= —=

UROFEAN OURNAL OF
FERATIONAL = ESEARGH

Contents lists available at ScienceDirect

European Journal of Operational Research \

journal homepage: www.elsevier.com/locate/ejor wew

Column generation based approaches for a tour scheduling problem
with a multi-skill heterogeneous workforce

ABSTRACT

In this paper, we address a multi-activity tour scheduling problem with time varying demand. The objec-
tive is to compute a team schedule for a fixed roster of employees in order to minimize the over-coverage
and the under-coverage of different parallel activity demands along a planning horizon of one week. Nu-
merous complicating constraints are present in our problem: all employees are different and can perform
several different activities during the same day-shift, lunch breaks and pauses are flexible, demand is
given for 15 minutes periods. Employees have feasibility and legality rules to be satisfied, but the objec-
tive function does not account for any quality measure associated with each individual’'s schedule. More
precisely, the problem mixes simultaneously days-off scheduling, shift scheduling, shift assignment, ac-
tivity assignment, pause and lunch break assignment.

To solve this problem, we developed four methods: a compact Mixed Integer Linear Programming
model, a branch-and-price like approach with a nested dynamic program to solve heuristically the sub-
problems, a diving heuristic and a greedy heuristic based on our subproblem solver. The computational
results, based on both real cases and instances derived from real cases, demonstrate that our methods
are able to provide good quality solutions in a short computing time. Our algorithms are now embedded
in a commercial software, which is already in use in a mini-mart company.

Keywords:

Employee scheduling
Integer programming
Branch-and-price
Heuristics

1. Introduction were surveyed in Van Den Bergh, Belién, De Bruecker, Demeule-

meester, & De Boeck). For a comprehensive literature review

Employee scheduling is an important issue in retail

, as personnel wages account

for a large part of their operational costs. This problem raises con-
siderable computational difficulties, especially when certain factors
are considered, such as employee availability, fairness, strict la-
bor rules, highly variable work demand, mixed full and part-time
contracts, etc. Since the seminal work of Dantzig , a large
quantity of research papers have developed models and meth-
ods to assist managers and planners in their employee scheduling
tasks (more than 300 papers published between 2004 and 2012

of classical studies on this problem, we refer to.

In this paper, we study a real-life multi-activity tour schedul-
ing problem with highly heterogeneous employees and flexible
working hours. Given a fixed set of employees, the objective
is to construct their work schedule or planning that minimizes
the distance to the ideal coverage of the demand. Numerous
complicating factors described in the literature are taken into
account and, to the best of our knowledge, this paper is one
of the first attempts (in parallel with Restrepo, Gendron, &
Rousseau, 2015) to combine days-off scheduling, shift scheduling,
shift assignment, activity assignment, pause and lunch break
assignment.

Several features of our problem are still considered as ma-
jor issues in the recent literature :
individual constraints and flexibility of employees, integrated
days-off, shift scheduling and assignment and multi-activity

http://dx.doi.org/10.1016/j.ejor.2016.01.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:francoisclautiaux@gmail.com
mailto: \ignorespaces francois.clautiaux@math.u-bordeau.fr
http://dx.doi.org/10.1016/j.ejor.2016.01.036
http://dx.doi.org/10.1016/j.ejor.2016.01.036

assignment.

Although

the lunch break assignment between two timeslots is taken into
account in most research papers, pause assignment during activ-
ities themselves remains a gap in the academic literature

To our knowledge, only deals with both types of breaks at the same time.

Although integer linear programming (ILP) models exist for this
family of problems, they cannot be used directly to solve large
scale problems with many constraints. Therefore, several works
propose heuristics based on those ILP models to reduce their com-
putational burden. Heuristic methods can be obtained by applying
a hierarchical decomposition. First,
good shifts are computed, and then employees are assigned to the
shifts in a second phase. Unfortunately, this technique cannot be
applied directly to our problem, where each employee can change
activity during his shift and has his very specific features such
as availabilities, skills and pre-assignments. When the time hori-
zon is large, and the problem can be solved for a smaller time
horizon (typically one week) without risking infeasibilities for the
planning, an interesting approach is
to use a rolling horizon heuristic, where the problems related to
smaller time horizons are solved in an iterative manner. In our
problem, the total number of worked hours for each employee is
fixed, which may lead such method to unfeasible schedules.

Many algorithms for solving such employee scheduling prob-
lems are based on the column-generation approach.

. Recent papers address shift or
tour scheduling problems with branch-and-price methods. Boyer,

Restrepo et al. use branch-and-price to solve
very general multi-activity shift scheduling problems. Their ap-

proaches rely on the description of shifts using a context-free
grammar. Another recent work on the subject was realized by
Brunner and Stolletz . They use an ad-hoc branch-and-price
method to solve a tour scheduling problem. The main ingredients
of their approach are the use of variables related to day-shifts,
which are recombined in the master problem, and stabilization
strategies to reduce the number of column generation iterations.
Another recent work uses branch-and-price

in the context of employee-scheduling. They use a nested dynamic
programming approach, which is well-suited to the structure of
their problem.

Our approach is also based on a branch-and-price algorithm.
However, the problem settings do not allow us to use directly the
algorithms from
In our problem, each employee is different, the time
horizon is much larger than the ones in Boyer et al.

, and many constraints restrict the construction of the

shifts. This leads to a prohibitively large pricing problem solution
time. Since our aim is to handle real-life instances, we had to use a
heuristic version of the branch-and-price, where some constraints
are treated heuristically in the subproblem. The hierarchical struc-
ture of our shifts called for an ad-hoc specific nested dynamic pro-
gram , which proves to be much more

efficient than a straightforward dynamic programming approach.

An important practical requirement is to find a good solution
in a short amount of time (a few seconds for 100 employees). To
respect this time limit, we designed a greedy algorithm based on
our dynamic program. Also, a diving heuristic is proposed for cases
when we have several minutes of computational time. Our algo-
rithms have been implemented and are now embedded in a com-
mercial software. They are able to find feasible solutions with good
quality in a small or reasonable time for all test cases that were
provided by our industrial partner. Our algorithms are now in use
in a mini-mart company.

In Section 2, we describe formally our problem. Our column
generation framework is presented in Section 3, followed by the
nested dynamic program used to solve the pricing problem in
Section 4. Our heuristic algorithms based on column generation
are presented in Section 5, while computational experiments on
real and generated instances are reported in Section 6.

