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h i g h l i g h t s

� State space representations for
simulating wind power plant output
are proposed.

� The representation of wind speed in
state space allows structural analysis.

� The joint model incorporates the
temporal and spatial dependence
structure.

� The models are easily integrable into
a backward/forward sweep
algorithm.

� Results evidence the remarkable
differences between joint and
marginal models.
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This paper proposes the use of state space models to generate scenarios for the analysis of wind power
plant (WPP) generation capabilities. The proposal is rooted on the advantages that state space models
present for dealing with stochastic processes; mainly their structural definition and the use of Kalman
filter to naturally tackle some involved operations. The specification proposed in this paper comprises
a structured representation of individual Box–Jenkins models, with indications about further improve-
ments that can be easily performed. These marginal models are combined to form a joint model in which
the dependence structure is easily handled. Indications about the procedure to calibrate and check the
model, as well as a validation of its statistical appropriateness, are provided.
Application of the proposed state space models provides insight on the need to properly specify the

structural dependence between wind speeds. In this paper the joint and marginal models are smoothly
integrated into a backward–forward sweep algorithm to determine the performance indicators (voltages
and powers) of a WPP through simulation. As a result, visibly heavy tails emerge in the generated power
probability distribution through the use of the joint model—incorporating a detailed description of the
dependence structure—in contrast with the normally distributed power yielded by the margin-based
model.
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2015.10.052&domain=pdf
http://dx.doi.org/10.1016/j.apenergy.2015.10.052
mailto:guzman@uniovi.es
mailto:jgomez@uniovi.es
mailto:jcoto@uniovi.es
http://dx.doi.org/10.1016/j.apenergy.2015.10.052
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy


22 G. Díaz et al. / Applied Energy 162 (2016) 21–30
1. Introduction

Uncertainty analysis of a wind power plant (WPP) provides
knowledge about the reliability of its design parameters, its inte-
gration into the power system, and ultimately about decisions rest-
ing on its estimated performance [1]. Essentially, these analyses
aim at producing probabilistic distributions of selected perfor-
mance indicators (voltages, powers, etc.) subject to the uncertain
variation of independent variables. Wind speed is arguably the
most significant of those variables in a WPP. Its random varia-
tions—with involved both temporal and spatial dependencies—
makes scenario generation through simulation a most valuable
tool to facilitate the uncertainty analysis.

Cross-sectional sampling is a first suite of methods for simulat-
ing wind speed to investigate WPP performance. They are the basis
of Monte Carlo analyses in which time as a variable is of no inter-
est. In these analyses the extraction of samples is not necessarily
sequential. Indeed, vector operations are indicated to improve
sampling speed [2]. In the wind power literature, several versions
appear. The simplest rest on drawing unstratified samples
of the probability distribution [3], or stratified through Latin
hypercube-sampling (LHS) [4,2] or lattice sampling [5] to improve
performance. They are simple to use because they do not necessar-
ily require parameter estimation. If the marginal distribution is
obtained through a kernel estimation, the distribution parametric
specification can be avoided [2]. Even so, they may accurately
model simple spatial dependence between pairs of machines by
using a linear transformation based on the Cholesky decomposi-
tion of the correlation matrix [3,2]. Alternatively, where the depen-
dence structure is more involved, copula methods have been
applied, but following the same time independence [6,2].

At times it is necessary not only to focus on the probabilistic
properties of the wind power sample, but also to show the longitu-
dinal dependence structure, which stands for sequential sampling.
That is the case when the wind power must be confronted to other
stochastic processes—electricity price being the most relevant [1]—
or when the evolution of a power system is investigated [7–9].
Box–Jenkins’s ARMA models—with the property of resting in past
values to regress the actual wind speed—have been favored in such
cases. Indeed, Billinton et al. claimed that any individual wind
speed process may be modeled by ARMAðn;n� 1Þ models [9].
And Torres et al. after intensive research concluded that other
more parsimonious ARMA specifications also represented these
processes adequately [10].

However, the ability to incorporate a sequential dependence
makes ARMA-based models more complex to employ than their
cross-sectional counterparts. The two major problems are the
parameter estimation of individual wind speed series and the
incorporation of spatial cross-correlation between sources. The
first issue requires trial and error procedures as well as expert
judgment, and it has been sufficiently covered in the related liter-
ature; including the classical work by Box and Jenkins [11]. The
second issue, the correlation, has been addressed in the wind
power literature in two ways: one resting on forcing the correla-
tion to estimated individual models, and other using compound
models covering several wind speed sources simultaneously. An
instance of the first approach is reported in [12], where Gao et al.
proposed a modification of the random number generation to
affect the MA errors in such a way that the correlation was forced.
The model was complex because it required a heuristic search of
the appropriate seeds. Also following the individual path, Morales
et al. proposed in [13] a methodology based on Nataf’s method,
popularized in [14], to obtain correlated samples of wind speed
after having estimated the individual models. The correlation
was incorporated by employing a technique of transformation
similar to that in [3,4]. Alternatively other authors have recently
followed the compound model path by employing vector autore-
gressive (VAR) models. For instance, in [15] VARðpÞ models were
employed for simulating wind speeds subject to directional com-
ponents. Correia et al. restricted their analysis to VAR(1) models
[16], and Hill et al. to VAR(2) [17]. The common feature in these
studies is that the authors employed VAR, but not VARMA, models.
That is, the error regression was not considered, though it has been
stated in [9,10] that it is a fundamental component.

