sometimes mixed together):

ranching on the slack variables (under or over-coverage variables),

r branching on entities (forcing/forbidding an employee to work

uring a given day or time-slot). However, we do not have con-

incing results which show an advantage of these strategies over

he scheme above.

The time allowed at each node of the branch-and-bound tree

as limited to one hour. In rare cases, this results in premature

ermination of column generation at some nodes. In that case, our

euristic branch-and-price continues and carries out its branching

trategy.

The heuristic dynamic programming algorithm for the sub-

roblem makes our branch-and-price algorithm also heuristic.

his means that theoretically there exist test instances for which

he solution found is not optimal even after termination of

he branch-and-price. However, for our test instances that are

olved both by the branch-and-price and the MIP solver applied

o the compact formulation, the obtained solution values are

qual.

.2. Diving heuristic

The diving heuristic is an algorithm in which the branch-

ng heuristics, we use a different branching strategy for the diving,

s the goal here is not to have a balanced search tree, but a good

ach node, after the termination of column generation, we select

nd fix a column Xc′ , i.e. we select a complete planning for em-

loyee e′ such that c′ ∈ C(e′). After that, all columns Xc, c ∈ C(e′),
re excluded from the problem, demands DEa, t are updated ac-

ording to the fixed partial solution. Then, the subproblem for em-

loyee e′ is not called in descendant nodes.

As no backtracking occurs, the method stops after at most |E|
odes. In our algorithm, we select the column related to the vari-

ble with the largest value in the solution of the master problem.

To obtain a fast heuristic, we introduce the time limit for

olumn generation at each node of the diving heuristic. When

his time limit is reached, we use the current master solution 

 

nd-price tree is searched partially

As usually done in div-

easible solution quickly. As suggested in Joncour et al., at
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values for fixing the next column, even if this solution is not

optimal.

5.3. Greedy heuristic based on the nested dynamic program

When the time limit is set to a handful of seconds, the div-

ing heuristic may not be able to terminate. We propose a simple

heuristic based on our pricing subproblem to find good solutions

in a small amount of time. In this heuristic, the employee plan-

nings are still computed by our dynamic program, but the plan-

nings are individually generated one by one and added iteratively

to the solution. Here, the objective function of the subproblems

is based on the residual work demand REa, t, which corresponds

to the remaining work demand, taking into account the individual

plannings already in the current partial solution. Each time an in-

dividual planning is computed, the residual work demand REa, t is

updated, and the method is run again with the remaining set of

employees.

At initialization, REa, t have the same value as the work de-

mand DEa, t and they are updated each time a planning is added

or deleted in the team schedule. In the objective function of the

subproblem for employee e, the cost π̂a,t of variable xa, t, which

determines whether activity a is performed during time period t,

is calculated by the relation:

The greedy heuristic is presented formally in Algorithm 1. The

first iteration is complete when the first complete solution is con-

structed. Then we perform additional iterations in which, for each

employee, the current individual planning is deleted from the so-

lution and another planning is computed based on the updated

residual work demand. Initial employees sorting, objective func-

tion costs and the number of iterations are parameters of the

algorithm.

Algorithm 1:

1 Input: work demand DEa,t ;

2 Best found solution is empty: �best ← ∅;

3 cost(�best ) ← +∞;

4 Partial solution is empty: � ← ∅;

5 E ′ ← Sort employees set E ;

6 for i = 1, ..., nbIterations do

7 foreach employee e ∈ E ′ do

8 Delete current planning for employee e in partial

schedule (if exists): � ← � \ {Xc}, c ∈ C(e) ;

9 Compute the residual work demands ∀a, t:

REa,t ← DEa,t − ∑
X∈� xa,t ;

10 Compute π̂a,t ∀a, t , according to (17);

11 Solve subproblem with costs π̂a,t for employee e to

obtain a planning Xc, c ∈ C(e);

12 Assign Xc to partial solution: � ← � ∪ {Xc};

13 end

14 if solution � is complete and cost(�) < cost(�best ) then

15 �best ← �;