2. Problem description

The problem consists in scheduling a fixed workforce to max-
imize the fit to a given time-varying demand. The planning hori-
zon consists of D consecutive days. Each day is divided into the
same number of successive time periods of equal length (15 min-
utes in this paper). Set 7 represents the different time periods in
the discrete planning horizon. The set of heterogeneous employees
is denoted by €.

The whole set of activities that employees can carry out is di-
vided into two distinct groups: production activities A, related to
work demands, and pause activities P, related to non-productive
activities. In our retail context, a production activity can repre-
sent, for example, the welcome desk, a cash desks line or a meat
counter. Each employee e € £ has a set of production activities
A(e, t) that he/she can perform at time period t. Set P(e,t) con-
tains a pause if employee can take it at time period t; this set
is empty otherwise. The beginning and the length of a pause are
strictly constrained by the personalized pause policy of the com-
pany agreement. An employee e is unavailable at time period t if
A(e, t) UP(e, t) =¢. In this case, the planning computed for em-
ployee e cannot contain any activity at time t. Note that if an em-
ployee is unavailable the entire day, then a day-off has to be sched-
uled. Some employees may be pre-assigned to activities for certain
time periods. In this case, finding a schedule that respects this pre-
assigned tasks is a part of the problem.

The work demand DE, ; represents the ideal number of em-
ployees needed to realize production activity a in the best possible
conditions during time period t (see the representation given in
Fig. 1). Satisfying exactly the demand is not mandatory : in most
cases it is not possible. In this case, either an under-coverage, or an
over-coverage is produced. Furthermore, if over-coverage (respec-
tively under-coverage) exceeds the given threshold OV, ; (respec-
tively UNg, (), then it becomes critical and indicates that too many
(respectively too few) employees have been assigned to activity a
during time period t.

Our objective is to construct a feasible team schedule that min-
imizes the sum of the over-coverage and under-coverage costs for
the whole planning horizon and all production activities.

2.1. A hierarchical structure of a team schedule

A feasible solution follows a hierarchical structure (see Fig. 2).
For each level of the hierarchy, there is an associated set of con-
straints. This flexible structure does not rely on the use of a pre-
computed day-shift or individual planning library, since the num-
ber of possibilities is far too large.

o A team schedule consists of a set of |£| valid employee plan-
nings.

o An individual planning for employee e is a set of successive day-
shifts and days-off over a week. Two consecutive day-shifts are
separated by a rest break.

o A day-off represents a special day when employee e does not
participate in any activity. Deciding whether or not an em-
ployee takes a day-off is part of the optimization process (but
some days-off are mandatory if the employee is unavailable).

http://dx.doi.org/10.1016/j.ejor.2016.01.036

mumber of

emplovees

Fig. 1. Representation of the workload for a production activity : the ideal number of employees required to cover the demand is in gray, the thresholds of critical under-

coverage and overcoverage are given respectively in black and white.

planning

individual /

\‘ day-shift F‘ timeslot H task %»

time
period

Fig. 2. Hierarchical structure of a team schedule.

o A day-shift consists of one timeslot or two timeslots separated
by a lunch break.

o A timeslot is a non-empty sequence of tasks where different ac-
tivities are carried out successively and continuously. Two con-
secutive tasks cannot be related to the same activity. The set of
possible beginning times of all timeslots of employee e is de-
noted as Be. This set contains disjoint intervals, some of them
are for the first timeslot of a day, others are for the second.

o A task is a time interval where a single activity a is performed
over contiguous time periods. Activity a can be either a produc-
tion activity or a pause.

Example 1. For a given day, an employee works from 8.00 AM
to 12.30 AM during his first timeslot, then takes a one-hour
lunch break, and finally does his second timeslot from 2.00 PM to
5.00 PM. During the first timeslot, three tasks are performed : from
8.00 to 9.00 in activity a, then from 9.00 to 11.00 in activity b, and
finally from 11.00 to 12.30 in activity c. His second timeslot is de-
voted to the single task with activity b. According to the pause pol-
icy, a single pause is assigned from 9:00 AM to 9.15 AM during the
first timeslot.

2.2. Planning constraints

In this paper, we take into account constraints that we have
encountered in real-life customer contexts. Each employee has his
own set of planning constraints and each constraint has its own
parameters.

At each level of the team schedule hierarchy, duration and nu-
merical constraints have to be satisfied. In Table 1, we list these
constraints grouped by levels of the hierarchy. Note that duration
of entities possibly include breaks (pauses and lunches), whereas
working time equals to the “net duration” that excludes the breaks.
Furthermore, an important feature in this problem is that each em-
ployee has a target of weekly working time LE, that must be met
exactly.

We stress the fact that each employee is different: he/she has
his own skills, potential pre-assignment and availability for each
time period, etc. A day-shift designed for an employee e is not
likely to be valid for another employee e’.

2.3. Pause assignment policy

There are numerous pause assignment policies in practice. In
this work, we use the following rules. First, pauses are not in-

Table 1
Planning constraints over an horizon of one week.

A task of employee e € £ performing activity a € A
Duration -

A timeslot of employee e € £ beginning at time b
Beginning time b

Finishing time

Number of tasks

A day-shift of employee e € £ on day d
Beginning time

Finishing time

Working time

Duration

Number of timeslots

Rest (lunch) duration

Between timeslots

Minimum working time of

At least one timeslot

A weekly individual planning of employee e € £
Target working time

Number of day-shifts

Number of consecutive

day-shifts

Rest duration between

Consecutive day-shifts

cluded in the working time. There is at most one pause assigned
per timeslot. The pause is assigned if and only if the duration of
the timeslot is at least four hours (including the pause duration).
A pause must be located in the second third of its timeslot, and its
duration is exactly one time period. Some pauses can be initially
set at some time periods as pre-assignment constraints.

In our settings, each pause is positioned inside an existing task
k. The two parts of task k before and after the pause are consid-
ered as a unique task, i.e. the two constitute a single task with one
beginning and one end. Note that pauses are different from lunch
breaks in our models: a lunch break separates the day-shift into
two timeslots.

3. Our column generation approach

The Dantzig-Wolfe decomposition is
well adapted to our scheduling problem, since it consists of dis-
joint subproblems (one per employee) that are linked by demand
constraints. Similar to Dantzig , the subproblem for employee
e consists in designing a valid individual planning respecting the

http://dx.doi.org/10.1016/j.ejor.2016.01.036

UN, 4

Objective
Value

OV,

under-coverage

over-coverage

ung'yt Ul g

il

OUq ¢ oy

Fig. 3. Piecewise-linear objective function for a given production activity and time period.

specific set of constraints of employee e, but disregarding the re-
quirements dealing with the others plannings. The master problem
combines the employee plannings (columns) to minimize the total
cost of over-coverage and under-coverage.