A recent addition to the previous specifications of wind speed
autoregressive models is that of Chen and Yu in [18]. They pro-
posed the translation of an AR model into state space (SS) form.
Indeed, AR models are but a subfamily of the more general SS mod-
els. The ensuing advantages of using Chen and Yu’s approach,
rather than Box–Jenkins’s, were detailed by Durbin and Koopman
in [19, Section 3.2.1]. First and foremost, the problem can be struc-
turally analyzed. This is in contrast with Box–Jenkins approach,
which does not investigate the structure of the problem. This struc-
tural analysis makes the SS approach really flexible for incorporat-
ing trends and seasonalities. By contrast, Box–Jenkins approach
requires a previous deseasonalizing and detrending. In addition,
Durbin and Koopman cite other superior features of SS models
compared with ARMA specifications, such as for instance the treat-
ment of missing observations, the easy incorporation of explana-
tory variables, the possibility of time-varying regression
coefficients, and the use of Kalman filter to naturally forecast for-
ward in the future (the subject of [18]).

This paper contributes to the literature on wind power
scenario generation by proposing a SS representation of the wind
speed. The contributions with respect to previous works are the
following:

1. First, Section 2.2 generalizes the SS model in [18] to also con-
sider the contribution of previous unobserved errors. The ensu-
ing generalized model exhibits a structure that makes it
susceptible to easy expansions.

2. The use of Kalman filtering to estimate those marginal SS model
parameters is favored by the transformation of the original
dataset into Gaussian random variables. This paper shows that
the method proposed in [20] though proving to be useful is
incomplete, for it cannot cope with calm wind speeds. A solu-
tion to this problem is offered in Section 2.1.

3. This paper shows in Section 2.3 that a joint SS model can be
easily built, preserving the structure of the marginal models.
The joint model expands the VAR formulations in [15–17], by
incorporating the MA terms, as advised in [9,10]. Further, it
completes the marginal state space model in [18] by integrating
the spatial dependence between sources through the use of a
multivariate white noise into the transition equation, with
covariances estimated from the original data.

4. Finally, this paper shows how to integrate the model into a
backward–forward sweep algorithm to obtain the simulated
performance of a WPP (Section 3.2). Moreover, clear evidence
about the error of employing non-dependent wind speeds to
simulate the aggregated power generation of a WPP is pro-
vided: Though there may be no deviations on the mean node
voltages and generated power, the extreme and more probable
values are visibly different.

2. State space model characterization

This section describes the proposed procedure for building the
SS model of wind speed of a WPP. The model is built in a normal-
ized space, starting with an uncorrelated SS model in which the
marginal distributions are independent, and ending with the spec-
ification of the correlation.
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2.1. Normalization

Wind speed distributions are not generally Gaussian. Actually
the most popular probability distribution employed for represent-
ing wind speed is the two-parameter Weibull (see for instance
[21,22] and references therein). This is a visibly skewed distribu-
tion that represents the superior frequency of relatively low wind
speeds by means of two parameters: scale (which serves as an
approximation of the mean wind speed) and shape (which refers
to the skewness and kurtosis). As a matter of fact, only when the
shape parameter is in the open interval (3.25, 3.61) the Weibull
can be assimilated to a Gaussian distribution according to [23].
But this requires a steady provision of wind speeds, which only
occurs at few locations. For instance, the trade winds are known
to be fairly constant, and they meet this bound condition at some
locations [24]. However, the literature reports that their distribu-
tion may not be Gaussian either, but for instance bimodal [25].

It is controversial whether the non-normal distributed observa-
tions should be subject to a normalization prior to the calibration
of a model. Several authors advocate for this preprocessing of wind
speed [26,13,27,28,10]. Others on the other hand, as Chatfield in
his classic book [29, Section 2.4], advice against this practice on
the ground that the transformed variable may lack physical inter-
pretation. Indeed, strictly speaking, in autoregressive models nor-
mally distributed observations are not crucial, but instead the
lack of correlation and finite variance of the error term.

In this paper we have chosen the normalization option for prac-
tical reasons. First, normalization extends the range of possible
analysis: AIC (Akaike information criterion) for order selection or
the asymptotic prediction of confidence bounds, for instance [30,
Section 5.4]. Second, the proposed model primarily depends on
Kalman filter for a number of operations (parameter estimation,
forecasting, etc.). Employing Gaussian random variables allows
using an optimal Kalman filter algorithm; for which well-
established implementations exist. Finally, as it is shown below,
a modified transformation easily deals with discontinuities in wind
speed, making calibration easier.