16 end

17 end

18 return best found solution �best ;

Despite our efforts, we did not find a particular sorting algo-

rithm for employees that gave better results than others on aver-

age. So we use Algorithm 1 several times with different random

orders on the employees, and keep the best result found. Empiri-

cal tests suggest that after three iterations, the solution is usually

not improved anymore.
. Computational experiments

Our four methods, solving MIP compact model by a commercial

olver, the branch-and-price algorithm, the diving heuristic, and

he greedy heuristic have been tested on both real data coming

rom a customer and randomly generated data. The MIP compact

odel is described in the electronic supplement.

.1. Customer data

Our customer data comes from a company of mini-marts. All

nstances are defined over one week divided into 15 minutes peri-

ds. In the customer data, almost 10% of employees work only on

aturday, while the others may work at most five days. Around 70%

f the employees can only perform one type of production activity.

ost of the employees have a small flexibility in their schedule:

eneral beginning and finishing time of timeslots can be shifted by

ne hour (for instance, the first timeslot of a day-shift starts be-

ween 8.00 AM and 9.00 AM for a given employee, but this range

an be different for another day).

The cost coefficients in the objective function are the fol-

owing: over-coverage COa = 1, critical over-coverage COcrit
a = 2,

nder-coverage CUa = 2, critical under-coverage CUcrit
a = 5. For a

ork demand of DEa, t, critical over-coverage occurs when strictly

ore than OVa,t = DEa,t + 1 employees are assigned to production

ctivity a at time period t, while critical under-coverage occurs

hen strictly less than UNa,t = DEa,t/2� employees are assigned

o the activity. We use a representative set of twelve customer

ata. They have a different number of employees |E|, and a dif-

erent number of production activities |A|.
We ran different methods on the customer data: the greedy

f Section 5.2 with the cumulated column generation time limit of

20, 600 and 1800 seconds, respectively) and the branch-and-price

eneration time at each node to T/|E| seconds. As the diving re-

uires at most |E| nodes for a new solution, diveT lasts at most

seconds (plus additional time for initialization of the different

odes). The best solution found by heuristics dive120, dive600 and

ive1800 is used for the initialization of the branch-and-price. The

ime reported for the branch-and-price does not include the time

pent by the heuristic. All tests were run using a standard PC of

he experimental platform “Plafrim” (see Acknowledgment) with 4

igabits of memory over four cores (four subproblems are solved

n parallel). All methods were implemented in Java and IBM Cplex

2.6 was used for solving the MIP and the linear master problems.

Tables 2 and 3 summarize the results obtained (respectively

he objective function value of the solution found, and the ex-

cution time) with our customer data. In column “LBLagr”, we

t the root node of the B&P. Recall that |E| is the number of

mployees, and |A| the number of production activities. Column

LBTriv” is a trivial lower bound computed in the following way.

et L be the cumulated working time of the team (measured

n time periods): L = ∑
e∈E LEe. Let also D be the cumulated de-

and (measured in time periods): D = ∑
t∈T

∑
a∈A DEa,t . If D ≥ L

hen the solution value cannot be less than LBTriv = mina∈A{CUa} ×
(D − L). If D < L then the solution value cannot be less than

BTriv = mina∈A{COa} × (L − D). The trivial lower bound is quite far

rom the Lagrangian bound for the customer data instances with

activities.

The running time of the greedy heuristic is very small, even for

nstances with 45 employees. The difference between the value of

he greedy solution and the optimal one can be large. However,

ecall that simple constructive heuristics may fail to find feasible

hifts, since assigning too much or too few hours at the beginning 

 

euristic , dive120, dive600 and dive1800 (the diving

lgorithm. In the method diveT, we limit the column

report the Lagrangian lower bound computed
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Table 2

Customer data: solution values obtained by our methods. “T”: branch-and-price method and the MIP solver did

not terminate within 24 hours of calculation. In this case, the solution value is the best one found ; “-”: the MIP

solver did not find any feasible solution within the time limit. The best found dive solution is used for initialization

of the B&P.