Another version of the set-covering model for the tour schedul-
ing was proposed by Stolletz. Instead of using variables
representing plannings, the author uses (day-)shift variables that
are combined in the master problem to form valid plannings. Our
problem settings do not allow easy recombinations of shifts: all
employees are different and therefore each planning is associated
to exactly one employee, and the total number of working periods
in a planning is a fixed parameter. In our model, we keep the orig-
inal planning variables, similar to what is done in Dantzig .

3.1. Master problem

Let X (e) denote the set of individual plannings (or columns) for
employee e and C(e) its column index set: X(e) = {Xc}ccc(). Each
column X, is represented by a vector [Xcqlte7.0c.4 Where:

1 if employee is assigned to activity a at time
period t in planning c,
0 otherwise.

Xeat =

A binary variable g, c € C(e), e € £, determines whether indi-
vidual planning X. is chosen for employee e. Continuous variables
OVq ¢, UNg, ¢, ovgf;'t, and ungf;'f, t €T, ac A, represent, respectively,
over-coverage, under-coverage, critical over-coverage, and critical
under-coverage of the demand of activity a at time period t.

The cost function is piecewise linear and its structure is rep-
resented in Fig. 3. It depends on slack variables related to de-
mand constraints. For a given solution {q-:ceC(e),e € &}, for a
given production activity a and a time period t, the coverage of
the demand can be computed as DEq¢ — Y Xcatqc. We distin-
guish over-coverage ovg (resp. under-coverage ung () from criti-
cal over-coverage ovgf{f (resp. critical under-coverage ungr}'f) that oc-
curs when the over-coverage (resp. under-coverage) is gfeater than
OVy, ¢ (resp. UNg, ¢). When critical over/under-coverage is reached,
a larger unit cost has to be paid.

The master problem can be formulated as follows:

The piecewise objective function (1) minimizes the total cost of
over-coverage and under-coverage over the planning horizon and
production activities. Constant values CO, € Ry and CUg € R rep-
resent, respectively, the unitary costs of over-coverage and under-
coverage for production activity a. Constant values CO§rit € Ry and
CUﬁrit € R, represent respectively the costs of critical over-coverage
and under-coverage for production activity a. Critical over-coverage
and critical under-coverage have larger costs: CUg < CUS™ and
€O, < COSE,

Constraints (2) link the decision variables and calculate the gap
between the produced work and the work demand DE,, ; for each
time period and each production activity. Constraints (3) assign ex-
actly one individual planning to each employee e.

3.2. Pricing subproblems

The pricing problem decomposes into |£| independent subprob-
lems (one for each employee). Let [74]ic7.ac4 De the dual values
related to master problem constraints (2) and [7.]ece be the dual
values related to master problem constraints (3). The subprob-
lem for employee e consists in finding a feasible individual plan-
ning (denoted by vector X = [Xq]te7.ae4) With the minimum re-
duced cost. We use variables x4, ¢, which will be used to construct
the constant column descriptors X, 4, + in the master problem. Re-
call that X (e) denotes the set of individual planning (or columns)
for employee e. The subproblem for employee e can be stated as
follows.

http://dx.doi.org/10.1016/j.ejor.2016.01.036

3.3. Acceleration strategies

Acceleration techniques are key elements for the efficiency of
our column generation approach. Several papers list strategies for
this purpose, and more
specifically for employee scheduling problems in Brunner and Stol-
letz . We used the fol-
lowing strategies.

1. Instead of adding one column with the best reduced cost, we
add to the restricted master problem several negative reduced
cost columns at each iteration. Practically speaking, at each it-
eration of the column generation method, we add the best col-
umn found for each employee if it has a negative reduced cost.
This means that at most |€| columns are added at each itera-
tion. This method dramatically decreases the number of column
generation iterations.

2. After solving a restricted master problem, if the number of vari-
ables exceeds a given threshold (more than 5000 columns in
practice), then we delete all variables with a reduced cost ex-
ceeding 10712,

3. The lagrangian lower bound is computed at each iteration
to stop the algorithm earlier if this bound and the solution
value of the restricted master are equal. The lagrangian lower
bound is computed as follows. Let OPT(RMP) be the optimum
of the current reduced master problem and RC(SP.) be the
best reduced cost of a variable generated by subproblem e at
the current iteration. The lagrangian lower bound is equal to
OPT (RMP) — Y, RC(SP»).

We have also tried to apply dual price smoothing stabilization
in order to accelerate column generation. How-
ever, it did not have a clear positive impact on the solution time.
Note that reports very good speed-ups
from stabilized column generation in a branch-and-price algorithm
for a similar shift scheduling problem. We conjecture that the ex-
planation for this different stabilization impact comes from the
presence of the total working time constraint in our variant of
the problem. Preliminary experiments showed that the dual price
smoothing stabilization improves a lot the column generation so-
lution time once this constraint is removed.

We also tried to solve only one pricing subproblem at each step
(by considering only one employee), or to add only the column
of best reduced cost among all subproblems. In both cases, the
method was less efficient. This can be explained by the fact that
solving the master problem takes a large amount of time. More-
over, several subproblems are solved in parallel, which helps re-
ducing the time spent to solve all subproblems.

4. A nested dynamic program for the pricing subproblem

A pricing subproblem corresponds to finding the best individ-
ual planning for one employee according to his set of constraints.
In this section, we discuss two possible ways from the literature
to formulate this problem. Then we present our nested dynamic
programming algorithm.

4.1. Limits of the resource constrained shortest path formulation

The pricing subproblem can be formulated as a resource-
constrained shortest path problem (RCSPP) in a directed acyclic
graph (DAG). In this DAG, each arc is characterized by a cost to
use it and a set of resource consumptions while each node is
characterized by a position in time and an amount of resource
consumption already used for each resource. The objective is to
find a path from a source node to a sink node that minimizes
the overall cost and satisfies the resource consumption bounds. In

Engineer, Nemhauser, and Savelsbergh , the authors present

an exact dynamic programming algorithm based on relaxations
and alternated forward and backward searches to solve shortest
path problems involving a huge number of local resource con-
straints. This algorithm is much more efficient when only upper
bounds are considered. When both lower and upper bounds co-
exist, the dominance relations, used to reduce enumeration, are
weaker. Another recent work propose

an exact method capable of handling large-scale networks in a rea-
sonable amount of time.