A normalization method that has proven to be effective is
reported in [8,26,13,31] based on the use of cumulative distribu-
tion functions (CDFs). In [20] it has been termed a ‘‘memoryless”
transformation. The rationale behind this transformation is that
the probability of not exceeding a value must be the same for
transformed and untransformed observations. This is achieved by
means of the CDFs in two steps: a first transformation of wind
speed into uniform random variables, and a second transformation
converting the uniform variable into normally distributed vari-
ables. In compact form it reads:

w0
t ¼ UðF�1

W ðwtÞÞ: ð1Þ

Uð�Þ is the standard Normal CDF. There are not restrictions on the
specification of the wind speed CDF, FWðwtÞ. It can be parametric
[8,26,13], which permits obtaining closed formulas for the transfor-
mation [31]. Or alternatively it can be non-parametric, based on
kernel density estimation [2]. We have opted for this second alter-
native, because it enables calm wind to be taken into account.

Calm winds introduce a jump at the origin in the cumulative
distribution of wind speed. In the probability density function, this
is shown as a disruptive infinite value at the origin. The height of
the jump indicates the frequency of such winds. This discontinuity
makes it difficult to produce a simple SS model that yields pure
zeros in a proportion statistically similar to that of the original ser-
ies. In cross-sectional analysis, Takle and Brown proposed the use
of hybrid Weibull distributions [32], where a delta operator indi-
cates the existence of null wind speed. However, we did not find
a parallel, simple solution for the SS model.
The solution proposed in this paper to account also for calm
winds is based on an expanded inverse CDF of wind speed, defined
as

F��1
W ðwtÞ ¼

Uð0;prW ¼ 0Þ; if wt ¼ 0

F�1
W ðwtÞ; otherwise

(
ð2Þ

This is congruent with the original Nataf transformation, in which
the first step is the transformation into uniform random variables.
In (2) that first transformation is preserved for non-calm winds.
But in the case of calm winds the transformation is obtained
directly through a uniform sampling, bounded between zero and
the probability of wind speed being zero. This probability repre-
sents the height of the ‘‘jump” of the CDF.
2.2. Marginal model

The conventional Box–Jenkins ARMAðp; qÞ model for wind
speed, wt , is:

wt ¼ c þ
Xp

i¼1

/iwt�i þ �t þ
Xq

i¼1

hi�t�i ð3Þ

where the /i are the parameters of the autoregressive component,
the hi are the parameters of the moving average part, and the
�t � Nð0;r2

�Þ is the error term.
In state space form, with state vector xt and observation vector

yt , the wind power model is:

xt ¼ Axt�1 þ But ð4aÞ
yt ¼ Cxt þ Dv t; ð4bÞ

where ut and v t are uncorrelated, unit-variance white noise vector
processes. The first equation is referred to as the state equation and
the second as the observation equation. The matrices defining the
model, A; B; C, and D, are the transition, disturbance loading, mea-
surement sensitivity, and observation innovation matrices,
respectively.

To model the ARMA form (3) in SS form, first we let the wind
speed wt be specified by the state variable x1t ¼ wt . Further, the p
AR elements are represented by hidden states, so that recursively
xit ¼ wt�ði�1Þ, with i ¼ 2; . . . ; p. That is, each hidden state represents
a past observation of wind speed. Similarly for the MA terms, a
state variable directly represents the disturbance of the state
equation as xðpþ1Þt ¼ �t; and recursively the rest of disturbance
regressions are defined through the use of hidden states,
xjt ¼ �t�ðj�1Þ, with j ¼ pþ 2; . . . ; pþ q. Eventually by following this
approach and comparing (3) and (4a), we can establish a state
space representation of wind speed through Eq. (5), where
ut � Nð0;1Þ.

ð5Þ
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By inspection it can be seen that this representation includes all
the features displayed in the Box–Jenkins model in (3) through a
highly sparse matrix of size ðpþ qþ 1Þ � ðpþ qþ 1Þ. That matrix
is A in (4a). Except for the first row, the matrix is filled exclusively
with zeros and ones, and importantly it can be easily and effi-
ciently built in a structured way if it is divided into the component
blocks shown in (5).

This representation of the transition equation has some partic-
ular features. First, if needed the constant term c can be repre-
sented through the last row of (5), in which it is simply stated
that xðpþqþ1Þt ¼ xðpþqþ1Þðt�1Þ; which means that the last state does
not vary. In addition, expansion or contraction to different orders
is immediate. It can represent any ARMAðp; qÞ model—including
for instance mean-reverting processes employed in specifying
electricity spot prices, which are but ARMA(1,0) [33]. However,
when p or q are zero, care must be taken in avoiding eliminating
the corresponding term. For instance, an ARMA(0,1) without
constant term process must not be represented by a
ðpþ qÞ � ðpþ qÞ ¼ 1� 1 matrix. The non-regressed state space
component, wt , and the disturbance component, �t , must always
be present (though with the corresponding parameter set to zero).
More specifically, the ARMA(0,1) process would be:

xt
�t

� �
¼ 0 h1

0 0

� �
xt�1

�t�1

� �
þ r�

r�

� �
ut ð6Þ

which yields

xt ¼ h1xt�1 þ r� ut
z}|{ut�Nð0;1Þ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�t�Nð0;r2