Table 3

Customer data. Running time (in seconds) of our methods (B&P time does not include the time needed

to find the initial solution). “T”: our branch-and-price method and CPlex for solving the compact model

did not terminate within 24 hours of calculation. In this case, the solution value is the best one found;

“-”: that the MIP solver failed due to memory issues.
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f the week may not allow to find a solution that respects all

ound constraints. Moreover, the piecewise linear cost function

ill take a large value even if most of the working demand is

ulfilled.

The diving heuristics are much more effective to find near op-

imal solutions for these instances. The relative gap of the dive120

euristic with the branch-and-price is greater than 10% only for

wo instances (A3_2 and A5_6). It may happen that the diving

ives better results when a smaller computing time is set (A3_5,

3_9 and A5_1). However, different experiments, not reported

ere, showed that giving more time to the diving heuristic at each

ode generally improves the result.

The branch-and-price method terminates for five instances out

f twelve within 24 hours of computation time. For three in-

tances the bounds are tight at the root node, for two instances

he root ”lower bound” was improved (recall that the pricing is

erformed heuristically), for one instance the initial upper bound

as improved, and for one instance both bounds were improved

y branch-and-price. For five instances out of the remaining six,

ranch-and-price improves the upper bound before hitting the

ime limit. Note that when the MIP solver is able to find an op-

imal solution, its value is equal to the solution value found by the

euristic branch-and-price.

Over the twelve instances, the compact method gives optimal

olutions for the four smallest ones. Feasible solutions were found

ithin 24 hours for all instances, except for the two largest ones.

ctually, the higher the number of employees is, the lower is the

uality of the found solution. Furthermore, we note that the MIP

olver is outperformed by the heuristic dive120 in terms of execu-

ion time and quality of the solution.
.2. Generated data

Experiments show that our algorithms have a good behavior

n confidential customer data. In order to allow a fair comparison

ith our methods, and push further the analysis, we have designed

random data generator based on our customer data experience.

he setting of parameters is performed using four following inputs:

he number of employees |E|, the number of production activities

A|, the flexibility index of employees F and the under-coverage

ndex G.

The planning horizon is fixed to 7 days, and time periods have

length of 15 minutes. All employees are multi skilled, i.e. they

an work in all production activities. Costs of over-coverage (COa,

Ocrit
a ) and under-coverage (CUa, CUcrit

a ) and related thresholds

UNa, t, OVa, t) are fixed as in the customer data. Flexibility index F

f employees affects all employee planning constraints, limiting the

ccessible time periods. The higher this index is, the higher is the

umber of allowed time periods for a given employee. For exam-

le, all first timeslots must start between [[8.00 − R1 , 8.30 + R2]]

here R1, R2 are random values uniformly distributed in {0, 15, ...,

∗15}. Under-coverage index G takes a value between 0 and 4 and

etermines the work demand DEa, t. To create a work demand, a

eam with (|E| + G) employees is initialized and planned in a ran-

om order with an initial random work demand. Obtained plan-

ings are thus used to define the work demand DEa, t that corre-

ponds exactly to the work capacity of the (|E| + G) employees. We

hen randomly remove G employees in the team in such a way that

he work demand could not be covered by the final team of em-

loyees: results will present under-coverage. Note that there exists

solution of value zero if G = 0.
  

http://dx.doi.org/10.1016/j.ejor.2016.01.036


ARTICLE IN PRESS

Table 4

Generated data: solution values obtained by our methods. “T”: branch-and-price method and MIP solver did not terminate

after 24h. In this case, the solution value is the best one found; “-”: MIP solver did not find any feasible solution within

the time limit ; “L”: column generation at the root node did not converge within 1 hour, hovewer our heuristic branch-

and-price continues and carry out its branching strategy. “M”: branch-and-price algorithm failed due to memory issues. The

best found dive solution is used for initialization of the B&P.