In our problem, we have a large number of lower and upper
bounds for the resource consumption, and some arc costs are neg-
ative. This weakens considerably the dominance rules used in the
solution methods for the resource-constraint shortest path prob-
lem. Preliminary experiments confirmed that this approach was
not efficient for our problem.

4.2. Limits of the grammar-based formulation

The structure of individual plannings makes the subproblem
suitable for a solution method that uses context-free grammars,
like it is done in Boyer et al. for a shift
scheduling problem (horizon with a single day) and in Restrepo
et al. for a tour scheduling problem (horizon of 7 days).

Namely, for each employee e € £ we can define a grammar which
describes the set of all valid plannings for e. Based on this gram-
mar, a directed acyclic hyper-graph (called graph with or-nodes
and and-nodes in can be constructed. Every

unit flow in this hyper-graph defines a feasible individual planning
for e. So the search for an individual planning with the best re-
duced cost can be done using a dynamic programming algorithm
that seeks a min cost unit flow in the hyper-graph.

We have performed preliminary experiments with this ap-
proach and obtained the following results. A considerable num-
ber of bound constraints and a long time
horizon result in a huge hyper-graph. Therefore, the construction
of this hyper-graph takes a large amount of time, making it im-
possible to embed the grammar-based dynamic program in a fast
heuristic. Moreover, even if the graph is constructed, this algorithm
takes too much time to be called at every column generation iter-
ation to solve the subproblem.

Therefore, we designed a nested dynamic programming algo-
rithm. In order to reduce its running time, we heuristically remove
some states, as it is explained below.

4.3. A nested dynamic programming algorithm

The specific structure of our problem leads to the following ob-
servations.

o There are a large number of resource constraints, but only a
subset of them are active at a given node.

e Many paths share identical subpaths. Due to the hierarchical
structure of the planning, the best day-shift for a given day is
likely to be used in many non-dominated partial solutions.

This led us to design an alternative approach based on a nested
dynamic program. A relevant and similar approach is described
by Dohn and Mason to find the best individual plannings
in a nurse rostering problem by using 3 levels and 2 segmenta-
tions. We call segmentation the phase where levels k and k — 1 are
combined. If the number of levels is z, then the number of seg-
mentations should be z — 1. In the first segmentation, the method
combines day-shifts to design the best feasible sequence, this se-
quence is completed at the end with days-off to find the best fea-
sible blocks of workdays. In the second segmentation, it combines
the block of workdays to get the best individual planning.

http://dx.doi.org/10.1016/j.ejor.2016.01.036

day-off

individual
planning

M

time
period

+

day-shift ‘ timeslot He task

Fig. 4. Nested dynamic programming segmentation.

We have adapted the nested method to the specific features
of our problem by using 5 levels and 4 segmentations.
For each employee e, we build an individual planning X € X (e)
by combining day-shifts constituted by one or several timeslots,
themselves composed of tasks. To manage easily path dominance
rules and symmetries, the dynamic programming algorithm is seg-
mented into several sub-problems according to the hierarchical
structure of the planning. At each level, the design of a given entity
consists in combining the valid entities of the level immediately
below.

The bottom-up presentation of the method consists in calculat-
ing the best reduced costs of the following entities: task, timeslot,
day-shift and individual planning.

4.3.1. Reduced cost of a task

For an employee e € &, let ae(b, f, a) be the reduced cost of
the task in which the employee starts activity a € A at period b,
and finishes it at period f. Note that this task is valid for the em-
ployee, if it respects the duration bounds and employee skills and
pre-assignments. We set the reduced cost of an invalid task to +oc.
Then, the formula for the reduced cost calculation is:

4.3.2. Reduced cost of a timeslot

For an employee e € &, let Be(b, f,n, a) be the best reduced cost
of a partial timeslot, which starts at period b, finishes at period f,
contains a sequence of n consecutive tasks, the first of which does
not perform activity a. The following recursion formula is used for
the reduced cost calculation:

We denote Be(b, d,n, —) the best reduced cost without impos-
ing the constraint on the first task activity:

Let now Be (b, f) be the best reduced cost of a complete times-
lot, which starts at period b and finishes at period f. Note that this
timeslot is valid for the employee, if its starting time is in B, it re-
spects the completion and duration bounds, and the bounds on the
number of tasks it contains. We set the reduced cost of an invalid
timeslot to +oc. Then, the formula for the reduced cost calculation
is:

Note that at this moment the pause policy may not be re-
spected, as until now pauses are not included in timeslots. After
calculating values B, every timeslot without a pause and lasting
more than four hours is replaced by one timeslot with a pause.
For practical purposes, this is done in a greedy manner: we put
the pause to a period in the second third of the timeslot such
that its reduced cost is minimized. The pause replaces the corre-
sponding work period such that the duration of timeslot is not in-
creased. Note that this greedy approach for inserting pauses makes
the whole dynamic programming procedure heuristic (sub-optimal
solutions may be generated).

If a pre-assigned pause is contained inside a timeslot, and it
is not positioned in the second third of it, such a timeslot is de-
clared invalid, and its cost is set to +oo. The same happens if the
employee cannot take any pause (P (e, t) is empty for all time mo-
ments in the second third of the timeslot).

Let Be(b, f) be the best reduced cost of a timeslot, which starts
at period b, finishes at period f, and respects the pause policy.
Let ¢(b, f) be this timeslot’s working time, which can be uniquely
determined from its duration (f —d+ 1) according to the pause

policy.

4.3.3. Reduced cost of a day-shift

For an employee e € &, let §5(d, b, f, ¢) be the best reduced cost
of a day-shift of day d that starts at period b, completes at period
f, contains k timeslots and ¢ working periods. A valid day-shift
should satisfy starting, completion, working time bounds and the
daily pre-assignments. Let set 2,4, contain the set of valid triples

(b, f 0):
The formula for the day-shift containing one timeslot is:

The formula for the day-shift containing two timeslots sepa-
rated by a lunch break is:

The best reduced cost 8.(d, b, f, ¢) of a day-shift with one or
two timeslots can now be computed :

4.3.4. Reduced cost of an individual planning

In this step, we seek the best combination of day-shifts and
days-off that designs a valid individual planning for employee e
given its total working time LE. and its number of day-shifts in
[NE;, NE/]. This is also called a tour scheduling problem for a sin-
gle employee.