� Þ

ð7Þ

Importantly, the representation in (5) is a translation of an
autoregressive specification of a wind speed process, which can
be readily enriched. For instance, seasonal patterns can be easily
incorporated. Laine et al. show in [34] how by inserting blocks of

the form cosð2kp=12Þ sinð2kp=12Þ
� sinð2kp=12Þ cosð2kp=12Þ

� �
in A, where k is the har-

monic order, and correspondingly expanding the state vector and
disturbances in pairs, cyclic components can be considered. That
is, the model can intrinsically separate seasonal from purely
autoregressive components.

The disturbance matrix B also has a structured representation,
resting on the component blocks shown in (5). Its size is
ðpþ qþ 1Þ � 1, and it provides the information about the variance
of the process. Its relation with the innovation terms in (3) is
emphasized in (7).

Ultimately only the wind power is of interest, while the hidden
states are not particularly relevant. To reveal only this state, it suf-
fices to employ the observation Eq. (4b) to obtain the current wind
speed:

wt ¼ 1 0 � � � 0ð Þxt : ð8Þ
It follows that wind power is obtained as:

Pt ¼ gðwtÞ; ð9Þ

where gðwtÞ is the mapping from wind speed to wind power,
according to the characteristic power transformation curve of the
wind turbine.

The observation innovation matrix D is here arbitrarily set to
zero, so that the model is exactly an equivalent to the Box–Jenkins
model. However, were there measurement errors or uncertainties
in the wind speed measurement, these would be accounted for in
SS formulation by explicitly stating a non-zero matrix D.
2.3. Joint model

The previous model describes the autoregressive form of the
wind speed at one only site. One of the advantages of employing
the state space representation proposed in this paper is that it is
readily expandable to account for correlated wind speeds at differ-
ent sites. The proposed structure is as follows:

A ¼ diagðAiÞ ð10aÞ
B ¼ diagðBiÞ ð10bÞ
C ¼ diagðCiÞ ð10cÞ
That is, initially the model is simply expanded by diagonally
stacking the components of each i-th marginal model. This
procedure, however, provides an uncorrelated model of wind
speed.

The correlation can be introduced either in the transition matrix
A or, more simply, in the second term of (4a). Both formulations
would be equivalent. However, operating on the second term of
(4a) makes it more straightforward the specification of the correla-
tion, because it can be directly imported from the analysis of cor-
relation of the original sample. Besides, the general matrix A can
be in this way built through stacking of the marginal components,
without introducing off-diagonal terms which would complicate
the characterization of A. When the system is expanded to repre-
sent ns generation sites, the disturbance ut also expands to a vector
ut of size ns; each entry representing the stochastic deviation of
each marginal wind speed. For simulation of correlated wind
speeds, the key is not in producing Normal i.i.d. for each compo-
nent of the vector ut , but doing it jointly from a multivariate nor-
mal distribution. That is, the sampling should not be done as
uit � MVNð0;1Þ, but following ut � Nð0;Q Þ. Hence matrix Q—
the covariance matrix obtained from the original wind speed ser-
ies—helps model the correlation among the process deviations
through the product But . The variance of the marginal models
was already included in B through the specification of the marginal
models in (5). This accordingly requires the different wind speeds
to follow deviations that obey the original correlation between ser-
ies. It is noticeable that if the correlation were instead specified in
matrix B as a sum of one process own deviation plus the deviation
proposed by adjacent processes through correlation (with the sam-
ples of deviations being i.i.d. from a standard normal distribution)
the maximum values of wind speeds would reach values several
times higher than those of the original series. This would have
been a consequence of the lack of control about the amount of
the deviations, by considering the errors additively.

The procedure is summarized in the following steps.

� Normalize the k input time series by (a) employing an empirical
or kernel estimate-based CDF of each sample to produce uni-
form samples and (b) obtaining the Gaussian values of those
uniform samples. Time sequence of the observations must be
preserved.

� Decide equivalent ARIMA order p and q, and build the corre-
sponding marginal state space models.

� Individually fit each marginal model to the normalized series by
a combination of Kalman filtering and minimum loglikelihood.
(Follow Durbin and Koopman guidelines for guessing the initial
values [19].)

� Check the validity of the fitness: whiteness and uncorrelation of
the standardized residuals must be ensured. If not, suggest
other p and q values and repeat.

� Build the joint model from the marginal models by
diagonal stacking. As an instance of the result, the following
are the joint model for sites 25,225 and 25,228 of NREL
dataset:
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The marginal models and the stacked structure are readily seen
(p ¼ 1 and q ¼ 3).