Table 5

Running time (in seconds) of our methods (B&P time does not include the time needed to find the initial solution).

Symbol “T” indicates that our branch-and-price method and CPlex for solving the compact model did not termi-

nate within 24 hours of calculation. In this case, the solution value is the best one found. Symbol “L” indicates

that column generation at the root node did not converge within 1 hour, hovewer our heuristic branch-and-price

will still continue and carry out its branching strategy. Symbol “M” indicates that the branch-and-price algorithm

failed due to memory issues.
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Tables 4–6 sum up the results obtained with the generated

data. The results are reported in the same way as those obtained

for the customer cases. It transpires from our results that the struc-

ture of the data strongly impacts the algorithms behavior. As one

would expect, the computing time depends on the number of em-

ployees to schedule, and the number of production activities. Flex-

ibility is also a difficulty factor: it increases the number of possible

shifts, and makes the dynamic program slower.

The tests on generated data confirm the conclusion drawn on

the customer data. We observe that the “lower bound” obtained

at the root node of the heuristic branch-and-price still has a very

good value, i.e. it is often close or equal to the optimal solution

or the best solution found, and the final absolute gap is small, ex-

cept for the instances with a large size, and a large flexibility (dst8,

dst10, and dst16).

The greedy heuristic is fast and the quality of the planning

is good but rarely optimal. The diving heuristic gives results that

are close to those of the branch-and-price in most cases (the re-
ults are even optimal for small data). Similar to what happens

ith the customer instances, giving more time at each node of

he diving clearly improves the results on average, although it may

appen (dts7) that better results are obtained when less time is

llowed.

A specificity of generated data instances is that the trivial lower

ound is very close to the Lagrangian one and the optimal solu-

ion. Moreover, the bounds are equal for most of the instances.

hen this is the case, it is quite easy to find an optimal dual

olution π (optimal Lagrangian multipliers) for the column gen-

ration algorithm. However, even when an optimal dual solution

s known, it takes a large number of iterations to find an opti-

al primal solution of the linear relaxation of the master prob-

em. This fact explains why known stabilization techniques such as

ual smoothing do not improve convergence of column generation.

hey are aimed at stabilizing around the best dual solution. This

oes not help in our case as the optimal dual solution is already

nown.
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Table 6

Generated data: behavior indicator of the methods according to the data set. Symbol “T” indicates that our branch-and-price method did not terminate within

24 hours of calculation. In this case, the solution value is the best one found.
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. Conclusion

In this paper, we describe efficient strategies for solving a real-

ife employee scheduling problem that mixes days-off schedul-

ng, shift scheduling, shift assignment, activity assignment, pause

ssignment and break assignment. Our approaches are based on

he Dantzig–Wolfe decomposition, and we have successfully im-

lemented a heuristic branch-and-price algorithm, from which we

erived a diving heuristic and a greedy algorithm. These meth-

ds were tested on both customer and randomly generated data

ith excellent results. The computational experiments show that

he proposed approaches yield optimal or near optimal solutions

n many cases.

The behavior of our methods raises several questions. Since

lassical stabilization strategies were not able to improve the con-

ergence of the algorithm, we need a deeper analysis of the struc-

ure of the problem to come up with new strategies dedicated to

his kind of problems. As explained above, stabilization techniques

cting in the dual space have a limited impact on the convergence.

herefore, an effort should be done in developing primal stabiliza-

ion strategies.

From a customer point of view, it would be interesting to con-

ider the annualized workforce allocation problem, in which em-

loyees are scheduled over the planning horizon of several weeks

up to a year). This problem includes constraints linking successive

eeks of work. Since solving this problem for one week is already

hallenging for state-of-the-art methodologies, we plan to derive

euristics for these very large scale instances.

In this work, we consider independent employees, i.e. they per-

orm activities independently of other employees. Another chal-

enge would be to consider activities or tasks that require simul-

aneous presence of several employees with different skills.
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