For an employee e € &, let 79(d, n, ¢) be the best reduced cost
of a partial employee planning for the first d days, which contains
n day-shifts and ¢ working periods, and ends with a day-off. Let
also 77} (d, f,n, £) be the best reduced cost of a partial employee
planning for the first d days, which contains n day-shifts and ¢
working periods, and ends at period f with a day-shift. These re-
duced costs are calculated using the following recursions. We set

http://dx.doi.org/10.1016/j.ejor.2016.01.036

where 79(d, f,n, ¢) is the best reduced cost with the condition that
the employee had a day-off on day d — 1, and Al(d, f, f'.n, ¢) is
the best reduced cost with the condition that the employee had a
day-shift of day d — 1 finishing at time f

During this step, the algorithm deals also with the maximum
number of successive day-shifts without day-off. In recursion (15),
e (d, f.n, ¢) should be written 7}(d, f,n,m, ¢), where m is the
number of consecutive day-shifts ending at day d such that m <
ME,. However, we decided to omit the full recursion for the sake
of simplification.

The best reduced cost 7, of an individual planning for employee
e can be computed using the following formula:

4.3.5. Accelerating the algorithm heuristically

Our pricing algorithm is already a heuristic because of the sim-
plified handling of the pauses. We now introduce a slight restric-
tion of the state space, which also makes the method heuristic.
As was mentioned above, the nested dynamic programming algo-
rithm takes too much time because of a large number of states.
In order to accelerate the algorithm, we heuristically delete some
states. Namely, the set of states {e(d, b, f, €)}vq, p, 5 ¢ is reduced to
the set of states {8.(d, b, ¢)} in the following way:

5. Column-generation based algorithms

At the end of the column generation method, the obtained solu-
tion may be non-integer. To get a good integer solution, we use an
enumerative branch-and-price like method. By abuse of language,

we will use the term branch-and-price even if the pricing subprob-
lem is solved heuristically. Our branch-and-price is not always able
to terminate within the time limit. Since our algorithms are de-
signed for practical use, we also propose two different heuristics
to find good solutions in less time.

5.1. Branch-and-price algorithm

Our branching scheme consists in fixing a variable x., 4 ¢ for all
candidate columns X, related to a given employee e. In the formu-
lation, this branching is accomplished as follows:

* Xcat = 0 forbids employee e to be assigned to activity a at time
period t. We delete all columns X., c € C(e), in which activity
a is performed during period t. In the pricing subproblem for
employee e, the corresponding transition is forbidden.

e Xcqr = 1 assigns employee e to production activity a at time
period t. We delete all columns X, ¢ € C(e), in which activity a
is not performed at period t. The subproblem for employee e is
modified by assigning a very large negative cost to the corre-
sponding transition.

When branching, we choose the triplet (employee e, production
activity a and time period t) which is the most fractional, i.e. for
which 0.5 - D cec(e) Xc.a.tqc| is minimum (where q. is determines
whether individual planning X, is chosen for employee e, as de-
fined above). We use a depth-first strategy to explore the search
tree. We tried different strategies (sometimes mixed together):
branching on the slack variables (under or over-coverage variables),
or branching on entities (forcing/forbidding an employee to work
during a given day or time-slot). However, we do not have con-
vincing results which show an advantage of these strategies over
the scheme above.

The time allowed at each node of the branch-and-bound tree
was limited to one hour. In rare cases, this results in premature
termination of column generation at some nodes. In that case, our
heuristic branch-and-price continues and carries out its branching
strategy.

The heuristic dynamic programming algorithm for the sub-
problem makes our branch-and-price algorithm also heuristic.
This means that theoretically there exist test instances for which
the solution found is not optimal even after termination of
the branch-and-price. However, for our test instances that are
solved both by the branch-and-price and the MIP solver applied
to the compact formulation, the obtained solution values are
equal.

5.2. Diving heuristic

The diving heuristic is an algorithm in which the branch-
and-price tree is searched partially
As usually done in div-
ing heuristics, we use a different branching strategy for the diving,
as the goal here is not to have a balanced search tree, but a good
feasible solution quickly. As suggested in Joncour et al., at
each node, after the termination of column generation, we select
and fix a column X., ie. we select a complete planning for em-
ployee ¢’ such that ¢’ € C(e’). After that, all columns X, c € C(¢),
are excluded from the problem, demands DE, are updated ac-
cording to the fixed partial solution. Then, the subproblem for em-
ployee €’ is not called in descendant nodes.

As no backtracking occurs, the method stops after at most |€|
nodes. In our algorithm, we select the column related to the vari-
able with the largest value in the solution of the master problem.

To obtain a fast heuristic, we introduce the time limit for
column generation at each node of the diving heuristicc. When
this time limit is reached, we use the current master solution

http://dx.doi.org/10.1016/j.ejor.2016.01.036

values for fixing the next column, even if this solution is not
optimal.

5.3. Greedy heuristic based on the nested dynamic program

When the time limit is set to a handful of seconds, the div-
ing heuristic may not be able to terminate. We propose a simple
heuristic based on our pricing subproblem to find good solutions
in a small amount of time. In this heuristic, the employee plan-
nings are still computed by our dynamic program, but the plan-
nings are individually generated one by one and added iteratively
to the solution. Here, the objective function of the subproblems
is based on the residual work demand RE, ;, which corresponds
to the remaining work demand, taking into account the individual
plannings already in the current partial solution. Each time an in-
dividual planning is computed, the residual work demand REq, ¢ is
updated, and the method is run again with the remaining set of
employees.

At initialization, RE, ; have the same value as the work de-
mand DE, ; and they are updated each time a planning is added
or deleted in the team schedule. In the objective function of the
subproblem for employee e, the cost 7, of variable xq , which
determines whether activity a is performed during time period t,
is calculated by the relation:

The greedy heuristic is presented formally in Algorithm 1. The
first iteration is complete when the first complete solution is con-
structed. Then we perform additional iterations in which, for each
employee, the current individual planning is deleted from the so-
lution and another planning is computed based on the updated
residual work demand. Initial employees sorting, objective func-
tion costs and the number of iterations are parameters of the
algorithm.

Algorithm 1:

1 Input: work demand DE,; ;

2 Best found solution is empty: Qpe < 7;
3 COSt(S2pest) < +00;

4 Partial solution is empty: Q « ¢;

5 & <« Sort employees set & ;

6 for i =1, ..., nbiterations do

7 foreach employee e € £’ do

8 Delete current planning for employee e in partial
schedule (if exists): Q < Q\ {X;}, ceC(e) ;

9 Compute the residual work demands Va, t:
REq¢ < DEg¢ — ZXGQ Xa,t;

10 Compute 7q¢ Va,t, according to (17);

1 Solve subproblem with costs 7, for employee e to
obtain a planning X., c € C(e);

12 Assign X, to partial solution: Q < QU {X.};

13 end

1 | if solution 2 is complete and cost (£2) < cost(2pes) then

15 | Qpest < €2

16 end

17 end

—
)

return best found solution Qg ;

Despite our efforts, we did not find a particular sorting algo-
rithm for employees that gave better results than others on aver-
age. So we use Algorithm 1 several times with different random
orders on the employees, and keep the best result found. Empiri-
cal tests suggest that after three iterations, the solution is usually
not improved anymore.