� Compute the correlation between the original wind speed sam-
ples. For sites 25,225 and 25,228 it is 0.896. Consequently the
covariance matrix is

1 0:896
� �
Fig. 1. General procedure for simulating correlated wind samples.
Q ¼
0:896 1

:

Therefore u � MVNð0;Q Þ.
� Simulate normalized wind speeds by drawing a sample of ut at
each time step t, to get the value of x at t þ 1 : xtþ1 ¼ Axt þ But .
See Durbin and Koopman [19] for guidelines about the first
sample guess.

� The simulated samples of normalized wind speed are y ¼ Cx.
� Finally, ‘‘untransform” by reverting step 1: (a) the simulated
sample is transformed to uniform by the Gaussian inverse
CDF, and (b) those uniform samples are transformed through
the estimate (kernel-based or empirical) CDF of the original
sample.

The entire procedure for characterizing the SS model of the
wind speed of the WPP, including correlation, is summarized in
Figs. 1 and 2.

3. Case analysis

In what follows two case analyses are presented. One employs a
reduced number of generators. Its objective is to illustrate the most
relevant features of the proposed model. The second analysis
expands the study to a full 32-generator WPP to further demon-
strate the ability of the model to smoothly integrate with WPP load
flows, and to show the errors when the marginal models are
employed rather than the joint versions.

3.1. Six-generator model

In this section we illustrate the procedure for scenario genera-
tion by using a small scale WPP composed of six generators. In
order to focus on the procedure, what follows does not take into
account the load power flow (i.e. the line losses) in the WPP.

3.1.1. Data set
To illustrate the procedure for scenario generation, we first

selected a six-generator sample from the NREL data set in The data
employed to illustrate the SS specification can be found in [35]. The
site identifications and the main features about wind power pro-
duction are listed in Table 1. We carefully selected the data set,
all corresponding to sites close in proximity, to have a varied
representation of wind profiles and correlation levels. The data
set contains measurements for three years (we employed 2006)
with observations of wind speed every ten minutes.
3.1.2. Marginal model estimate
As with Box–Jenkins models, the first step is to calibrate the

model. The calibration comprises both a trial and error procedure



Fig. 2. Detail of the procedure for building the individual marginal models in Fig. 1.
The dashed line loop indicates that the procedure of finding the /i and hj is
undertaken by an optimization routine.

Table 1
Main features of the investigated data set.

NREL id. Cap. factor (%) Power dens. (W/m2) Mean speed (m/s)

25,181 38.8 849.2 8.7
25,228 23.6 600.9 6.7
25,331 35.0 759.0 8.2
25,377 26.4 389.2 6.9
25,194 43.1 1162.9 10.2
25,293 31.8 756.0 7.9

−20 −5 10 25 40 
−4

−2

0

2

4

original sample quantiles

st
d.

 N
or

m
al

 q
ua

nt
ile

s

(a)

−4 −2 0 2 4 
normalized sample quantiles

(b)

Fig. 3. Normal probability plots of NREL id. 25,377. (a) Original series. (b)
Normalized series after employing the first part of Nataf transformation using an
intermediate kernel density estimation.
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and expert judgment. The process must test candidate models of
different orders and, subsequently, assess their accuracy. In this
respect, we based on the information provided by Torres et al. in
[10]. After investigating 54 wind datasets employing autoregres-
sive models in the form of ARMAðp; qÞ, they concluded that the
most accurate models were those described by a first order autore-
gression, with q 2 ½2;4� q an integer in the closed interval ½2;4�.
Therefore, for each site we assumed that the processes were gov-
erned by a generic system of five state variables, through the tran-
sition Eq. (5), having as unknown parameters /1; h1; . . . ; h4, and r�.

For normalization of wind speed, we employed the kernel den-
sity estimation algorithm in [36] to non-parametrically estimate
the marginal wind speed CDFs. It is a fast algorithm that provides
the uniform version of wind speed detailed in (2). The difference
between distributions (pre- and post-transformed) is shown in
Fig. 3.

Because of the normalization of variables the model is now a
linear Gaussian SSM, and the optimal Kalman filter can be advan-
tageously employed to construct the log-likelihood function,
through which the unknown parameters can be estimated [37,
Section 5.3]. The procedure is quite standard, thanks to the normal-
ization of data: The Kalman filter recursively estimates the unob-
served components at each observation, based on the previous
available information, which permits a dynamic estimation of the
log-likelihood function. This process of parameter estimation is
individually repeated for each wind speed series in the data set.

The calibration procedure also encompasses adequacy checks,
to corroborate whether the residuals of the fit have the appropriate
specification (normality and independence). Durbin and Koopman
showed in [19] that the analysis of autocorrelation plots of stan-
dardized prediction errors provide a quick measure of the effec-
tiveness of the model in reproducing the characteristics of the
original series. The procedure comprises the following steps. First,
the Kalman filter is employed to filter the estimated model against
the original wind speed series. Then using the filter output, the
prediction error and its covariance are obtained by comparing
the original and forecast series. The standardized error is the quo-
tient between the mean and the square root of the covariance. This
is the error that eventually is fed to the autocorrelation plot. As for
normality compliance, it can be assessed by a number of special-
ized tests. Particularly, we employed the well-known Augmented
Dickey–Fuller test.