6. Computational experiments

Our four methods, solving MIP compact model by a commercial
solver, the branch-and-price algorithm, the diving heuristic, and
the greedy heuristic have been tested on both real data coming
from a customer and randomly generated data. The MIP compact
model is described in the electronic supplement.

6.1. Customer data

Our customer data comes from a company of mini-marts. All
instances are defined over one week divided into 15 minutes peri-
ods. In the customer data, almost 10% of employees work only on
Saturday, while the others may work at most five days. Around 70%
of the employees can only perform one type of production activity.
Most of the employees have a small flexibility in their schedule:
general beginning and finishing time of timeslots can be shifted by
one hour (for instance, the first timeslot of a day-shift starts be-
tween 8.00 AM and 9.00 AM for a given employee, but this range
can be different for another day).

The cost coefficients in the objective function are the fol-
lowing: over-coverage CO, = 1, critical over-coverage COJ™ =2,
under-coverage CU, = 2, critical under-coverage CUS™ = 5. For a
work demand of DE, ;, critical over-coverage occurs when strictly
more than OV, = DE;¢ + 1 employees are assigned to production
activity a at time period t, while critical under-coverage occurs
when strictly less than UNg = [DEq /2] employees are assigned
to the activity. We use a representative set of twelve customer
data. They have a different number of employees |£|, and a dif-
ferent number of production activities |A|.

We ran different methods on the customer data: the greedy
heuristic , dive120, dive600 and dive1800 (the diving
of Section 5.2 with the cumulated column generation time limit of
120, 600 and 1800 seconds, respectively) and the branch-and-price
algorithm. In the method diveT, we limit the column
generation time at each node to T/|£| seconds. As the diving re-
quires at most |£| nodes for a new solution, diveT lasts at most
T seconds (plus additional time for initialization of the different
nodes). The best solution found by heuristics dive120, dive600 and
dive1800 is used for the initialization of the branch-and-price. The
time reported for the branch-and-price does not include the time
spent by the heuristic. All tests were run using a standard PC of
the experimental platform “Plafrim” (see Acknowledgment) with 4
gigabits of memory over four cores (four subproblems are solved
in parallel). All methods were implemented in Java and IBM Cplex
12.6 was used for solving the MIP and the linear master problems.

Tables 2 and 3 summarize the results obtained (respectively
the objective function value of the solution found, and the ex-
ecution time) with our customer data. In column “LBj,", we
report the Lagrangian lower bound computed
at the root node of the B&P. Recall that |£| is the number of
employees, and |A| the number of production activities. Column
“LBr,” is a trivial lower bound computed in the following way.
Let L be the cumulated working time of the team (measured
in time periods): L =3, - LE.. Let also D be the cumulated de-
mand (measured in time periods): D=3 ;> 4c4DEq¢. If D > L
then the solution value cannot be less than LBy, = mingc 4{CUq} x
(D—-L). If D < L then the solution value cannot be less than
LBryiy = Minge4{COq} x (L — D). The trivial lower bound is quite far
from the Lagrangian bound for the customer data instances with
5 activities.

The running time of the greedy heuristic is very small, even for
instances with 45 employees. The difference between the value of
the greedy solution and the optimal one can be large. However,
recall that simple constructive heuristics may fail to find feasible
shifts, since assigning too much or too few hours at the beginning

http://dx.doi.org/10.1016/j.ejor.2016.01.036

Table 2

Customer data: solution values obtained by our methods. “T”: branch-and-price method and the MIP solver did
not terminate within 24 hours of calculation. In this case, the solution value is the best one found ; “-": the MIP
solver did not find any feasible solution within the time limit. The best found dive solution is used for initialization

of the B&P.
Data A LBy Greedy diwel20 divegDD divelB00 B&P LB Compact
Al-7 5 1 204 390 333 333 333 EFL] 3213 323
Al-9 5 1 288 a3 259 299 293 299 299 g
Al-p 10 1 334 W28 353 353 393 193 13 353
Al-3 10 1 132 126 228 228 228 228 12333 128
A3 3 BE0 77 B32 834 224 T 2197 =90 T
Azs 3 3 BaE 181 o84 L) 934 T a3 @99 T
Azl = 3 BED 1283 570 o6z 934 T 9334 1w\ T
Az w0 3 338 a31 552 331 529 T 4874 73 T
A3 & 3 140 1104] 18 a9 #32 T B4 373
Azes 42 3 303 1234 1029 242 923 T BELO 1258
Aso 43 3 404 73 1322 1310 1504 1304 .
A1 43 3 412 1793 1529 1323 1513 T 13077

Table 3

Customer data. Running time (in seconds) of our methods (B&P time does not include the time needed
to find the initial solution). “T": our branch-and-price method and CPlex for solving the compact model
did not terminate within 24 hours of calculation. In this case, the solution value is the best one found;
“-": that the MIP solver failed due to memory issues.

of the week may not allow to find a solution that respects all
bound constraints. Moreover, the piecewise linear cost function
will take a large value even if most of the working demand is
fulfilled.

The diving heuristics are much more effective to find near op-
timal solutions for these instances. The relative gap of the dive120
heuristic with the branch-and-price is greater than 10% only for
two instances (A3_2 and A5_6). It may happen that the diving
gives better results when a smaller computing time is set (A3_5,
A3_9 and A5_1). However, different experiments, not reported
here, showed that giving more time to the diving heuristic at each
node generally improves the result.

The branch-and-price method terminates for five instances out
of twelve within 24 hours of computation time. For three in-
stances the bounds are tight at the root node, for two instances
the root "lower bound” was improved (recall that the pricing is
performed heuristically), for one instance the initial upper bound
was improved, and for one instance both bounds were improved
by branch-and-price. For five instances out of the remaining six,
branch-and-price improves the upper bound before hitting the
time limit. Note that when the MIP solver is able to find an op-
timal solution, its value is equal to the solution value found by the
heuristic branch-and-price.

Over the twelve instances, the compact method gives optimal
solutions for the four smallest ones. Feasible solutions were found
within 24 hours for all instances, except for the two largest ones.
Actually, the higher the number of employees is, the lower is the
quality of the found solution. Furthermore, we note that the MIP
solver is outperformed by the heuristic dive120 in terms of execu-
tion time and quality of the solution.

6.2. Generated data

Experiments show that our algorithms have a good behavior
on confidential customer data. In order to allow a fair comparison
with our methods, and push further the analysis, we have designed
a random data generator based on our customer data experience.
The setting of parameters is performed using four following inputs:
the number of employees |£|, the number of production activities
|A|, the flexibility index of employees F and the under-coverage
index G.

The planning horizon is fixed to 7 days, and time periods have
a length of 15 minutes. All employees are multi skilled, i.e. they
can work in all production activities. Costs of over-coverage (COq,
COS™) and under-coverage (CUg, CUY™) and related thresholds
(UNg, ¢, OV, ¢) are fixed as in the customer data. Flexibility index F
of employees affects all employee planning constraints, limiting the
accessible time periods. The higher this index is, the higher is the
number of allowed time periods for a given employee. For exam-
ple, all first timeslots must start between [8.00 —R; , 8.30 + R,]|
where Ry, R, are random values uniformly distributed in {0, 15, ...,
Fx15}. Under-coverage index G takes a value between 0 and 4 and
determines the work demand DE, . To create a work demand, a
team with (|€] + G) employees is initialized and planned in a ran-
dom order with an initial random work demand. Obtained plan-
nings are thus used to define the work demand DE, ; that corre-
sponds exactly to the work capacity of the (|€| + G) employees. We
then randomly remove G employees in the team in such a way that
the work demand could not be covered by the final team of em-
ployees: results will present under-coverage. Note that there exists
a solution of value zero if G =0.

http://dx.doi.org/10.1016/j.ejor.2016.01.036

ARTICLE IN PRESS

Table 4

Generated data: solution values obtained by our methods. “T": branch-and-price method and MIP solver did not terminate
after 24h. In this case, the solution value is the best one found; “-": MIP solver did not find any feasible solution within
the time limit ; “L”: column generation at the root node did not converge within 1 hour, hovewer our heuristic branch-
and-price continues and carry out its branching strategy. “M”: branch-and-price algorithm failed due to memory issues. The
best found dive solution is used for initialization of the B&P.

Data |E] A & F LBy, Greedy diveldd divetd0 divelE200 BE&F LBy, Compact

dst1l 10 1 a o o 13 o 1] o o 0 o

dstz 1o 1 1] B o 187 3 o o o L] o

dst2 1a 1 1 o 2e0 260 260 260 20 60 260 100

dstd 10 1 1] o0 330 72 IT2 I 260 200 200

dst3 1o 1 2 o 300 360 360 360 300 60 360 300

dstts 1a 1 2 B 440 497 440 440 440 440 440 440

dsi7 23 3 a o o a0 T O] BT oL o

dstE 23 3 L1} B [} 343 e 208 180 180T L] MNTZT

dsta 23 3 1 o o0 73 60 200 o0 60 2060 00

dst10 23 3 1] 30 393 373 3z8 -] IBGT 230 8353 T

dst11 23 3 3 o 340 340 30 340 340 =) S0 30

dst1z 23 3 3 B G20 BT 030 30 630 23T ar3 T8 T

dsi13 A0 3 0 o o 120 12m =5 aa BT L] 12T

dst14 40 3 a] o 813 =BG 431 00 G0 T a -

dst 13 a0 3 3 o 380 T3 JE0 380 380 =] 320 m\IT

dsi 18 A0 3 3 B 480 1oo8 TE4 a4 383 JE5 M 4&3 -

dst17 40 3 a o 1eo 11650 Tism 1150 nea 1180 116m naz T

dst18 a0 3 a B 1200 1313 1330 1227 1227 1213 M 1Z0m -
Table 5

Running time (in seconds) of our methods (B&P time does not include the time needed to find the initial solution).
Symbol “T” indicates that our branch-and-price method and CPlex for solving the compact model did not termi-
nate within 24 hours of calculation. In this case, the solution value is the best one found. Symbol “L” indicates
that column generation at the root node did not converge within 1 hour, hovewer our heuristic branch-and-price
will still continue and carry out its branching strategy. Symbol “M” indicates that the branch-and-price algorithm

failed due to memory issues.

Duata | A © F Greedy divel2d divedtd divel800 2BEF ol gen Comgpact
dst1 1 1 o a 0.3 [LeE] 1og 0.0 oz L1 (18]
dst2 lu} 1 o 8 0.4 S0 4206 802 o4 0.3 o4z
dst3 o 1 1 [0.3 o7 04 0.3 g [} 43
distd o 1 1 8 o4 32 43 4.4 o 17 49
dst3 lu} 1 z a 0.3 0.a oz 0.2 o4 0.4 34
dsti lu} 1 z a 0.3 3 432 4.1 L2 12 33
dist7 23 3 o [[1] 124 o G686 T L EESE
dsth 23 3 o 8 10 120 G239 1773 T 25483 T
dstS 23 3 1 a 0.3 481 34 3az 3 3 3139
dist 10 23 3 1 8 e 120 [] G744 T 103 T
dst11 23 3 3 a 0.3 | K] 12 12 LB 17 2433
dst 12 23 3 3 | 0.9 123 320 e T 129 T
dst13 40 3 o 0 08 34 =} 1] 1744 T IT943 T
dst 14 40 3 o 8 L3 135 G54 1|1z T asin T
dst13 40 3 3 a 0.9 nrz 5]] =] 93 9.3 T
dist 10 40 3 3] 13 140 (k] 1827 %] 334 T
dst 17 40 3 =] a 0.9 33 7 .7 33 i3 T
dst18 40 3 =] | L3 I32a BoE 1323 1} Iz T

Tables 4-6 sum up the results obtained with the generated
data. The results are reported in the same way as those obtained
for the customer cases. It transpires from our results that the struc-
ture of the data strongly impacts the algorithms behavior. As one
would expect, the computing time depends on the number of em-
ployees to schedule, and the number of production activities. Flex-
ibility is also a difficulty factor: it increases the number of possible
shifts, and makes the dynamic program slower.

The tests on generated data confirm the conclusion drawn on
the customer data. We observe that the “lower bound” obtained
at the root node of the heuristic branch-and-price still has a very
good value, ie. it is often close or equal to the optimal solution
or the best solution found, and the final absolute gap is small, ex-
cept for the instances with a large size, and a large flexibility (dst8,
dst10, and dst16).