Fig. 4 illustrates this point. The standardized prediction error is
shown overlapping the original normalized series in the top panel.
The normalization makes the original series oscillate around the
zero mean, presenting negative speeds. The prediction error shows
also the same oscillating behavior, with larger deviations where
the original series presents more oscillations. Eventually, with
the parameter values given in the caption, the prediction shows
a normal distribution with autocorrelation at different lags fairly
withing the standard deviation margins.
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Fig. 4. Standardized error analysis of NREL site id. 25,377 for the following
parametric specification: /1 ¼ 0:9599; h1 ¼ 0:0741; h2 ¼ 0:0147; h3 ¼ h4 ¼ 0, and
r� ¼ 0:9443. (a) Two weeks of original normalized series (black line) and
standardized prediction error (gray line). (b) Autocorrelation plot.

Table 2
Wind speed correlation of the original series.

NREL id. 25,181 25,228 25,331 25,377 25,194 25,293

25,181 1.0000 0.1099 0.6233 0.6645 0.8823 0.6131
25,228 0.1099 1.0000 0.4532 0.4323 0.2929 0.5339
25,331 0.6233 0.4532 1.0000 0.7024 0.6972 0.7933
25,377 0.6645 0.4323 0.7024 1.0000 0.6715 0.7521
25,194 0.8823 0.2929 0.6972 0.6715 1.0000 0.6764
25,293 0.6131 0.5339 0.7933 0.7521 0.6764 1.0000
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Fig. 5. Histograms comparing the original (top, light shade) and the simulated
(bottom, dark shade) series. The markers are the sample mean (�) and median (	).

0

5

10

15

20

25

30

35
sp

ee
d 

at
 #

25
18

1 
(m

/s
) (a) (b)

10

15

20

25

30

35

sp
ee

d 
at

 #
25

29
3 

(m
/s

) (c) (d)

G. Díaz et al. / Applied Energy 162 (2016) 21–30 27
We repeated these steps until we were satisfied with the
results. If one marginal model parameterization did not comply
with the residual requirements, we would check another fit, but
without changing the model structure. It suffices to introduce con-
straints to the values of the parameters at the stage of maximiza-
tion of the log-likelihood function. For instance, an ARMA(1,2)
model can be imposed in the general structure by setting
h3 ¼ h4 ¼ 0. Eventually this trial and error procedure yields the
marginal, uncorrelated SS models of wind speed at the six sites.
0 5 10 15 20 25 30 35
0

5

speed at #25331 (m/s)
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speed at #25331 (m/s)

Fig. 6. Correlation plot comparing the original data set (left) to the simulated data
(right).

Table 3
Wind speed correlation of the simulated series.

NREL id. 25,181 25,228 25,331 25,377 25,194 25,293

25,181 1.0000 0.1144 0.5183 0.6708 0.8536 0.5761
25,228 0.1144 1.0000 0.3752 0.1807 0.2143 0.4341
3.1.3. Joint model
After the estimation of the marginal models, we proceeded with

the specification of the joint model. As explained above, this spec-
ification consists of a stacking of the marginal model matrices
Ai; Bi, and Ci; i ¼ 1; . . . ;6; with the provision of a multivariate
error term. The ensuing model has 30 state variables, inherited
frommarginal models of 5 states. Simulations can then be obtained
through the recursive extraction of error samples from a multivari-
ate normal distribution of zero mean, employing the original corre-
lation matrix to compute the off-diagonal entries of the covariance
matrix of the distribution (Table 2).
25,331 0.5183 0.3752 1.0000 0.5733 0.4728 0.7402
25,377 0.6708 0.1807 0.5733 1.0000 0.5695 0.6994
25,194 0.8536 0.2143 0.4728 0.5695 1.0000 0.5717
25,293 0.5761 0.4341 0.7402 0.6994 0.5717 1.0000
3.1.4. Model performance assessment
The accuracy of the model in representing the statistical distri-

bution of the wind speed is corroborated in Fig. 5. The selected data
set comprised wind speed records of difficult specification through
parametric distributions (Weibull for instance). This is the case of
site id. 25,293 or 25,194, where the fitting of a unimodal distribu-
tion seems difficult. However, the SS model estimate produces sim-
ulated data of characteristics similar to those of the original data.
Not only the shapes (modes) of the distribution are well replicated,
but also the mean and median statistics are coherent.

The correlation among processes is investigated next. Fig. 6
shows again original and simulated data, and Table 3 provides
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the correlation values obtained from the simulated series. Panels
(a) and (b) in Fig. 6 compare the correlation between two wind
speed series of relatively low correlation (0.62 in the original data
set and 0.52 in the simulated series); and (c) and (d) show the
match of correlation between simulated and original data of two
series of higher correlation (about 0.79). In both cases, high and
low correlation, the model is fairly accurate in representing the
statistical dependence between wind speed series. This accuracy
is repeated throughout all the data set, with few exceptions, such
as the case of the site pairs 25,377/25,228 and 25,194/25,331.
We investigated these cases and found that the lack of accuracy
occurs because of the difficulty in modeling complex correlation
patterns through a unique parameter. The off-diagonal elements
of the correlation matrix indicate the strength of a linear relation-
ship between the two involved variables. Fig. 7 shows that the sim-
ulated data correctly complies with the approximate limits of the
wind speed shown in the original data (around 20 m/s for site
25,377 and 35 m/s for site 25,228) because it depends on the indi-
vidual fitting of each time series. However, the ‘‘distortion” of the
original correlation plot cannot be reproduced by the simulated
data, where a more linear, even normalized, data is observed.
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Fig. 8. One-sample simulation of the six time series detailed in Table 1. (a)
Simulation without considering the correlation—i.e., simulation before building the
joint model. (b) Original data set. (c) Simulation of the joint model.
Nonetheless, because the model is built so that the correlation is
enforced in the error sampling, possibly a more complex sampling
procedure—maybe based on vine copula theory—should facilitate a
more exact specification of the dependence.

Finally, the need for a correlation adjustment upon the building
of the complete model is further emphasized in Fig. 8. The under-
lying variability an reversion obtained from the simulation of the
models—either before compounding or after compounding—is sim-
ilar to that of the original data set: see for instance the speed limits
and the reversion speed of original and simulated data. However,
the dependence observed in Fig. 8b is only reproduced in Fig. 8c,
where the correlation is enforced at the time of recursively gener-
ating the observations.

3.2. 32-generator model

This section broadens the previous case analysis by integrating
a larger number of processes into a simulated WPP. The main pur-
pose is to asses the error of not modeling a compound system
when the aggregated response is analyzed, and ultimately corrob-
orate that the problem is tractable in a power flow framework even
with such a large number of state variables.

3.2.1. Test system and load power flow
The selected distribution system representing the generator

interconnection in the WPP was the 33-bus test system described
in [38]. We defined a generator at each node except at the slack
bus.

We integrated the wind power SS model into a backward–for-
ward sweep (BFS) algorithm in order to compute node voltages,
branch currents, and total produced power in the test system. To
achieve the integration, we modified the direct approach presented
in [39] by introducing a node incidence matrix, C, for representing
the test system. This is an Nb � N matrix, where Nb is the number of
branches (32 in the test system analyzed here), such that its ele-
ment cij is [40]:

– ckl ¼ þ1 when current in branch k leaves node l;
– ckl ¼ �1 when current in branch k flows towards node l; and
– ckl ¼ 0 when no connection exists.

This matrix makes it possible to relate all the branch currents to
the drawn currents at every node at step t by stating

Ibranch;t ¼ C�T Inode;t ; ð11Þ
where the superscript �T indicates inverse transpose [40]. And
because the drawn currents are related to the drawn power, all
the currents of the network can be computed in the backward
sweeps as

Ibranch;t ¼ C�T ðPtøUtÞ; ð12Þ
where Ut is the vector of node voltages—assumed known in the
backward sweep—and ø is the element-wise division of vectors.

The forward sweep assumes that the voltage at the slack bus is
1.0 p.u and that the currents computed in the backward sweep are
correct. From that point and again employing matrix C, the new
node voltages can be computed in just one operation as:

U0
t ¼ 1:0� C�1 diagðZbranchÞ Ibranch;t
¼ 1:0� C�1 diagðZbranchÞC�T ðPtøUtÞ;

ð13Þ

where diagðZbranchÞ is the diagonal matrix of ordered line
impedances.

The procedure is derivative free and efficient. It computes the
value of voltages from the simulated injected powers in vector Pt
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in few seeps; hence providing a quick simulation of the network
state at each extraction of a sample in the transition equation.

3.2.2. Data set
The data set employed to model the wind speed of the 32 gen-

erators has the following codes in the NREL data base [35]: 24,483,
24,484, 24,485, 24,486, 24,487, 24,488, 24,489, 24,490, 24,491,
24,492, 24,493, 24,494, 24,495, 24,496, 24,497, 24,498, 24,499,
24,430, 24,431, 24,432, 24,433, 24,680, 24,681, 24,682, 24,563,
24,564, 24,565, 24,566, 24,567, 24,568, 24,569, and 24,570. These
codes are sorted here in the same order as the numbering of the
nodes in the test system of [38]. Moreover, if the map in [35] is
consulted, it can be observed that we intentionally selected the
branches of the system following actual rows of generators, so that
the dependencies in every branch were representing an actual
WPP.