The greedy heuristic is fast and the quality of the planning
is good but rarely optimal. The diving heuristic gives results that
are close to those of the branch-and-price in most cases (the re-

sults are even optimal for small data). Similar to what happens
with the customer instances, giving more time at each node of
the diving clearly improves the results on average, although it may
happen (dts7) that better results are obtained when less time is
allowed.

A specificity of generated data instances is that the trivial lower
bound is very close to the Lagrangian one and the optimal solu-
tion. Moreover, the bounds are equal for most of the instances.
When this is the case, it is quite easy to find an optimal dual
solution 7 (optimal Lagrangian multipliers) for the column gen-
eration algorithm. However, even when an optimal dual solution
is known, it takes a large number of iterations to find an opti-
mal primal solution of the linear relaxation of the master prob-
lem. This fact explains why known stabilization techniques such as
dual smoothing do not improve convergence of column generation.
They are aimed at stabilizing around the best dual solution. This
does not help in our case as the optimal dual solution is already
known.

http://dx.doi.org/10.1016/j.ejor.2016.01.036

ARTICLE IN PRESS

Table 6
Generated data: behavior indicator of the methods according to the data set. Symbol “T” indicates that our branch-and-price method did not terminate within
24 hours of calculation. In this case, the solution value is the best one found.

nbNodes nbMP nbColumns
Dats fl divel20 divesn dinve TROD B&F dirve 120 divedon dive 1200 B&F divelzn divesoo dinve 1BDD BE&P
dstl 1o 0] 10 1o 1 Pl) 209 9 1 TS 1089 1029 o
dsi2 o 1] 10 o 1 JRRY: 2891 3I34 1 3894 17140 2IBBY o
dst3 1o 2 2 z 1] 3 3 3 40 40 40 40
dstd 1o 0] 10 1o 48 51 9 91 178 293 293 293 1280
dsis o s 2 z 1 3 3 3 3 20 20 20 20
dstis o 1] 1 o 1 O a0 a0 7 7 ey) 27 a0
st 7 3 3 3 23 1T 390 me 431 2002 T 2004 8008 17970 0TI T
dsif 3 23 3 23 1327 383 1328 230 aETaT 23m = 12183 188430 T
dsta 3 3 3 23 B0Z ang 303 2933 4 3180 3332 3332 448333
dst1o 3 b 3 23 B0ZT 3e 1057 sl 22933 T 130 0380 177 448333 T
dsi 11 3 2 2 2 1 B B B a 173 73 173 73
dst 1z 3 I3 3 23 /20T 411 BED o] ITMZT T 3002 4827 4827 @ITIE T
dst13 40 1 40 40 91T -] T 1310 ITIET 320 8420 15423 IB6oE0 T
dst14 40 40 40 40 2T 240 a4 1122 1994 T 1885 3322 10348 T9EE0 T
dst 13 &0 & &0 40 1 313 a1 30 7 4033 3373 3434 30
dst e 40 40 40 40 123 Iy Tig 1338 78T Z133 =1- 147 241470
dst 17 40 2 2 2 1 0] 1] 1o 10 354 334 i34 380
dst 18 &0 &0 &0 40 nmn L v 34 1321 13007 2178 B339 11302 3[T33

7. Conclusion

In this paper, we describe efficient strategies for solving a real-
life employee scheduling problem that mixes days-off schedul-
ing, shift scheduling, shift assignment, activity assignment, pause
assignment and break assignment. Our approaches are based on
the Dantzig-Wolfe decomposition, and we have successfully im-
plemented a heuristic branch-and-price algorithm, from which we
derived a diving heuristic and a greedy algorithm. These meth-
ods were tested on both customer and randomly generated data
with excellent results. The computational experiments show that
the proposed approaches yield optimal or near optimal solutions
in many cases.

The behavior of our methods raises several questions. Since
classical stabilization strategies were not able to improve the con-
vergence of the algorithm, we need a deeper analysis of the struc-
ture of the problem to come up with new strategies dedicated to
this kind of problems. As explained above, stabilization techniques
acting in the dual space have a limited impact on the convergence.
Therefore, an effort should be done in developing primal stabiliza-
tion strategies.

From a customer point of view, it would be interesting to con-
sider the annualized workforce allocation problem, in which em-
ployees are scheduled over the planning horizon of several weeks
(up to a year). This problem includes constraints linking successive
weeks of work. Since solving this problem for one week is already
challenging for state-of-the-art methodologies, we plan to derive
heuristics for these very large scale instances.

In this work, we consider independent employees, i.e. they per-
form activities independently of other employees. Another chal-
lenge would be to consider activities or tasks that require simul-
taneous presence of several employees with different skills.

Acknowledgment

The authors would like to thank the anonymous referees for
their useful comments, which helped improving the presentation
of the paper.

Experiments presented in this paper were carried out using the
PLAFRIM experimental testbed, being developed under the Inria
PlaFRIM development action with support from Laboratoire Bor-
delais de Recherche en Informatique and Institut de Mathéma-
tique de Bordeaux and other entities

https://plafrim.bordeaux.inria.fr/
http://dx.doi.org/10.1016/j.ejor.2016.01.036
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0002
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0002
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0002
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0002
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0004
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0004
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0013
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0013
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0013
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0013
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0013
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0013
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0013
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0016
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0016
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0016
http://refhub.elsevier.com/S0377-2217(16)00081-3/sbref0016
http://dx.doi.org/10.1016/j.ejor.2016.01.036

	Column generation based approaches for a tour scheduling problem with a multi-skill heterogeneous workforce
	1 Introduction
	2 Problem description
	2.1 A hierarchical structure of a team schedule
	2.2 Planning constraints
	2.3 Pause assignment policy

	3 Our column generation approach
	3.1 Master problem
	3.2 Pricing subproblems
	3.3 Acceleration strategies

	4 A nested dynamic program for the pricing subproblem
	4.1 Limits of the resource constrained shortest path formulation
	4.2 Limits of the grammar-based formulation
	4.3 A nested dynamic programming algorithm
	4.3.1 Reduced cost of a task
	4.3.2 Reduced cost of a timeslot
	4.3.3 Reduced cost of a day-shift
	4.3.4 Reduced cost of an individual planning
	4.3.5 Accelerating the algorithm heuristically

	5 Column-generation based algorithms
	5.1 Branch-and-price algorithm
	5.2 Diving heuristic
	5.3 Greedy heuristic based on the nested dynamic program

	6 Computational experiments
	6.1 Customer data
	6.2 Generated data

	7 Conclusion
	 Acknowledgment
	 Supplementary material
	 References