The simulated wind speed was mapped into wind power by
means of the characteristic curve of the Enercon E40 600 kW wind
turbine (see [4] for details). We set the system base power to
500 kW. In order to simulate a WPP, we eliminated all the loads
in the nodes, and to be consistent with the convention in [38],
we considered the power injected in the nodes as negative. We also
set the reactive power injections to zero.

The joint wind speed model consisting of 32 individual pro-
cesses had 121 active state variables. We performed a 10,000-
sample Monte Carlo experiment employing 10-min scale observa-
tions—as in the NREL data set—which amounts to approximately a
one-week simulation. The approximate running time for the Monte
Carlo experiment—including sampling and BFS solutions—was
around 10 s in an four-processor Intel(R) Core(TM) i7-3770,
3.4 GHz, PC with 8 GB RAM. This shows that the relative high order
of the system does not produce a relevant computational burden,
because of the sparsity of the involved matrices.

The difference in the results when considering the generator
dependencies is substantial. First, the voltage profile has remark-
able discrepancies. Both models produce similar mean voltages
(Fig. 9a). However, the use of independent models (Fig. 9a) consis-
tently produces results of narrower interquartile ranges. That is,
the dispersion of the data is more reduced. Moreover, the marginal
models yield normal distributions. On the whole, the combination
of these distribution features makes the aggregation of marginal
models fail to reveal the possibility of a flat voltage profile in any
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Fig. 9. Tukey’s box plots showing the voltage profile. The red dot inside the box plot
refers to the distribution mean. (a) Computation from marginal models. (b)
Computation from the joint model. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
branch of the WPP. This would be a consequence of a possible lack
of wind speeds above the cut-in speed in all the generators of the
WPP branch simultaneously.

The error in the aggregated production estimate can neither be
neglected when the dependence structure is not considered. The
maximum aggregated power in per unit (p.u.) system produced
by the independent models is 34.6 p.u., whereas the minimal is
17.3 p.u. This is truly inaccurate when compared with the results
of the joint model: 38.4 and 0.0 p.u. Moreover, as shown in
Fig. 10, the distribution of probabilities is very different.
Again the independent models produce a normal distribution,
indicating a mean production equal to 25.7 p.u.; which is practi-
cally equal to that of the joint model. However, the dependent,
joint model shows that the extremes are the most frequent event.
Most of the time the WPP will be producing at the rated power
because of the prevalent simultaneous wind speeds occurring in
the range between the rated and the cut-off speed of the Enercon
E40 (with rated power equal to 1.2 p.u.). Second in frequency of
occurrence is the null production event. Other frequent events
appear in the histogram of Fig. 10 in the form of spikes. These
reflect the concurrence of various generators producing at rated
when the rest are stopped. These spikes can be seen at
1:2� 32 ¼ 38:4; 1:2� 31 ¼ 37:2; 1:2� 32 ¼ 36:0; . . . p.u. On the
whole, the independent scenario generation fails to reproduce all
these extreme events.

4. Conclusions

This paper provides a comprehensive procedure to represent
wind speed in a WPP by means of joint state space models com-
prising all the wind speed information of the WPP into one only
expression. The representation is of interest to researchers and
practitioners working on estimation, forecasting, or decision mak-
ing, concerning the performance of a WPP where an analytical
solution is too complex and sampling of multiple possible scenar-
ios is required. Importantly, these scenarios—statistically equiva-
lent to the actual conditions in the WPP—incorporate not only
the marginal statistical information of each individual power pro-
duction, but also the dependence structure among the generators
in the WPP. Based on an autoregressive specification, the proposed
state space representation allows that dependence be not only
cross-sectional (site-dependent), but also longitudinal (time-
dependent).

There are several advantages that advocate for the use of state
space models to generate wind speed scenarios. The most impor-
tant, as emphasized by Durbin and Koopman, is the structural
specification. State space models give the ability to study the inter-
nal structure of wind speed series. In this paper the focus is on the
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specification of Box–Jenkins marginal models through joint state
space models that include the dependence structure between
those marginals. However, more detailed structures may be
approached, including trends and seasonalities, to further investi-
gate the structure of wind speed in a WPP. Additionally, state space
models provide several advantages over Box–Jenkins models in
dealing with missing or irregular-spaced data, or time-varying
parameters. Resting on the Kalman filter, state space models pro-
vide a convenient way of dealing with such irregularities, as well
as they prove useful in facilitating forecasting and smoothing of
the underlying processes.

This paper presents a procedure that is simple and—as proved
by a number of through several numerical simulations—effective.
It comprises a direct transformation into Gaussian variables so that
the proposed structured state space model can be handled by
means of the optimal Kalman filter. The structure dependence is
also easily handled inside the transition equation by defining a
multivariate normally distributed innovation; yielding a joint
model where wind processes are dependent, in contrast to the
individual margin-based model. Through the integration of the
wind speed state space model into a backward–forward sweep
algorithm, this paper shows that marginal scenario generation fails
to reproduce important details of the aggregated power in a WPP.
Mean values of power and voltage may be correctly obtained. But
extreme values are not correctly shown through those marginal
specifications.
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